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Abstract 

The rapid expansion of data volume across industries has intensified the need for real-time data processing 

and optimization strategies. Distributed systems must now handle diverse workloads, ensuring both efficiency 

and scalability. Kafka and Cassandra have emerged as dominant technologies for streaming and storing high-

throughput, low-latency data in real-time analytics pipelines. This review analyzes the roles of Apache Kafka 

in the context of data ingestion and stream processing and Apache Cassandra data storage purposes for 

distributed database management. It also discusses how these two systems interact and the advantages of 

integrating the two systems for improving responsiveness, fault tolerance, and data consistency in distributed 

systems. The review analyzes the middleware and stream pipelines, different use cases, and recent applications 

in environmental monitoring, healthcare, and power systems. Lastly, by synthesizing previous work from the 

last several conferences and journal articles, this review outlines methodologies, tools, and architecture 

patterns for accomplishing real-time data processing and system optimization using Kafka and Cassandra 

Keywords: Apache Cassandra; Apache Kafka; Distributed systems; Real-time data processing; Stream 

analytics. 

  

1. Introduction 

In the new digital ecosystem, there is a wave of real-

time data that is continuously being generated from 

numerous sources, including sensors, financial 

transactions, mobile applications, and IoT devices. 

What has to take place is processing, analysing, and 

storing that data in real time to create insights and 

facilitate timely decisions. Traditional monolithic 

systems are not capable of processing workloads like 

these for a number of reasons, latency and scalability 

for example. That is why we saw distributed systems 

arise using technologies such as Apache Kafka for 

stream processing that adopts a pub-sub architecture 

and Apache Cassandra for storing distributed data. 

Apache Kafka is a high-throughput, low-latency 

distributed pub-sub messaging system for streaming 

data. It has been made popular as a core piece of 

analytics pipelines that continuously ingest data from 

heterogeneous systems and subsequently yields real-

time access to that data.[1] Apache Cassandra on the 

other hand, is a distributed NoSQL database designed 

to always be high available (it can't ever go down), to 

achieve linear scalability and fault tolerance. Its 

decentralized architecture enables scaling across 

multiple data centres while providing a model that 

can handle millions of transactions per second 

without starvation and bottlenecking issues.[4] This 

review examines the intersection of Kafka and 

Cassandra for building distributed, fault-tolerant, and 

scalable data pipelines in real-time data processing 

considering their features and functions, integration 

techniques, optimization strategies, and use-cases. 

We will discuss enhancements brought by distributed 

and cloud systems in performance optimization, 

tuning performance metrics in distributed systems, 

schema modelling, and the orchestration of 

middleware to obtain optimized stream processing. In 

reviewing recent advancements, this paper aims to 

assist researchers and practitioners to develop 

scalable, real-time systems to tackle their novel big 

data challenges [2]. Real-time data processing 

systems are ubiquitous types of systems that are 

extensively applied to various sectors such as health-

care monitoring, environmental monitoring, and 

power systems monitoring. In the power systems 
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application context, real-time streaming data must be 

stored and acted on as soon as possible to maintain 

stability and monitor faults [1]. Real-time streaming 

also involves working with stream processing 

platforms such as Apache Kafka and other 

frameworks and middleware to provide pre-

processing, transformations, and ultimately to load 

data in a persistent data store, such as Apache 

Cassandra [3][4]. 

1.1. Evolution of Real-Time Data Processing 

Systems 

The model of real-time data processing has 

progressed from batch-processing models to real-

time-streaming models. Hadoop-type systems 

initially dominated big data eco-systems, but batch 

processing is not the right model for real-time 

applications since it introduces latency. The 

introduction of event-driven architectures and 

distributed messaging (like Kafka) was the next stage 

of the paradigm. Kafka provided a novel approach to 

data streaming with its log-based architecture, which 

separates data producers and consumers while 

providing significant throughput. Kafka enables 

event type stream to be treated as immutable logs, so 

real time analytic engines can consume and process 

events as they are produced [2].  When combined 

with highly available databases, like Cassandra, the 

architecture can support constructors of event driven 

systems and end-to-end data flows, from ingestion of 

data to querying the data when stored [5]. Cassandra 

was developed at Facebook to manage the challenges 

of de-centralized, and to a larger extent large-scale 

data storage. It has native support for horizontal 

scale-out and eventual consistency, so it suited well 

for these purposes, particularly where traditional 

relational databases fall short. When integrated with 

Kafka, Cassandra becomes the sink for real-time data 

streams, enabling complex time-series analyses and 

dashboard visualizations [5]. An illustrative 

architecture involves using Kafka for capturing 

events from distributed sources, processing the 

events using stream processors (e.g., Kafka Streams 

or Spark Streaming), and writing the transformed 

data to Cassandra for persistent storage. This 

combination ensures fault tolerance, scalability, and 

near-real-time analytics capability [4]. The designs of 

Kafka with Cassandra create opportunities for certain 

architectural styles (e.g., Lambda and Kappa 

architectures), which support both streaming and 

batching data. These approaches (Lambda, Kappa) 

have increasing adoption by enterprises 

implementing a data platform to handle various types 

of data with different velocities [6]. 

