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Abstract 

This study investigates the dynamic stability of rotating sandwich beams featuring a sinusoidal taper profile 

under combined periodic axial loading and thermal gradients. Using the extended Hamilton's principle, we 

derive the governing equations that account for shear deformation, rotary inertia, and the unique stiffness 

distribution created by the sinusoidal thickness variation. The resulting equations are transformed into non-

dimensional form and solved using the extended Galerkin method, with parametric instability regions 

identified through the Saito-Otomi criteria. Our analysis reveals that the amplitude and phase characteristics 

of the sinusoidal taper significantly influence the stability boundaries, with optimal tapering parameters 

demonstrating improved vibration suppression compared to traditional uniform, parabolic and linear profiles. 

The results demonstrate complex interactions between rotational effects, thermal gradient, shear parameter, 

core-loss factor and taper geometry, showing that moderate sinusoidal tapering combined with high rotational 

speeds can substantially enhance stability, while thermal gradients tend to reduce the stable operating regions. 

These findings provide valuable insights for the design of advanced rotating structures in aerospace and 

energy applications where dynamic stability and weight optimization are critical. 

Keywords: Sandwich beam, Axial pulsating load, Dynamic stability, Thermal gradient, sinusoidal Taper 

Parameter.

 

1. Introduction

Sinusoidally tapered sandwich beams offer 

significant advantages in aerospace, automotive, and 

civil engineering applications where weight 

reduction, vibration suppression, and optimized load 

distribution are critical. The sinusoidal taper profile 

provides a smooth stiffness transition along the beam 

length, minimizing stress concentrations and 

improving dynamic stability compared to 

conventional linear or parabolic tapers. In aerospace 

structures, such as helicopter rotor blades and aircraft 

wings, this design enhances aeroelastic performance 

by reducing flutter susceptibility while maintaining 

structural integrity under cyclic loading. For 

automotive suspension systems, the sinusoidal taper 

helps dampen vibrations and absorb impact energy 

more efficiently. Additionally, in civil engineering, 

these beams can be employed in long-span bridges 

and high-rise buildings to mitigate wind-induced 

oscillations and seismic effects. The sandwich 

construction—with a lightweight core and high-
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strength face sheets—further enhances strength-to-

weight ratios, making sinusoidally tapered sandwich 

beams ideal for applications requiring both durability 

and energy efficiency. This study explores their 

dynamic stability under rotational and thermal loads, 

providing insights for next-generation structural 

designs.The phenomenon of parametric excitation 

was first systematically observed by Faraday [1], who 

discovered that a fluid's free surface oscillates at half 

the excitation frequency when its container 

undergoes vertical vibrations. This fundamental 

finding laid the groundwork for subsequent 

investigations into the dynamic behavior of elastic 

structures. Hetenyi's pioneering work [2] on beams 

supported by elastic foundations established critical 

theoretical frameworks that remain relevant across 

multiple engineering disciplines. Recent studies have 

significantly advanced our understanding of tapered 

and composite beam systems. Pradhan [3] examined 

the stability characteristics of irregularly tapered 

sandwich beams on Pasternak foundations under 

pulsating loads, while Yokoyama [4] employed finite 

element analysis to study Timoshenko beams on 

elastic substrates. Several researchers, including 

Ding et al. [5] and Lenci and Clementi [6], have 

contributed valuable insights into nonlinear 

foundation behavior and layered beam dynamics 

through various analytical and computational 

approaches. The thermo-mechanical stability of 

advanced composite structures has received 

particular attention in contemporary research. 

Pradhan and Murmu [7] investigated functionally 

graded sandwich beams, demonstrating how material 

gradation influences vibrational characteristics. 

Subsequent studies by Lenci et al. [8] and Behera [9] 

expanded this work to include rotating systems and 

nonlinear oscillations under different boundary 

conditions. The development of computational 

methods has enabled more sophisticated analyses, as 

evidenced by Pradhan and Dash's [10] work on three-

layer viscoelastic systems. Foundational studies on 

beam-foundation interaction [11-16] have been 

complemented by investigations into constrained-

layer damping [20], nonlinear vibrations [22], and 

parametric stability [23]. Recent advances in material 

science have introduced new possibilities through 

functionally graded materials [39-41], while 

improved computational techniques have enhanced 

our ability to predict stability boundaries [42]. 

