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Abstract 

The rapid proliferation of Electric Vehicles intro- duces both transforming opportunities and complex 

challenges to modern power grid infrastructure. This study examines at how deep learning can help predict 

when and how much EVs will   charge, so that the grid can be better prepared. We employed two types of 

neural networks—Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks—

trained on a dataset containing electric vehicle (EV) charging data. The objective was to evaluate the 

effectiveness of these models in predicting future demand using historical charging patterns. Found that the 

LSTM model gave more accurate results, especially for longer-term trends. These predictions could be useful 

for companies to plan energy distribution, avoid overloads, and support renewable energy use. This research 

adds to the growing effort to make electric grids smarter and more adaptable as EV numbers increase. 

Keywords: Electric Vehicle Charging, Deep Learning, LSTM Networks, Recurrent Neural Networks (RNN), 

Smart Grid Management, Load Forecasting. 

 

Table 1 List of Acronyms 
Acronym Full Form Acronym Full Form 

EVs Electric Vehicle GHG Greenhouse Gas 
SoC State-of-Charge RNNs Recurrent Neural Networks 

LSTM Long Short-Term Memory MAE Mean Absolute Error 
RMSE Root Mean Square Error MAPE Mean Absolute Percentage Error 
V2G Vehicle-to-Grid PHEVs Plug-in Hybrid Electric Vehicles 
ML Machine Learning SVR Support Vector Regression 

 

1. Introduction 

The transition toward sustainable energy and 

transportation is one of the most transformative 

global challenges of the 21st century. Among the 

most significant developments in this field is the 

extensive adoption of Electric Vehicles, which are 

anticipated to perform a central role in decarbonizing 

the transport sector and reducing greenhouse gas 

emissions. Rendering to the International Energy 

Agency, global EV stock surpassed 26 million in 

2022 and is projected to exceed 125 million by 2030 

under present policy situations, with over 200 million 

under aggressive climate-target policies [1]. This 

exponential growth is driven by multiple factors 

including declining battery prices, enhanced vehicle 

performance, government incentives, and increasing 

awareness of environmental impacts associated with 

internal combustion engines. While the 

environmental and economic benefits of EVs are 

substantial, their large-scale integration into the 

power distribution grid introduces unprecedented 

operational and planning challenges. Unlike 

conventional electrical appliances, EVs represent 

mobile, high-power, and temporally clustered loads 

whose charging patterns vary widely depending on 

user behavior, battery state-of-charge, mobility 

needs, and time-of- use pricing schemes. 

Uncoordinated charging of a growing EV fleet can 

significantly distort the load profile, leading to grid 
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congestion, transformer overloading, voltage 

instability, and reduced power quality, especially in 

low-voltage residential networks [2] [3]. A central 

requirement for mitigating these challenges is the 

precise forecasting of EV charging demand—both 

spatially and temporally. Effective demand 

prediction enables grid operators and utility providers 

to perform proactive load balancing, allocate reserve 

generation capacity, implement dynamic pricing 

strategies, and deploy demand response programs. It 

also informs the optimal siting and sizing of charging 

stations, transformer units, and energy storage 

systems. However, the unpredictable behavior of EV 

users and the nonlinear trends in energy consumption 

over time make conventional time-series forecasting 

techniques—like ARIMA linear regression, and rule-

based heuristics—inadequate [4] [5]. Recent 

advances in artificial intelligence and machine learn- 

ing, particularly deep learning, have opened new 

avenues for modeling composite, non-linear, and 

long-range dependencies in chronological data. 

RNNs and their improved variants such as LSTM 

networks have demonstrated remarkable success in 

domains ranging from speech recognition to energy 

load due to their strong retention, they are suitable for 

forecasting tasks temporal memory and model 

sequential correlations [6] [7]. A major limitation of 

standard RNNs is their tendency to lose or overlook 

older information when processing long sequences. 

LSTMs help fix this by using special units called 

memory cells, along with gates that control what to 

remember and what to ignore [8]. In this project, I’ve 

used both RNN and LSTM models to predict short-

term charging demand for electric vehicles. The data 

came from actual charging sessions and included 

things like start and end times, how much energy was 

used, and some details about the stations themselves. 

