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Abstract 

The increasing adoption of electric vehicles (EVs) has intensified the need for efficient management of 

charging infrastructure. This project addresses the challenge of predicting the availability status of EV 

charging stations — classifying whether a slot is available or not available — using a deep learning model 

and enhancing its interpretability through a decision-tree- based Explainability approach. A sequential LSTM-

GRU model was developed to predict the availability status of charging slots at multiple stations in Paris, 

incorporating temporal, spatial, and contextual features such as time of day, day of the week, location 

coordinates, and trend indicators. To ensure the transparency and reliability of the deep learning model’s 

predictions, a Decision Tree classifier was employed as an interpretable surrogate model. By analyzing the 

feature importance’s derived from the Decision Tree, the study identified ’Longitude’ and ’Latitude’ as the 

most significant factors influencing charger availability, highlighting a strong spatial dependency in EV 

infrastructure usage patterns. The integration of interpretable models alongside deep learning models 

enhances decision-making confidence and provides actionable insights for urban mobility planners and 

infrastructure managers. 

Keywords: Electric Vehicles (EVs), Charging Slot Availability, LSTM-GRU Model, Decision Tree 

Explainability, Spatial-Temporal Prediction, Smart Mobility Infrastructure.

 

1. Introduction

The twenty-first century has witnessed a 

transformative shift in how the world envisions 

mobility. With rising environmental concerns, 

stringent emission regulations, and the global push 

toward decarbonization, electric vehicles (EVs) have 

emerged not just as an alternative to traditional 

automobiles, but as a cornerstone of sustainable 

urban transport [1]. At the heart of this revolution lies 

an often-overlooked yet indispensable component: 

the EV charging infrastructure. Without an 

accessible, intelligent, and reliable network of 

charging stations, the momentum behind EV 

adoption can falter [2]. Cities like Paris, which have 

embraced the green mobility movement, offer a 

living laboratory for understanding the challenges 

and possibilities of modern electric infrastructure. 

One such opportunity presents itself in the form of 

rich, high-resolution data gathered from 91 EV 

charging stations scattered across the Paris 

metropolitan area. From July 2020 to March 2021, 

these stations recorded their operational status every 

15 minutes, creating a dataset that offers both 

temporal depth and spatial breadth. Each station, 

equipped with three plugs, logs the number of plugs 

that are actively charging, available, idle, or in an 

undefined state. This granularity not only captures the 

dynamic rhythm of EV usage across time but also 

reveals the behavioral patterns of users and the 

operational challenges faced by the charging 

network. Included in this dataset are features such as 

timestamps, station IDs, geolocation coordinates, 

regional classifications, and time- based attributes 

like time of day and day of week—creating a 

goldmine for predictive modeling. Yet, data by itself 

is inert. Its true potential lies in how it can be 

transformed into foresight—into intelligent 

predictions that can improve real-world outcomes. 

The urgency of this transformation is clear. EV users 

often face the frustrating experience of arriving at a 

charging station only to find all plugs occupied. 
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Infrastructure operators, on the other hand, wrestle 

with questions of load balancing, maintenance 

scheduling, and strategic expansion. In both cases, 

the inability to anticipate future station availability 

creates inefficiencies, missed opportunities, and 

diminished user satisfaction. As cities prepare for a 

future defined by electrified transport, the capability 

to predict EV charging station occupancy is not just a 

convenience—it is a necessity [3]. This is where 

predictive modeling steps in, offering a solution 

grounded in data science and powered by machine 

learning. The challenge, however, is far from trivial. 

Real- world data is messy, riddled with anomalies, 

missing entries, and non-linear patterns that defy 

simple statistical modeling. Moreover, the behavior 

of EV users is influenced by a complex web of 

temporal cycles, spatial distributions, social trends, 

and external disruptions. Understanding and 

accurately forecasting this behavior requires more 

than just data—it demands a thoughtful integration of 

preprocessing, feature engineering, anomaly 

detection, and model training, all aligned toward a 

singular goal: reliable, real-time prediction of plug 

availability. The objective of this research is to build 

such a system. Through meticulous analysis of the 

Paris EV dataset, this project seeks to develop a 

predictive framework that can fore- cast the state of 

charging station plugs—available, charging, idle, or 

otherwise—using a blend of historical usage data, 

tem- poral features, and spatial attributes. By 

employing techniques such as Isolation Forest [4] for 

identifying anomalous patterns and Principal 

Component Analysis (PCA) for dimensionality 

reduction, the project ensures that the modeling 

pipeline is both robust and efficient. These techniques 

are then integrated into supervised learning models 

that learn from past behaviors to predict future 

availability. But this project is not merely a technical 

exercise—it is a step toward smarter cities and more 

seamless electric mobility experiences. By turning 

passive historical data into proactive decision-

making tools, the research envisions a future where 

users no longer guess, but know in advance where to 

find a charging spot. Infrastructure planners can rely 

on data- driven insights rather than assumptions. 