However, gaps remain in understanding the dynamic 

behavior of sinusoidally tapered rotating beams under 

combined thermo-mechanical loading - an area this 

study seeks to address through comprehensive 

analytical and numerical investigation. While 

extensive studies have been conducted on the 

dynamic stability of sandwich beams with uniform, 

linear, or parabolic taper profiles under mechanical 

and thermal loads, the behavior of sinusoidally 

tapered sandwich beams subjected to combined 

rotational motion and periodic axial forces remains 

insufficiently explored. Existing literature primarily 

focuses on static or simple harmonic loading 

conditions, often neglecting the complex interaction 

between time-dependent stiffness variations (induced 

by sinusoidal tapering) and parametric excitation in 

rotating systems. Furthermore, most stability 

analyses employ conventional taper models, 

overlooking how phase shifts and amplitude 

modulation in sinusoidal profiles influence instability 

boundaries. There is also a lack of comprehensive 

studies examining the synergistic effects of thermal 

gradients, shear deformation, and rotational speed on 

such non-uniform structures. This research gap limits 

the optimization of advanced engineering 

applications—such as turbomachinery blades and 

aerospace components—where sinusoidal tapering 

could offer superior vibration control and weight 

efficiency. The present work addresses these 

limitations by developing a generalized analytical 

framework for sinusoidally tapered rotating sandwich 

beams, incorporating thermo-mechanical coupling 

and foundation interaction to enable more accurate 

stability predictions. 

2. Problem Formulation 

This study investigates the dynamic response of a 

rotating sandwich beam featuring an asymmetric 

sinusoidal taper along its length, subjected to a time-

varying axial load. As illustrated in Figure 1, the 

beam, with total length is mounted eccentrically with 

respect to the axis of rotation and spins about the 

vertical axis at a specified angular velocity, A 

harmonically varying axial force is applied at the 
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beam’s free end, aligned with the centroid of the 

cross-section. This axial excitation comprises both 

constant (static) and time-dependent (dynamic) 

components, each defined by their respective 

amplitude and frequency. The sinusoidal taper 

introduces a smooth, periodic variation in the beam’s 

cross-sectional geometry, which significantly 

influences the spatial distribution of stiffness and 

inertia, and thereby alters the system’s dynamic 

stability under combined mechanical and thermal 

loading conditions. (Figure 1) 

 

 
Figure 1 System Configuration 

 

2.1. Notation Used 

 

Table 1 Notation Used 

11 22 33, ,A A A
 

: Cross-sectional area. 

B  : The beam's width. 

11, 33,E E
 

: Young's modulus of elastic 

layers. 

rh  
: Hub radius. 

1 2 32 ,2 ,2H H H
 

: Depth of 3 layers. 

11 33, 
 

: Upper and lower-layer taper 

parameters, respectively. 

l  
: Beam length. 

0
 

: About z-axis beam’s 

rotational speed. 

11 22, 
  

: Temperature gradients  

 

2.2. Numerical Modelling 

The following are the formulas for potential energy, 

kinetic energy 

 

2 2
11 11 1 33 33 3
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2
11 1 33 3
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2
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  

 


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 
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0
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0
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1

2

l l

t T t T
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T r x
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



 

 
  

  

 

 
(02) 

Work done is 

  2

0

1

2

l

w xW P t  w, dx 
   (03) 

1 2,U U  Are the elastic layer's axial displacements, 

where for the middle layer's shear strain 

2x t
w w

w, ,w, ,
x t

 
  
   are taken, for 

1 3
2

2 22 2

xU U Cw,

H H


  

 as per Kerwin’s assumption 

[20], 3U  is eliminated. 

The sinusoidal taper parameter of the beam is 

   i i ii0

2

x

x
H H 1 sin

l



 

  
  

    for ( i 1,3 )  

Where i =taper parameters of elastic layers; and 

 i 0
H

=height of different layers at the root. 

sinusoidal tapper parameter of the upper and bottom 

layers are, 

10 1l 30 3l
11 33

10 30

H H H H
; 

H H
 

 
 

. 

The modulus of elasticity variation for beam

 ii ii0 iix

2
E ( x ) E 1 ( x )sin  

, for ( i 1,3 )   (04) 

By putting Hamilton's idea into practice, 

 
2

1

0   
t

t v w

t

T V W dt

    (05) 
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Following are the non-dimensional equation of 

motions of the system, 

 
   
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   
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H
H
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 
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   (07) 
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 
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3

2

1 1 0
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2
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x

H
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H

H











   
       

 
     

 
   
    

     (08) 

At and, 0, 1x x  are the relevant boundary 

conditions. 