Before training the models, I cleaned and formatted 

the data by normalizing the values and organizing 

them into short sequences. To check how well the 

models worked, I looked at common error metrics 

like MAE, RMSE, and MAPE. These results 

demonstrate the closeness between predicted and 

actual values across different time frames. But the 

goal isn’t just about accurate numbers. I also wanted 

to see how useful these models could be in real-world 

energy systems. If we can predict demand more 

reliably, it’s easier for energy providers to plan ahead, 

avoid overloading parts of the grid, and possibly 

reduce the need for extra infrastructure. This kind of 

forecasting could also be built into systems where 

EVs interact with the grid, such as Vehicle-to-Grid 

programs, helping to make energy use smarter and 

more flexible. Beyond predictive accuracy, this work 

aims to demonstrate the operational utility of deep 

learning models in smart grid analytics and planning. 

Anticipating charging demand with high fidelity 

allows for better alignment of generation and load, 

greater integration of renewable energy sources, 

enhanced peak shaving, and reduced need for costly 

infrastructure upgrades. Moreover, accurate forecasts 

can be integrated into control strategies for Vehicle-

to-Grid systems and used to orchestrate intelligent 

charging behaviors under real-time market signals. 

By leveraging RNN and LSTM architectures in this 

context, the research contributes to the increasing 

form of literature on AI-driven energy systems and 

offers practical insights for grid operators, 

policymakers, and EV infrastructure developers. It 

aligns with the broader vision of intelligent cyber-

physical energy systems that are adaptive, resilient, 

and responsive to both user demand and system-level 

constraints. 

2. Related Works 

The increasing penetration of EVs into modern 

transportation systems has stimulated a wide range of 

research focused on understanding and managing 

their impact on power grids. Specifically, the 

prediction of EV charging demand has increased 

substantial attention as a critical component in 

enabling smart grid efficiency, reducing peak loads, 

and optimizing infrastructure planning. Prior work in 

this domain spans traditional statistical methods, 

machine learning algorithms, and more recently, deep 

learning approaches—each with varying levels of 

success in addressing the stochastic nature of EV 

charging behaviors [9]. Initial efforts in EV charging 

load forecasting employed classical time-series 

techniques such as ARIMA, SARIMA, and linear 

regression. Richardson et al. [3] developed a time- of-

use model for estimating uncoordinated charging 

loads, providing early insights into aggregate demand 
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behavior. Similarly, Clement-Nyns et al. [2] explored 

the impact of plug-in hybrid electric vehicles on 

residential grids using deterministic load models. 

While these methods were effective in structured 

environments, they lacked the flexibility to adapt to 

real- world, user-driven variability and failed to 

capture temporal dependencies beyond linear trends. 

To overcome these challenges, researchers have 

turned        to data-driven machine learning 

approaches. Ghazvini et al. [10] pro- posed a hybrid 

framework combining clustering and support vector 

regression for individual EV load forecasting. Zidan 

et al. [11] utilized Random Forests and feature 

engineering to model multi-station demand patterns, 

demonstrating improved prediction accuracy. These 

methods marked a significant improvement over 

statistical models by capturing non-linear 

relationships; however, they still struggled with 

sequential dependencies and dynamic temporal 

patterns, especially over longer forecasting horizons. 

The advent of deep learning has introduced powerful 

new tools for time-series modeling in the EV domain. 

RNNs, particularly LSTM architectures, have 

emerged as state-of- the-art techniques for sequential 

prediction tasks. Kong et al. [7] demonstrated the 

superiority of LSTMs in short-term residential load 

forecasting, outperforming traditional ML models in 

both accuracy and temporal sensitivity. Duan et al. 

[12] extended this approach by integrating spatial-

temporal features for predicting EV load across 

multiple urban charging stations using LSTMs, 

yielding lower error rates in high-dimensional 

datasets. Recent work has also focused on hybrid 

models and external contextual factors. For instance, 

Chen et al. [13] introduced deep residual LSTM 

networks that incorporated weather and pricing 

information to refine EV demand predictions. Others, 

such as Zhao et al. [14], developed multi-input LSTM 

frame- works that leveraged temporal, 

environmental, and usage data to achieve higher 

robustness and generalizability. Despite these 

advances, challenges remain in standardizing 

evaluation frameworks, comparing architectures 

under consistent datasets, and modeling localized 

versus aggregated demand. Additionally, there is a 

research gap in operationalizing these deep learning 

models into real-time or near real-time utility systems 

for grid-responsive charging strategies. In light of 

these developments, the present study builds upon 

and extends prior work by implementing and 

comparing RNN and LSTM architectures using a 

publicly available EV charging dataset. The goal is to 

provide a comprehensive performance analysis using 

standardized metrics, offering practical insights for 

integrating deep learning into smart grid demand 

management systems. 