1.2. Architectural Synergies and Challenges 

While each product (Kafka and Cassandra) focuses 

on addressing the core problems of stream processing 

and storage respectively, when integrated, it brings 

additional complexities and benefits. A data pipeline 

that leverages both technologies needs to be designed 

with consideration for data consistency, schema 

evolution, load balancing, fault tolerance, etc. 

Therefore, the format of the messages in Kafka need 

to be defined to fit with the schema design in 

Cassandra, because it affects the flows of extraction 

to ingestion to the optimization for query [6]. 

 

Figure 1 Real-Time Stream Processing Pipeline 

with Kafka And Cassandra Integration (Adapted 

From [5])

One challenge related to the aforementioned is the 

architectural mismatch between Kafka's append-only 

log style and Cassandra's write-optimized SSTable 

(Sorted String Table) [7]. Both are designed for 

write-heavy use cases, but concurrency 

configurations, and the ingestion rates need to be 
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tuned with the parameters in Kafka and Cassandra, 

including the balance of Kafka partitions, Cassandra 

compaction strategies, and replication factor [5].The 

typical Kafka and Cassandra integration pipeline is 

depicted in Figure 1, indicating the sequence of work 

in a distributed architecture in which Kafka serves as 

the real-time streaming middleware, and Cassandra 

serves as the target database source for the data, e.g. 

analytics dashboards. The data sources that feed the 

Kafka topics, and the real-time processors that 

perform real-time transformations on the Kafka 

topics, are depicted along the top of the diagram. The 

downstream component in this architecture are the 

Cassandra database nodes, which then receive and 

store the data fed by the real-time processor for use 

in the analytics dashboard system. There are also 

many variables in latency in real-time systems, such 

as the Kafka broker throughput which can be 

impacted by network partitioning, the Cassandra 

Write Consistency levels, or JVM garbage collection 

pause times. It is important to understand and 

optimize these parameters to minimize data loss and 

maximize throughput [6]. If you are experience high-

load or message throughput, or you just want to 

improve the message delivery guarantees to 

Cassandra in the pipeline, middleware that is built 

with a microservice focus could help to buffer, 

control the schema and guarantee delivery in a 

reasonable time frame. Researchers have shown that 

middleware layering can provide higher throughput 

and better performance for delays in heterogeneous 

environments with mixed formats and capabilities 

[7]. Annotating these different configurations of 

Kafka and Cassandra in Table 1 demonstrate how the 

factors of batch size, commit intervals and Write 

Consistency in Cassandra configuration impact 

performance when using both Kafka and Cassandra.

 

Table 1 Performance Comparison Under Varying Kafka-Cassandra Configurations 

Kafka Batch Size Cassandra Consistency Avg Throughput (MB/s) Latency (ms) 

100 ONE 130 8 

200 QUORUM 110 12 

500 ALL 85 20 

1000 ONE 140 9 

(Source: Compiled based on test configurations in 

[6][7]). Table 1 shows Performance Comparison 

Under Varying Kafka-Cassandra Configurations. 

2. Method 

Implementing and integrating Apache Kafka with 

Apache Cassandra for real-time data processing 

requires a structured strategy providing deployment 

in architecture, data modeling, and performance 

enhancements. This section describes the 

fundamental methodological framework utilized in 

both research and practice for Kafka as stream 

ingestion and Cassandra as persistent storage. The 

methodology involved multi-stages including 

configuration, data modeling, stream processing 

pipeline development, middleware orchestration, and 

optimization assessments. Apache Kafka acts as the 

host for real-time data entry into the distributed 

framework. Data producers—sensors, application 

logs, transactional monitors—provide published 

events to Kafka based topics, where the events run in 

partitions and may be replicated across a predefined 

set of Kafka nodes for availability and faults 

tolerance. Middleware or stream processors instead 

subscribe to these topics as consumers and pull via 

subscription the unbounded data streams for 

processing. Apache Cassandra serves as the backend 
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storage. Because it offers linear scalability and fault 

tolerance, thanks to a peer-to-peer architecture, 

Cassandra is an ideal candidate for use cases that need 

low-latency reads and low-latency writes. First, data 

from Kafka needs to be deserialized, transformed, 

and mapped to the correct table schema in Cassandra. 