 (09) 

or, 0xw,            (10) 

 
     
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or, 0w              (12) 
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12 32
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


 

 
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 

(13) 

or, 2 0             (14) 

2.3. Solution by Variation Method 

Equations (4) and (5) are assumed to have solutions  

     
1





 
i P

i i

i

w x , t w x ff t

   (14)

   
2

2 2

1



 

 
k P

k

k P

x , t x 

   (15) 

The shape functions are iw and 2k  the generalized 

coordinates are iff and kff .To satisfy many boundary 

condition of the system iw and 2k are chosen 

referring from [31]. 

By utilizing the general Galerkin's approach and 

substituting the previously given equations in 

equations (4) and (5).  

In addition, in subsequent simulations, five-term 

approximations are employed for a sequence of 

solutions 

          
11

11 2 2111 2
0  m Q K Q K Q

(16) 

       21 11 22 22 0 K Q K Q
(17) 

Where, 
   111

, ...............,
T

p
ff ffQ

   122 2
, ...............,




T

p p
ff ffQ

 

about:blank


 

International Research Journal on Advanced Engineering 

and Management 

https://goldncloudpublications.com 

https://doi.org/10.47392/IRJAEM.2025.0385 

e ISSN: 2584-2854 

Volume: 03 

Issue:07 July 2025 

Page No: 2441 - 2450 

 

   

                        IRJAEM 2445 

 

1

0

 ij i jm mw w dx

   (18) 

  

  

 

1
2

11 1 2

0

1
22

0 2

0

2

112 32

0

1

3 1
2

ij i j

i j

*

i j

r

r

ff
K x h w " w " dx

l

ff
      x h w ' w ' dx

l

H
g

w ' w ' dx

P t

H

     





    

  






 
 
 

  
  
  
 
 







(19) 

 12 10 12

1

12 32

0

3
1

2

1
2

*

jl

l i

K g lH

H
u w ' dx

H

H
             

  




 
 
 

  
     


(20) 

 
 
 

   

2 1
31 312

22 10 3

031 31

1
2 22

10 12

0

1
3

1

3
1

4

kl lk

*

lk

E
K lH u ' u ' dx

E

           g lH u u dx

H

H

H






 



 

 
  
 

 
  
 




(21) 

In the above,
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, for other cases.  

 21K
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The equations (14) and (15) are further simplified to 
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Where,
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1
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k k kk

K




 
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1

0

' 'ij i jH w w dx 
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2.4. Parametric Instability 

Mentioning [42] below expression were written, 

2

1

02 M

*

N MN

M

N

M p

NC OSU t b UU  





  
 Where a 

value of N varies from 1, 2… P. 

Where NMb are the matrix's components[ ]B ,
*

N are 

the system's distinct Eigen values 

1 1
2

 
P


 and 

        
1 1

B Z M H Z
 

 
, where Z denotes the 

modal matrix 
      

1

0


M k P H

 

So     1 Q Z U  , { }U  new set of system's 

generalized coordinates. As a result, the following 

usages are 1 1 1 
*

N N ,R N ,Ij  
  and 

1 1 1NM NM ,R NM ,Ib b jb 
  where 1,2,3...... 1N   

The criteria established by Saito-Otomi [42] are used 

to delineate the regions of parametric instability in 

this setup. 

3. Results and Discussion 

3.1. Comparison and validation 

 

Table 2 Notation Used 

Mode 
Core-loss 

factor 

Ray, K., 

and R. C. 

Kar [27] 

Present 

Analysi

s 

Error

s 

1 
0.18 20 21 +1 

0.6 20.1 21.1 +1 

2 
0.18 79 79.5 +0.5 

0.6 79.05 79.1 +0.05 

3 
0.18 178 178.2 +0.2 

0.6 178.02 178.03 +0.01 

 

Table 1 compares the regions of instability for simple 

resonance obtained from the study by Ray and Kar 

[27] with the results generated using the present 

MATLAB code. To align the present analysis with 

their work, the same parameter values were used. The 

table demonstrates a strong agreement between the 

resonance frequencies calculated by Ray and Kar and 
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those obtained in the present study up to the third 

mode for various core-loss factors. The close match 

in results validates the accuracy of the current 

computational approach. 

3.2. Dynamic Graphs 

Dynamic stability graphs are made for different 

parameter where the horizontal axis represents for 

excitation frequency   of various parametric value and 

vertical axis represents the externally applied load 

(P2). (Figure 2) 

 

 

Figure 2 System Stability for  1 =0.5 
 

 

Figure 3 System Stability for  1 =0.9 

 

Figures 2 and 3 illustrate the influence of the taper 

parameter of the upper face layer on the parametric 

instability zone. As the taper parameter increases, the 

instability zone gradually shifts towards lower 

parameter values, indicating a reduction in the 

system’s stability. This increase in the taper 

parameter corresponds to a higher slenderness ratio 

and a reduction in mass inertia. Consequently, both 

the stiffness and the overall rigidity of the system 

decline. The combined effect of reduced mass inertia 

and rigidity leads to increased lateral deflection. 