3. Methodology 

This study proposes a deep learning-based 

framework to forecast EV charging demand using 

RNN and LSTM architectures. The purpose is to 

model temporal dependencies in historical charging 

data to predict future energy demand more accurately 

and thereby support smart grid optimization. The 

methodology comprises several critical phases, 

including data preprocessing, feature engineering, 

model development, training and validation, and 

evaluation. 

3.1.Problem Formulation 

The core purpose of this investigate is to develop a 

data- driven model to forecast the energy 

consumption of EV charging sessions over time. Let 

the time-series data be represented as a sequence 

(Figure 1): 

D = {(x1, y1), (x2, y2), . . . , (xT , yT )} 

where xt ∈ Rn is the feature vector at time step t, and yt 

∈ R is the target variable representing the energy 

consumed (in kWh) during that interval. The task is to 

learn a mapping function fθ, parameterized by neural 

network weightsθ, that predicts the future energy demand: 

yˆt+1 = fθ(xt, xt−1, . . . , xt−n) 

The problem is cast as a supervised sequence 

regression problem, where the model is trained to 

decrease the loss value over a historical time window. 

Specifically, we aim to minimize the Mean Squared 

Error (MSE): 

 
By using this formulation, the model can capture 

temporal dependencies over both short and long 

durations in sequence data, which aligns well with the 

strengths of RNNs and LSTMs 
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Figure 1 Flowchart for the Procedure of 

Implementing the LSTM-based EV Charging 

Demand Prediction Model 

 

3.2.Data Preprocessing 

Preprocessing plays a key role in enhancing the 

performance of sequence models like RNNs and 

LSTM networks, particularly when working with 

multivariate time series data such as EV charging 

logs. Properly formatted inputs allow these models to 

effectively learn temporal dependencies, pat- terns, 

and trends in energy consumption, charging behavior, 

and external influencing factors. The following steps 

were undertaken to prepare the dataset for RNN and 

LSTM architectures: 

1. Normalization: To prevent numerical instability 

during training and ensure uniform feature influence, 

we apply Z- score normalization to each continuous 

feature independently. This is critical for 

LSTM/RNN models as normalized inputs can cause 

gradient explosion or vanishing, especially in long 

sequences. 

 
where x′   is the normalized value of variable j at time 

step i, xij is the original value, µj is the mean of 

variable j, and σj is the standard deviation of variable 

j. This normalization step is crucial for our approach 

as it standardizes each variable to have zero mean 

and unit variance. This guarantees that: 

 The LSTM’s gates (input, forget, and output) 

operate on uniformly scaled data, improving 

convergence and temporal representation 

learning. 

2. Sliding Window Segmentation: RNNs and 

LSTMs require input data in the form of fixed-length 

sequences. There- fore, we segment the multivariate 

time series data using a sliding window technique: 

 Let T be the window size (number of past 

time steps). 

 Let H be the prediction horizon (number of 

future steps). 

 Let S be the step size or shift between 

windows. 

We define the input and target sequences for 

supervised learning as: 

 
Where: 

 d is the number of features. 

 Xt is the input window and Yt is the output 

(target) for training. 

This segmentation: 

 Helps the model capture short- and long-term 

dependencies. 

 Allows overlap between sequences, 

increasing data diversity and learning 

stability. 

 Makes the dataset compatible with batch 

training in LSTM/RNN architectures. 

3. Temporal Feature Engineering: To enhance the 

learning of time-based patterns in EV charging 

behavior, we encode cyclical temporal variables. 
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These transformations preserve the periodic nature of 

time features and help LSTM units recognize 

seasonal patterns such as weekday vs. weekend 

demand. 

4. Categorical Feature Encoding: Several variables 

in the dataset are categorical in nature, such as: 

Vehicle Model, Charger Type, User Type, Charging 

Station Location. These are encoded using: 

 One-hot encoding for RNNs trained on 

small/medium datasets. 

 Integer encoding if using an embedding layer 

in the LSTM model. 

Encoding ensures these non-numeric features can be 

fed into the model alongside continuous variables 

without misrepresenting ordinal relationships. 

5. Handling Missing Values: Missing data in 

features like “Energy Consumed (kWh)”, “Charging 

Rate”, and “Distance Driven” can hinder model 

performance. We address this through: 

 Forward-fill for time-dependent values. 