Energy providers can optimize grid loads and 

maintenance without disruption (Figure 1). The result 

is a win-win ecosystem where technology enhances 

sustainability, convenience, and reliability. 

 

 
Figure 1 EV Charging Availability 

 

In essence, this study does not just aim to build a 

prediction model—it aims to bridge the gap between 

data and foresight, between infrastructure and 

intelligence. It demonstrates how a well-designed 

machine learning pipeline can convert com- plexity 

into clarity, enabling cities like Paris—and the world 

at large—to better navigate the electric future that is 

already unfolding. 

2. Related Work 

The increasing adoption of electric vehicles (EVs) 

has driven significant interest in optimizing charging 

station infrastructure using predictive analytics. Prior 

studies have explored diverse machine learning 

techniques to forecast plug availability and improve 

infrastructure planning.mLiu et al. [5] utilized long 

short-term memory (LSTM) networks to capture 

complex, non-linear trends in EV charging demand, 

outperforming traditional statistical models. Zhao et 

al. [6] enhanced forecasting accuracy by combining 

seasonal decomposition with neural networks, 

although such methods often demand high 

computational resources and auxiliary data. Spatial-

temporal clustering approaches, such as that pro- 

posed by Yuan et al. [7], helped identify high-demand 

areas for station deployment, demonstrating the value 

of geographic context. Meanwhile, Knapen et al. [8] 

applied decision trees and support vector machines to 

predict plug availability using external data sources 

like traffic and weather—highlighting the need for 
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more self-sufficient models. From a data quality 

standpoint, Isolation Forests introduced by Liu et al. 

[4] have become a robust method for detect- ing 

anomalies in high-dimensional time-series data. 

Dimen- sionality reduction techniques, such as 

Principal Component Analysis (PCA), have also been 

validated for improving model efficiency without 

sacrificing predictive performance [9]. Unlike prior 

research that depends heavily on external datasets or 

computationally intensive architectures, our study 

focuses on building a scalable, lightweight pipeline 

that lever- ages only intrinsic time-series and spatial 

features. This en- sures practical deployment in real-

world urban EV networks. 

3. Dataset and Preprocessing 

3.1. Dataset Description 

The foundation of any meaningful data-driven 

research lies in the quality, richness, and relevance of 

the dataset being analyzed. For this project, the data 

originates from the Smarter Mobility Data Challenge 

[10], an initiative aimed at empowering data 

scientists to explore real-world mobility issues using 

open datasets. Hosted on GitLab, this platform 

provides curated datasets designed to simulate 

challenges faced in modern transportation systems, 

particularly in the context of electric vehicle (EV) 

infrastructure. The dataset used in this study, 

focusing on EV charging stations in Paris, offers a 

rare and valuable opportunity to examine real-time 

plug usage across an operational city-wide network. 

Data was collected from 91 EV charging stations 

across the city, each equipped with three plugs. The 

plug status was recorded at 15-minute intervals, 

documenting how many plugs were available, 

actively charging, idle (passive), or in an undefined 

state. Alongside plug activity, the dataset includes 

metadata such as station ID, geographic coordinates 

(latitude, longitude), postal code, region label (e.g., 

North, South), and time-related features like day of 

week, hour of day, and a “trend” variable that 

represents time progression numerically. Overall, the 

dataset provides a rich, multidimensional view of EV 

charging behavior in an urban environment. Its 

combi- nation of high-frequency sampling, detailed 

plug-level status, and contextual metadata makes it 

ideally suited for time-series forecasting, anomaly 

detection, and behavioral modeling. This depth 

allows for the development of robust machine 

learning models capable of anticipating plug 

availability, optimizing station deployment, and 

enhancing user satisfaction in the 

evolving EV ecosystem. 