Therefore, it can be inferred that an increase in the 

taper parameter adversely affects the stability. 

 

 

Figure 4 System Stability for  sG / E
=0.4 

 

Figure 5 System Stability for  sG / E
=0.8 

 

Shear parameter’s effect on the parametric instability 

zone can be seen in Figures 4 and 5. A comparison of 

these numbers shows that by moving instability zone 

to a upper parametric, value, with increase in shear 

parameter improves the system’s stability. 

Combination resonance is seen to increase in addition 

to simple resonance, which causes the instability zone 

to contract. 

 

 

Figure 6 System Stability for   =9 
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Figure 7 System Stability for  
=15 

 

Figures 6 and 7 illustrate the impact of rotation speed 

  on the parametric instability zone. A comparison 

of these numbers shows that by moving the instability 

zone to a higher parameter value, an improve in 

rotation speed improves the system's dynamic 

stability. Apart from basic resonance, combination 

resonance is observed 

  1 2 1 3 2 3( ),( ),( )      , 

which contributes to a reduction in the parametric 

instability zones. 

 

Figure 8 System Stability for   =0.5 

 

Figure 9 System Stability for   =0.8 

Figures 8 and 9 depict how the core-loss factor 

influences the system’s dynamic instability. As the 

core-loss factor increases, it introduces greater 

energy dissipation (damping) into the system. This 

added damping suppresses the vibration amplitudes, 

leading to a noticeable improvement in system 

stability. As a result, the unstable regions in the 

parameter space shift upward, indicating that higher 

values of the excitation or system parameters are now 

required to induce instability. Thus, the increase in 

core-loss factor effectively enhances the system's 

resistance to parametric instability. 

 

Figure 10 System Stability for  11 =0.5 

 

 

Figure 11 System Stability for  11 =0.7 

 

Figures 10 and 11 illustrate the effect of the 

temperature parameter on the system's dynamic 

stability. A comparison of these figures reveals that 

increasing the temperature gradient shifts the 

instability zones toward lower parameter values, 

indicating a reduction in overall system stability. This 

behavior can be attributed to the influence of the 

thermal gradient on the tapered beam, which alters 

the material properties along its length. Specifically, 

as the temperature increases, the modulus of elasticity 
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decreases, leading to a significant reduction in the 

beam's stiffness and rigidity. This weakening of 

structural rigidity increases the system’s 

susceptibility to dynamic deflections. Additionally, 

the presence of a temperature gradient can induce 

non-uniform thermal stresses, further destabilizing 

the system. Both simple and combination resonances 

are observed in the response, with the latter becoming 

more pronounced at higher temperature parameters. 

Overall, the results clearly demonstrate that an 

increase in the temperature parameter has a 

destabilizing effect on the system. 

Conclusion 

This study has presented a comprehensive analytical 

and numerical investigation into the dynamic stability 

of sinusoidally tapered rotating sandwich beams 

subjected to combined periodic axial loads and 

thermal gradients. By employing extended 

Hamilton’s principle and the generalized Galerkin 

method, the governing non-dimensional equations 

were derived and solved to identify regions of 

parametric instability.The results reveal that the 

sinusoidal taper significantly affects the stability 

boundaries by altering the mass distribution and 

stiffness characteristics of the beam. Increasing the 

taper parameter of the upper face sheet reduces the 

system’s rigidity and mass inertia, leading to a shift 

in the instability zones toward lower excitation 

parameters, thereby decreasing stability. Similarly, 

rising temperature gradients reduce the modulus of 

elasticity, weakening the structure and increasing its 

susceptibility to instability. On the other hand, the 

inclusion of core-loss damping enhances system 

stability by suppressing vibrational amplitudes and 

pushing instability regions to higher parameter 

values. Additionally, increasing rotational speed 

contributes positively to stability, while combination 

resonances observed throughout highlight the 

nonlinear interactions within the system.Overall, the 

study provides valuable insights for optimizing the 

design of rotating beam structures in thermally and 

dynamically demanding environments, such as those 

found in aerospace and energy applications. Future 

work could extend the analysis to include 

experimental validation and nonlinear geometric 

effects for further design optimization. 
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