 Mean or median imputation for sparse 

features. 

 Dropping rows where key time-dependent 

metrics are missing, particularly when data 

cannot be reliably inferred. 

6. Sequence Padding and Batching: Because 

LSTM/RNN models are often trained in batches, we 

ensure: 

 All sequences are of equal length (via sliding 

window), 

 Padding is applied when using variable-

length sequences (less common here due to 

fixed windows), 

 Input and output are reshaped to fit expected 

model input shapes: [batch size, time steps, 

features] 

7. Exploratory Data Analysis: Figure 2 displays the 

time- series trends of key variables collected during 

the EV charging sessions, such as charging duration, 

temperature, energy consumption, vehicle age, and 

distance driven. This visualization aids in detecting 

correlations, seasonal trends, and anomalies, which 

are crucial for analyzing how electric vehicles 

perform under different environmental and usage 

conditions. 

4. Model Architecture 

 

 
Figure 2 Time-Series Visualization of Key EV 

Parameters Over A 2-Month Period 

 

This section details the design and implementation of 

deep learning models used to forecast EV charging 

demand based on multivariate time series data. 

Specifically, two neural network architectures are 

explored: the RNN and the LSTM network (Figure 

3). These models aim to predict the energy 

consumption in the next time step based on a 

historical window of temporal data. 

4.1.Recurrent Neural Network 

The RNN model processes chronological data using 

a single recurrent layer followed by a fully connected 

output layer. At each time step t, the hidden state ht 

is restructured based on the current input xt and the 

previous hidden state ht−1 as follows: 

 

ht = tanh(Wxhxt + Whhht−1 + bh) 

 

The output prediction yˆ is obtained using the final 

hidden state: 

yˆ = WhyhT + by 
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RNN Architecture Summary: 

 Input Layer: Shape = [T, d] 

 RNN Layer: 64 units, activation = tanh 

 Dropout Layer: Dropout rate = 0.2 

 Dense Output Layer: Single unit for 

regression output 

4.2.Long Short-Term Memory 

 

 
Figure 3 LSTM Architecture 

 

LSTMs enhance RNNs by adding memory gates that 

man- ages information flow, allowing them to 

remember important data across long sequences. 

 ft = σ(Wf · [ht−1, xt] + bf )  (forget gate) 

 it = σ(Wi · [ht−1, xt] + bi)  (input gate) 

 C˜t = tanh(WC · [ht−1, xt] + bC)  (candidate 

cell state) 

 Ct = ft ⊙ Ct−1 + it ⊙ C˜t (cell state 

update)  

 ot = σ(Wo · [ht−1, xt] + bo) (output gate)  

 ht = ot ⊙ tanh(Ct) (hidden state) 

LSTM Architecture Summary: 

 Input Layer: Shape = [T, d] 

 LSTM Layer: 64 units 

 Dropout Layer: Dropout rate = 0.2 

 Dense Hidden Layer: 32 units, ReLU 

activation 

 Output Layer: Single regression unit 

4.3.Model Configuration and Training 
The models are trained using the setup: 

 Loss Function: Mean Squared Error (MSE) 

 

 Optimizer: Adam optimizer with a learning 

rate of 0.001 

 Evaluation Metrics: Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE) 

 Training Parameters: Batch size was kept 

32, epochs to 100 and 20% of validation split. 

 Early Stopping: To prevent overfitting and 

monitor validation loss Early Stopping was 

implemented. 

5. Result and Analysis 

The outcomes of the experimental modeling of 

electric vehicle (EV) charging duration using 

Recurrent Neural Net- works(RNN) and Long Short-

Term Memory(LSTM) networks. The models were 

trained and tested on historical EV charging data that 

was preprocessed and converted to a suitable time 

series format for sequence modeling. 

5.1.Experimental Framework 

The dataset included timestamped charging session 

data, with charging duration (in hours) as the main 

target. We used a sliding window approach looking 

back 10 time steps to capture temporal patterns. The 

data was normalized using MinMaxScaler to help the 

models train better, then split into 80% for training 

and 20% for testing. Both RNN and LSTM models 

were built using Keras with TensorFlow. Each had 

one recurrent layer followed by a dense output layer. 

The models have been trained for 100 epochs with a 

batch size of 32, and early stopping was used to 

overfitting. Performance was assessed using four 

regression metrics: MSE, RMSE, MAE, and R² score. 