3.2. Data Preprocessing 

Before predictive modeling, the dataset underwent 

essential preprocessing to ensure consistency, 

reliability, and readiness for time-series analysis. 

Like most real-world sensor data, the EV charging 

station dataset contained missing values, formatting 

inconsistencies, and required transformation. The 

data consisted of plug-level time-series logs with 

fields such as timestamps, plug status, station IDs, 

and geographic labels. Timestamps were converted to 

date time objects, allowing the extraction of temporal 

features like hour of day and day of week—crucial 

for capturing recurring usage patterns. Missing 

values, especially in plug status, stemmed from 

communication gaps or station maintenance. Short 

gaps were filled using forward-fill methods to 

maintain sequence continuity, while longer gaps were 

excluded to avoid bias. Redundant or static 

features—such as station names or constant codes—

were removed, and only influential fields like plug 

status, plug ID, and derived time features were 

retained. Data types were standardized: timestamps 

and categorical fields were converted appropriately. 

Plug status and other categorical variables were 

encoded numerically to fit machine learning 

requirements. Boolean and constant fields were either 

removed or transformed based on relevance. To align 

feature scales, numerical attributes such as plug 

counts were normalized using min-max scaling, 

improving model convergence and performance. 

Simultaneously, eploratory data analysis (EDA) 

revealed key usage patterns, such as weekday peaks 

and regional demand variation. These insights guided 

the creation of additional features like rolling 

averages and usage ratios to enhance predictive 

power. In preparation for model training, a target 

variable named ’is available’ was engineered to 

represent the plug’s binary avail- ability status. This 

field was derived by mapping plug status values (e.g., 

“AVAILABLE” as 1 and all other states—such as 
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“CHARGING”, “OUT OF SERVICE”, etc.—as 0). 

This binary target enabled the formulation of the 

forecasting task as a classification problem, allowing 

the model to predict whether a plug would be 

available in future time steps. Overall, these 

preprocessing steps transformed raw charging station 

logs into a refined dataset structured for robust plug 

availability forecasting, with high data integrity and 

minimal noise. 

4. Model Implementation 

4.1. LSTM-GRU Hybrid Model for Prediction 

The hybrid architecture begins with an LSTM layer, 

which retains long-term dependencies through its 

gated memory cells. The LSTM update equations for 

the forget, input, and output gates are given as 

follows: 

ft = σ(Wf · [ht−1, xt] + bf ) 

it = σ(Wi · [ht−1, xt] + bi) 

ot = σ(Wo · [ht−1, xt] + bo) 

where ht is the hidden state and ct is the cell state 

that is updated based on the temporal dynamics of the 

input sequence. The GRU layer follows, updating its 

hidden state using the reset and update gates: 

rt = σ(Wr · [ht−1, xt] + br) 

zt = σ(Wz · [ht−1, xt] + bz) 

 

To forecast EV plug availability with temporal 

precision and adaptability, a hybrid deep learning 

architecture combining Long Short-Term Memory 

(LSTM) [11]and Gated Recurrent Unit (GRU) [12] 

networks was implemented.  Figure 2 The 

architecture of the proposed LSTM-GRU model that 

combines both LSTM and GRU layers in a 

bidirectional RNN framework optimized for binary 

classification. The model utilizes dropout 

regularization and dense layers for effective feature 

transformation and prediction. The sequential nature 

of plug usage data—reflecting daily patterns, weekly 

cycles, and operational dynamics—necessitated a 

model capa- ble of learning both long-range and 

short-term dependencies effectively. By integrating 

both layers into a hybrid structure, the model 

leverages the long-term retention of LSTMs with the 

efficiency and adaptability of GRUs [13]. 

 
Figure 2 Architecture of the Proposed LSTM-

GRU Model 

 

The architecture begins with an input sequence 

composed of preprocessed features, including plug 

status encodings, temporal indicators (hour of day, 

day of week, weekend flag), and other engineered 

time-based attributes. This input is first passed 

through an LSTM layer to capture broad temporal 

trends, followed by a GRU layer that refines these 

representations by focusing on immediate temporal 

transitions. Dropout layers are placed strategically 

between the recurrent layers to prevent overfitting by 

randomly disabling neuron connections during 

training. Batch normalization is applied where 

necessary to ensure training stability and accelerate 

convergence. The final dense layer outputs a 

forecasted plug availability value for each time step 

in the input sequence. A key aspect of the modeling 

process was the creation of a binary target variable, 

’is available’, derived from the original plug status 

logs. This target indicates whether a plug was 

available (1) or not (0) at a given timestamp, 

simplifying the prediction task while preserving its 

practical relevance. This target framing supports 

various downstream use cases, including 

probabilistic forecasting or binary classification. 
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Gini(t) = 1 −
   