Most of these transformations are done using Apache 

Spark or Kafka Streams [5]. Stream processors may 

just aggregate, filter, or enrich data for storage. For 

example, where Spark Streaming processes the 

stream operations in micro-batches, this data can be 

streamed directly from Kafka to Cassandra with the 

spark-cassandra-connector. Kafka Streams process 

operations in real-time, and are also often supported 

by microservices-based architectures. In the case of 

schema enforcement, there are tools such as 

Enforcing Apache Avro or Confluent Schema 

Registry integrated into the pipeline to ensure data 

formats meet specifications. Configuration of the 

middleware is key to optimizing overall pipeline 

performance. As research has shown, unless 

continuously striving for the fastest ingestion and 

write rates is important for research or industry, 

adding a middleware layer to Kafka and Cassandra 

can help improve overall pipeline performance, 

especially in heterogeneous data environments. 

Middleware layers can include stream routers, 

schema validators, or asynchronous buffers that 

decouple the ingestion from the write process, thus 

increasing throughput and reducing latency [7]. In 

experimental setups, different combinations of Kafka 

producer batch sizes, consumer commit intervals, and 

Cassandra write consistency levels are evaluated. 

These tests are designed to identify bottlenecks in 

ingestion, transformation, and storage. Additionally, 

horizontal scaling of Kafka brokers and Cassandra 

nodes is performed to study the impact of scale on 

latency and throughput. Performance is monitored 

using tools like Prometheus and Grafana. To 

visualize performance variations, researchers often 

plot throughput versus latency under different system 

configurations. For example, one study plotted 

Cassandra write latency as a function of Kafka 

message batch size and discovered an inflection point 

beyond which larger batches significantly degrade 

latency despite higher throughput [6][7]. Figure 2 

shows Cassandra Write Latency vs Kafka Message 

Batch Size. (Source: Adapted from experimental 

results in [6]) 

 

Figure 2 Cassandra Write Latency vs Kafka 

Message Batch Size 

2.1.  Tables 

Tables in experimental evaluations are critical for 

summarizing the impact of various configurations. 

Table 1 (presented earlier) illustrates the performance 

variations across Kafka batch sizes and Cassandra 

write consistency levels. These results are commonly 

collected by benchmarking tools such as Yahoo! 

Streaming Benchmark (YSB), JMeter, or custom load 

scripts written in Python or Java. Each row in the 

table corresponds to a different set of parameters 

applied during the benchmark test. Parameters such 

as Kafka batch size, consumer polling rate, Cassandra 

replication factor, and write consistency (e.g., ONE, 

QUORUM, ALL) are carefully tuned to explore 

performance trade-offs. Data points are averaged 

over multiple test runs to account for network jitter 

and system noise. 

2.2. Figures 

Figures used in these experiments typically include 

architectural diagrams, latency-performance graphs, 

and data flow models. Figure 1 earlier outlined a 

high-level data pipeline involving Kafka, stream 

processing, and Cassandra. Figure 2 quantifies 

system behavior by showing Cassandra write latency 

increasing with Kafka batch size beyond a threshold. 
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Such figures aid in understanding system bottlenecks 

and making decisions on optimal parameter 

configurations. Another common figure involves 

real-time dashboards created using data stored in 

Cassandra. These dashboards offer insights into the 

state of the system, alert triggers, and event timelines. 

Visualization tools like Grafana, Kibana, or Apache 

Superset are often integrated with Cassandra to 

enable visual analytics. 

3. Results and Discussion 

3.1. Results 

Experimental and case study-based research has 

consistently demonstrated the strength of the Kafka-

Cassandra integration in managing real-time data 

pipelines. Kafka enables the decoupling of data 

producers and consumers, thereby increasing 

flexibility and resilience. Experimental comparisons 

included many combinations of Kafka producer batch 

sizes, consumer commit interval, and Cassandra write 

consistency level.Cassandra, with its distributed 

architecture and adjustable levels of consistency, can 

sustain large scale workloads with fast writes, 

without quickly becoming the bottleneck. For our 

performance benchmarks that we wanted to run for 

our research paper, we found that Kafka systems with 

batch sizes of between 500-1000 and with a 

consistency level of ONE in Cassandra were 

consistently producing the highest throughput, 

sometimes exceeding 130 MB/s. However, the write 

latency (with respect to the batch sizes) tended to 

grow with respective size, so there was a tradeoff as 

throughput increased. All of these findings can be 

important for real-world applications where time is 

an important variable (for example, fraud detection, 

and power grid monitoring) [6]. In a real-time case 

involving monitoring of the power system, time-

series data were ingested into Kafka from distributed 

sensors while they were stored in Cassandra for 

dashboard analytics. This allowed us to achieve real-

time fault detection, by keeping time-stamped logs, 

and leveraging anomaly detection algorithms, for 

predictive maintenance [1]. In one other use case for 

environmental monitoring, a team constructed a 

stream processing middleware that ingested 

heterogeneous data streams from temperature 

sensors, humidity sensors, and pollution detectors. 