5.2.Performance Comparison 

The performance of the two models is summarized in 

the below table (Table 2): 

 

Table 2 Performance Comparison of RNN and 

LSTM Models 

Metric 
RNN 

Model 

LSTM 

Model 

Mean Squared Error 

(MSE) 
0.007394 0.005658 

Root Mean Squared 

Error (RMSE) 
0.08597 0.07523 

Mean Absolute Error 

(MAE) 
0.06378 0.05613 

R2 Score 0.845 0.891 
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The LSTM model achieved better results than the 

RNN model on all evaluation metrics. The LSTM 

achieved a 23.5% reduction in MSE and a 12.5% 

reduction in RMSE compared to the RNN, indicating 

that it produced predictions more accurate with lower 

error. The MAE was also comparatively lower, 

suggesting that the LSTM model maintained a 

smaller average deviation from the actual values. The 

R² score of 0.891 for LSTM reflects a strong linear 

relationship between predicted and actual charging 

durations, reinforcing its suitability for time 

dependent forecasting. 

5.3.Interpretation of Model Behavior 

Both models are designed for sequential data, the 

RNN is limited in taking long-term dependencies due 

to disappearing gradient issues. In contrast, LSTM 

incorporates gating mechanisms (input, forget, and 

output gates) that help recollect pertinent information 

over longer time intervals, making it especially 

effective in this use case. During training, it was 

detected that the LSTM model converged faster and 

more smoothly, with a lower validation loss 

compared to RNN. This indicates a better 

generalization ability of the LSTM model on hidden 

data. 

5.4.Visual Insights 

To further validate results, the following plots were 

generated: 

 Training and Validation Loss Curves: 
These curves show how the LSTM model 

exhibited smoother and lower loss trajectories 

during training, whereas the RNN model 

showed more fluctuations, hinting at potential 

instability and overfitting. 

 Actual vs Predicted Charging Duration 

Plot: The LSTM predictions followed the 

ground truth closely across the entire test set. 

RNN predictions, however, lagged behind in 

several segments, especially during sharp 

transitions in the charging duration pattern. 

These visualizations reinforce the quantitative 

findings, showcasing the LSTM’s ability to capture 

non-linear trends and subtle patterns in time series 

data more effectively than traditional RNNs (Figure 

4 & 5). 

 

 
Figure 4 Training and Validation Loss Curves 

 

 
Figure 5 Actual Vs Predicted Plot 

 

5.5.Practical Implications 

Accurate forecasting of EV charging duration is vital 

for effective energy resource planning, grid stability, 

and real-time pricing strategies. The superior 

performance of LSTM models suggests that they can 

play a critical role in: 

 Smart scheduling of charging slots 

 Load balancing in peak usage hours 

 Integrating renewable energy with EV 

infrastructure 

Thus, the results demonstrate the viability of LSTM-

based models for deployment in intelligent EV 

charging systems. 

6. Benchmarking and Comparative Analysis of 

EV Charging Demand Forecasting Models 

To assess the performance of our planned LSTM-

based EV charging demand forecasting model, we 

compared it with several state-of-the-art models 

discussed in recent literature. The studies reviewed 

employ various deep learning approaches, such as 

RNN, LSTM, Gated Recurrent Unit, and hybrid 

models like CNN-LSTM and GAT-Auto former [15]. 

Below is a summary of the comparative analysis: 

6.1.Notable Comparative Studies 

1. Zhu et al. (2019) - Electric Vehicle Charging Load 

Forecasting [9]: A Comparative Study of Deep 
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Learning Approaches: Results for LSTM at various 

time steps: 

 Time Step 1: MAE = 0.4782, RMSE = 

0.9546, R² = 0.9953 

 Time Step 5: MAE = 0.5734, RMSE = 

0.8937, R² = 0.9944 

 Time Step 15: MAE = 0.5500, RMSE = 

0.8452, R² = 0.9950 

LSTM outperformed other models in capturing 

temporal dependencies, particularly for short-term 

forecasting. 

2. Tang et al. (2024) - Electric Vehicle Charging 

Demand Prediction Model Based on Spatiotemporal 

Attention Mechanism [17]: 

 Tang et al. [16] introduced the GAT-Auto 

former model, combining Graph Attention 

Networks with the Auto- former architecture. 

Performance comparison: 

 GAT-Autoformer: MAE = 1.479, RMSE = 

0.211 

 LSTM: MAE = 1.693, RMSE = 0.538  

 The integration of spatiotemporal attention 

mechanisms in the GAT-Autoformer led to 

superior performance com- pared to LSTM. 