p 

The training pipeline used sequences of time-ordered 

data as input, with each window spanning a fixed 

temporal length to allow the model to learn 

transitions and cycles. Training was conducted using 

the Adam optimizer, minimizing mean squared error 

as the loss function. To prevent overfitting and 

optimize training time, early stopping was applied 

based on validation set behavior. A sliding window 

prediction strategy was adopted during inference. 

This approach enables the model to forecast plug 

status at each future time step by consuming a rolling 

window of the most recent observations, making it 

well-suited for real-time applications in intelligent 

transportation and charging infrastructure 

management. This hybrid LSTM-GRU model forms 

the core of the forecasting system, offering a 

balanced combination of interpretability, efficiency, 

and predictive capacity tailored to the complex 

rhythms of EV plug utilization. 

4.2. Decision Tree for Explainability 

The Decision Tree model is interpretable because it 

builds a series of decisions based on the features of 

the data. For classification tasks, the algorithm uses 

criteria like Gini Impurity or Entropy to select the 

best features for splitting. The Gini Impurity for a 

node t is calculated as: 

C 
      2    
    I  

i=1 

 

where pi is the proportion of class i at node t. At each 

node, the decision tree algorithm aims to minimize 

the Gini Impurity (or Entropy) by choosing the 

feature that best separates the data [14]. For 

regression tasks, the variance reduction criterion is 

applied: 

 
 

where yi represents the target values at node t, and y¯ 

is the mean value at that node [14]. The final 

prediction at each leaf node is based on the majority 

class (for classification) or the average target value 

(for regression). In the realm of machine learning, 

model interpretability is often the critical bridge 

between high predictive performance and practical, 

real-world adoption. Among the many algorithms 

available, the Decision Tree stands out as a uniquely 

interpretable model due to its inherently transparent 

structure [15]. Unlike black-box models such as deep 

neural networks or ensemble techniques like Random 

Forests and Gradient Boosting, Decision Trees offer 

a step-by-step, rule-based decision path that mirrors 

human reasoning [16]. Each internal node in a 

Decision Tree represents a decision rule based on a 

specific feature, while each leaf node corresponds to 

a final prediction outcome. This hierarchical structure 

allows stakeholders—ranging from data scientists to 

domain experts and policy makers—to visually trace 

and audit the reasoning process behind a prediction. 

For instance, in applications involving medical 

diagnostics, loan approval systems, or vehicle fault 

detection (as explored in this study), understanding 

why a decision was made is often just as important as 

the decision itself. Moreover, the simplicity of 

Decision Trees facilitates feature importance analysis 

[17], enabling researchers to pinpoint which variables 

most influence outcomes. This can guide future data 

collection, model refinement, and even policy 

decisions. In our work, the Decision Tree not only 

served as a baseline classifier but also as a valuable 

interpretability benchmark, helping to validate and 

contextualize predictions made by more complex 

models. By leveraging the clarity and traceability 

offered by Decision Trees, we empower users to trust 

and adopt machine learning solutions in critical and 

high-stakes environments. 

5. Evaluation and Result 

5.1. LSTM-GRU Model Evaluation and Result 

The LSTM-GRU model, designed to capture the 

temporal dynamics of the EV charging station 

dataset, demonstrated strong performance in 

predicting station availability based on features like 

time of day, day of the week, and usage trends. 

Trained with the Adam optimizer (learning rate 1e-4) 

and binary cross-entropy loss, the model achieved an 

accuracy of 87.58 %, precision of 86.79%, recall of 

90.27%, F1-score of 88.49%, and ROC-AUC of 

93.85%. These metrics highlight the model’s 

effectiveness in learning temporal patterns and its 

reliability in classifying station availability. The 

combination of LSTM and GRU layers enabled the 
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model to capture both long-term trends and short-

term variations, making it well-suited for the dynamic 

nature of EV charging station usage. The high recall 

and AUC indicate strong predictive power, 

suggesting the model could be effectively deployed 

in real-time systems for improving user experience 

and station management. 