Kafka served as the data ingestion pathway and 

Cassandra was used for historical analysis and 

alerting. The middleware played a crucial role in 

normalizing data input formats and ensuring 

guarantees on delivery [7]. As other experimental 

configurations, this work also implemented Docker 

and Kubernetes for containerized deployments. The 

Kafka brokers, stream processors, and Cassandra 

nodes were all deployed as containers under the 

control of the Kubernetes system. Using containers 

allowed the implementation to be easily scaled and 

the components were operationally isolated in order 

to withstand production-grade failures and bugs [9]. 

3.2. Discussion 

The integration of Kafka and Cassandra provides 

many benefits, but realizing these benefits 

necessitates careful consideration of specific system 

parameters and architectural design. For example, 

poorly configured batch sizes or write consistency 

can contribute to increased latency, lost data, or 

blockages [10]. The main advantage of Kafka over 

other messaging abstraction or frameworks is its log 

based messaging abstraction, which allows stream 

reprocessing and event replay: two of the most 

important application characteristics for fault 

recovery and auditing [8]. When used in conjunction 

with Cassandra's wide-column data store and tunable 

consistency, developers can create industrious data 

lakes that are capable of using separate queries for 

historical usage and performance statistics, and for 

real-time analytics. Even so, successfully coupling 

the two systems is not without its challenges. Data 

serialization formats and schema evolution have to be 

carefully managed to avoid ingestion problems. 

Event-centric data model of Kafka and a command 

(query) centric data model used in Cassandra will 

require a thoughtful design decision such as smaller 

time-series bucketing, what to compact, etc. 

Middleware frameworks gain you some of that lost 

buffering and transformation back. Docker and 

container orchestration will help you further bring 

down deployment and monitoring complexities, 

making both systems more acceptable as viable 

enterprise applications. In short, the empirical 

evidence from testing and multiple case studies 

provides a strong endorsement for both Kafka and 
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Cassandra as components of a highly scalable and 

performant streaming data processing system—if 

implemented correctly.  Regular monitoring, testing, 

and tuning is not easy will much larger datasets and 

larger datasets moving at a velocity. 

Conclusion 

Real-time data processing has become a key aspect of 

modern computing, allowing for prompt decision 

making, dynamic monitoring, and responsive design 

of systems across a number of domains including 

power systems, environmental monitoring, and 

health care. This review has carefully discussed the 

pairing of Apache Kafka and Apache Cassandra, 

examined their respective strengths, and discussed 

how they can work together or complement each 

other in distributed architectures. Kafka's distributed 

publish-subscribe architecture is an approach to event 

ingestion pipelines that emphasizes higher 

throughput, durability, and high availability. 

Meanwhile, Cassandra provides a fault-tolerant 

mechanism for storing and querying large volumes of 

time-series and transactional data. Together, the 

combination of these Technologies provides a 

sufficient ecosystem for deploying complicated real-

time data stream processing systems especially when 

both technologies have dependent middleware or 

orchestration strategies behind them to optimize their 

performance, scalability and fault recovery. The 

review detailed a number of optimizations that can be 

achieved by tuning the Kafka producer batch sizes, 

choosing Cassandra consistency levels, leveraging 

containerized deployment models that lend elasticity 

and fault tolerance, etc. Trials and the usage of t both 

Kafka and Cassandra indicate, using proper 

configuration and scaling, improve throughput and 

reduce latency significantly. However, there are still 

obstacles in bringing the disparate data abstractions 

into a common modifier, managing schema change, 

and efficiently translating streamed data into more 

query-friendly collections of data. As companies 

continue to deploy and leverage real-time data 

systems, it will be increasingly important to 

implement a solid layer of middleware and automated 

process helpers to maintain performant scale. The 

review points out an important notion for proper and 

sufficient design and optimization of distributed 

systems, such as Kafka and Cassandra. Companies 

can build such systems with resiliency and 

performance with the right tuning and the correct 

architectural discipline. This would help ingest, 

process and retain high speed real-time datasets in all 

sorts of mission-critical uses. 
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