3. Klungsida et al. (2024) - Forecasting Energy 

Consumption from EV Station Charging Using RNN, 

LSTM, and GRU Neural Networks: 

 This study [18] focused on forecasting energy 

consumption from EV station charging using 

RNN, LSTM, and GRU. 

 Performance for LSTM: LSTM: RMSE = 

0.372, MAPE = 11.508% 

 The study emphasized LSTM’s capability to 

capture temporal patterns effectively. 

4. Alam et al. (2024) - Machine Learning-Based 

Multivariate Forecasting of Electric Vehicle 

Charging Station Demand: 

 Alam et al. [19] explored hybrid models, 

including CNN- LSTM, for multivariate 

forecasting of EV charging demand. 

 Performance for CNN-LSTM: CNN-

LSTM: MSE = 0.05449, RMSE = 0.23343, 

MAE = 0.20566 

 The CNN-LSTM model demonstrated strong 

performance, capturing complex patterns in 

EV charging demand. 

6.2.Comparative Analysis of Results 

The efficiency of the planned LSTM-based model is 

compared with the results from the above studies, as 

shown in Table 3. 

 

Table 3 Comparative Analysis of EV Charging 

Demand Forecasting Models 

Study Model MAE RMSE 
R² 

Score 

Your Work LSTM 
0.056

13 

0.0752

3 
0.891 

Zhu et al. 

(2019) 

LSTM 

(T=1) 

0.478

2 
0.9546 

0.995

3 

Tang et al. 

(2024) 
LSTM 1.693 0.538 N/A 

Tang et al. 

(2024) 

GAT-

Autoform

er 

1.479 0.211 N/A 

Klungsida et 

al. (2024) 
LSTM N/A 0.372 N/A 

Alam et al. 

(2024) 

CNN-

LSTM 

0.205

66 

0.2334

3 
N/A 

Note: Some studies did not report all metrics. 

 

6.3.Discussion 

The results indicate that our LSTM model 

demonstrates robust performance, with an MAE of 

0.05613 and an R² score of 0.891, suggesting high 

predictive accuracy for EV charging demand. 

Compared to Zhu et al. (2019), our model shows a 

significantly lower MAE, which reflects improved 

forecasting accuracy. Additionally, the LSTM in our 

work exhibits superior comparative against to other 

models in other studies, such as the Tang et al. (2024) 

study, where the GAT-Autoformer and LSTM 

models had higher MAE and RMSE values. In 

comparison with Klungsida et al. (2024), our model 

performed better, as the RMSE for our LSTM is 

lower. The results from Alam et al. (2024) further 

underscore the effectiveness of hybrid models (like 

CNN-LSTM), but our LSTM still outperforms CNN-

LSTM in terms of MAE and RMSE. These findings 

demonstrate that while hybrid models like CNN-

LSTM [20] and GAT-Autoformer can provide 

promising results, our LSTM-based approach is 

highly competitive and delivers precise predictions 

for EV charging demand forecasting. 
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6.4.Conclusion 

The benchmarking results highlight the efficiency of 

our LSTM model for EV charging demand 

forecasting. Compared to other state-of-the-art 

models, our LSTM approach stands out in terms of 

accurateness, as evidenced by lower MAE and RMSE 

scores. Future work can explore further 

improvements in model architectures, such as 

integrating spatiotemporal attention mechanisms or 

hybrid models, to enhance forecasting performance 

even further. 

Conclusion 

This study demonstrated the application of RNN and 

LSTM architectures for modeling and predicting 

electric vehicle charging duration using time series 

data. The comparative analysis revealed that the 

LSTM model outperformed the traditional RNN in 

terms of prediction accurateness and generalization. 

Key takeaways include: 

 LSTM’s architecture is better suited to 

learning long- range temporal patterns with 

the gates support, crucial for capturing user 

behavior in EV charging. 

 The higher R² score and lower RMSE 

achieved by LSTM validate its effectiveness 

for forecasting tasks in energy applications. 

 These insights can be instrumental in 

optimizing charging station, forecasting 

energy demand, and improving grid resilience 

in Electic vehicle dense urban environments. 

Future work may extend this research by integrating 

exogenous variables such as temperature, time of 

day, and traffic conditions, and by applying attention 

based architectures or hybrid CNN-LSTM models for 

further enhancement. 
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