5.2. Decision Tree Classifier Evaluation and 

Result 

The Decision Tree Classifier was implemented as a 

baseline model to compare against the deep learning 

approach. The input features were reshaped into a 

two-dimensional format, and the tree was constrained 

to a maximum depth of 5 to prevent overfitting. On 

evaluation, the Decision Tree achieved an accuracy 

of 80.59% on the test data. The Decision Tree model 

identified ’longitude’ and ’latitude’ as the most 

influential features for predicting charger availability 

as observed in Figure 3, revealing a strong spatial 

dependency embedded within the dataset. This 

finding under- scores the importance of geographic 

context in determining EV charging behavior—some 

locations are consistently more active than others due 

to surrounding infrastructure, traffic flow, or urban 

density. Such insights are particularly valuable in 

guiding decisions about infrastructure investment and 

resource allocation. 

 

 
Figure 3 Decision Tree Feature Importance 

 

Dependency embedded within the dataset. This 

finding under- scores the importance of geographic 

context in determining EV charging behavior—some 

locations are consistently more active than others due 

to surrounding infrastructure, traffic flow, or urban 

density. Such insights are particularly valuable in 

guiding decisions about infrastructure investment and 

re- source allocation. In our sequential deep learning 

model, these spatial features were not just retained—

they were strategically embedded as static contextual 

inputs within each time window. This design allowed 

the LSTM-GRU architecture to learn temporal 

availability patterns that are not only time-dependent 

but also geographically conditioned. In other words, 

the model could differentiate how availability trends 

vary between stations in the city center versus those 

in suburban areas, even if their temporal patterns look 

similar at first glance. What makes this alignment 

especially compelling is the agreement between two 

very different types of models. The Decision Tree, 

known for its transparency, and the LSTM- GRU, 

recognized for its complexity and temporal learning 

capacity, both converge on the same key features. 

This overlap enhances the trustworthiness of the deep 

learning model by confirming that its internal logic 

resonates with interpretable, rule-based reasoning. It 

bridges the gap between explainability and 

performance, making the deep learning model’s 

predictions not only accurate but also more 

understandable and justifiable to stakeholders. 

Conclusion 

A. Insights and Findings 

At the heart of this project was a simple but vital 

question: Is an electric vehicle charging slot available 

at a specific location and time? Through the analysis 

of high-frequency data from 91 charging stations in 

Paris—collected every 15 minutes over nine 

months—we explored patterns in availability and 

usage. The workflow involved cleaning and 

preparing the data, reducing complexity using PCA, 

and detecting anomalies to highlight stations 

behaving unexpectedly [18]. The result was a 

comprehensive view into when and where charging 

slots are likely to be free or occupied [19], [20]. 

Through this analysis, we discovered that the 

availability of EV charging slots is far from random; 

it follows strong temporal and spatial trends. 

Charging slot availability tends to decrease during 

typical working hours when demand peaks, 

especially in commercial and high-traffic areas. 

Conversely, late-night and early morning hours often 

show higher avail- ability. Location plays a critical 
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role—stations in central zones or near transit hubs are 

more likely to be occupied, while peripheral stations 

tend to maintain better availability. Time of day, day 

of the week, and station location together emerged as 

key predictors of whether a charging slot is likely to 

be free. Additionally, certain stations consistently 

deviated from expected patterns, indicating 

underlying issues such as maintenance problems or 

localized demand surges. These patterns lay the 

groundwork for building targeted prediction models 

that can inform users where to find an available slot 

before they even begin driving. 

B. Limitations 

Despite the depth of the dataset, several blind spots 

remain. It did not include external factors such as 

weather, traffic conditions, or local events—elements 

that often affect when and where people choose to 

charge. Also, while the analysis provided valuable 

insights and clustering of behaviors, it did not fully 

implement predictive models to forecast availability 

in real time. As such, it serves more as a foundation 

for future decision-making than a plug-and-play 

solution. 

C. Future Work 

The next step is to build on this foundation with 

predictive modeling. Incorporating additional data 

sources like weather forecasts, traffic patterns, and 

public events could significantly improve accuracy. 

Developing real-time models that forecast 

availability at the station level would make this 

project directly actionable for EV users and 

infrastructure planners. Further- more, scaling the 

approach to other cities would help compare network 

performance and drive more equitable and efficient 

deployment of charging stations. Ultimately, the goal 

is to ensure that whenever and wherever an EV driver 

needs to charge, availability is never in question. 
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