

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0424

e ISSN: 2584-2854

Volume: 03

Issue: 08 August 2025

Page No: 2698 - 2704

 IRJAEM 2698

Real-Time Data Processing and Distributed System Optimization with Kafka

And Cassandra
Fnu Pawan Kumar1
1Birla Technical Training Institute, Pilani, Rajasthan, India.

Abstract

The rapid expansion of data volume across industries has intensified the need for real-time data processing

and optimization strategies. Distributed systems must now handle diverse workloads, ensuring both efficiency

and scalability. Kafka and Cassandra have emerged as dominant technologies for streaming and storing high-

throughput, low-latency data in real-time analytics pipelines. This review analyzes the roles of Apache Kafka

in the context of data ingestion and stream processing and Apache Cassandra data storage purposes for

distributed database management. It also discusses how these two systems interact and the advantages of

integrating the two systems for improving responsiveness, fault tolerance, and data consistency in distributed

systems. The review analyzes the middleware and stream pipelines, different use cases, and recent applications

in environmental monitoring, healthcare, and power systems. Lastly, by synthesizing previous work from the

last several conferences and journal articles, this review outlines methodologies, tools, and architecture

patterns for accomplishing real-time data processing and system optimization using Kafka and Cassandra

Keywords: Apache Cassandra; Apache Kafka; Distributed systems; Real-time data processing; Stream

analytics.

1. Introduction

In the new digital ecosystem, there is a wave of real-

time data that is continuously being generated from

numerous sources, including sensors, financial

transactions, mobile applications, and IoT devices.

What has to take place is processing, analysing, and

storing that data in real time to create insights and

facilitate timely decisions. Traditional monolithic

systems are not capable of processing workloads like

these for a number of reasons, latency and scalability

for example. That is why we saw distributed systems

arise using technologies such as Apache Kafka for

stream processing that adopts a pub-sub architecture

and Apache Cassandra for storing distributed data.

Apache Kafka is a high-throughput, low-latency

distributed pub-sub messaging system for streaming

data. It has been made popular as a core piece of

analytics pipelines that continuously ingest data from

heterogeneous systems and subsequently yields real-

time access to that data.[1] Apache Cassandra on the

other hand, is a distributed NoSQL database designed

to always be high available (it can't ever go down), to

achieve linear scalability and fault tolerance. Its

decentralized architecture enables scaling across

multiple data centres while providing a model that

can handle millions of transactions per second

without starvation and bottlenecking issues.[4] This

review examines the intersection of Kafka and

Cassandra for building distributed, fault-tolerant, and

scalable data pipelines in real-time data processing

considering their features and functions, integration

techniques, optimization strategies, and use-cases.

We will discuss enhancements brought by distributed

and cloud systems in performance optimization,

tuning performance metrics in distributed systems,

schema modelling, and the orchestration of

middleware to obtain optimized stream processing. In

reviewing recent advancements, this paper aims to

assist researchers and practitioners to develop

scalable, real-time systems to tackle their novel big

data challenges [2]. Real-time data processing

systems are ubiquitous types of systems that are

extensively applied to various sectors such as health-

care monitoring, environmental monitoring, and

power systems monitoring. In the power systems

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0424

e ISSN: 2584-2854

Volume: 03

Issue: 08 August 2025

Page No: 2698 - 2704

 IRJAEM 2699

application context, real-time streaming data must be

stored and acted on as soon as possible to maintain

stability and monitor faults [1]. Real-time streaming

also involves working with stream processing

platforms such as Apache Kafka and other

frameworks and middleware to provide pre-

processing, transformations, and ultimately to load

data in a persistent data store, such as Apache

Cassandra [3][4].

1.1. Evolution of Real-Time Data Processing

Systems

The model of real-time data processing has

progressed from batch-processing models to real-

time-streaming models. Hadoop-type systems

initially dominated big data eco-systems, but batch

processing is not the right model for real-time

applications since it introduces latency. The

introduction of event-driven architectures and

distributed messaging (like Kafka) was the next stage

of the paradigm. Kafka provided a novel approach to

data streaming with its log-based architecture, which

separates data producers and consumers while

providing significant throughput. Kafka enables

event type stream to be treated as immutable logs, so

real time analytic engines can consume and process

events as they are produced [2]. When combined

with highly available databases, like Cassandra, the

architecture can support constructors of event driven

systems and end-to-end data flows, from ingestion of

data to querying the data when stored [5]. Cassandra

was developed at Facebook to manage the challenges

of de-centralized, and to a larger extent large-scale

data storage. It has native support for horizontal

scale-out and eventual consistency, so it suited well

for these purposes, particularly where traditional

relational databases fall short. When integrated with

Kafka, Cassandra becomes the sink for real-time data

streams, enabling complex time-series analyses and

dashboard visualizations [5]. An illustrative

architecture involves using Kafka for capturing

events from distributed sources, processing the

events using stream processors (e.g., Kafka Streams

or Spark Streaming), and writing the transformed

data to Cassandra for persistent storage. This

combination ensures fault tolerance, scalability, and

near-real-time analytics capability [4]. The designs of

Kafka with Cassandra create opportunities for certain

architectural styles (e.g., Lambda and Kappa

architectures), which support both streaming and

batching data. These approaches (Lambda, Kappa)

have increasing adoption by enterprises

implementing a data platform to handle various types

of data with different velocities [6].

1.2. Architectural Synergies and Challenges

While each product (Kafka and Cassandra) focuses

on addressing the core problems of stream processing

and storage respectively, when integrated, it brings

additional complexities and benefits. A data pipeline

that leverages both technologies needs to be designed

with consideration for data consistency, schema

evolution, load balancing, fault tolerance, etc.

Therefore, the format of the messages in Kafka need

to be defined to fit with the schema design in

Cassandra, because it affects the flows of extraction

to ingestion to the optimization for query [6].

Figure 1 Real-Time Stream Processing Pipeline

with Kafka And Cassandra Integration (Adapted

From [5])

One challenge related to the aforementioned is the

architectural mismatch between Kafka's append-only

log style and Cassandra's write-optimized SSTable

(Sorted String Table) [7]. Both are designed for

write-heavy use cases, but concurrency

configurations, and the ingestion rates need to be

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0424

e ISSN: 2584-2854

Volume: 03

Issue: 08 August 2025

Page No: 2698 - 2704

 IRJAEM 2700

tuned with the parameters in Kafka and Cassandra,

including the balance of Kafka partitions, Cassandra

compaction strategies, and replication factor [5].The

typical Kafka and Cassandra integration pipeline is

depicted in Figure 1, indicating the sequence of work

in a distributed architecture in which Kafka serves as

the real-time streaming middleware, and Cassandra

serves as the target database source for the data, e.g.

analytics dashboards. The data sources that feed the

Kafka topics, and the real-time processors that

perform real-time transformations on the Kafka

topics, are depicted along the top of the diagram. The

downstream component in this architecture are the

Cassandra database nodes, which then receive and

store the data fed by the real-time processor for use

in the analytics dashboard system. There are also

many variables in latency in real-time systems, such

as the Kafka broker throughput which can be

impacted by network partitioning, the Cassandra

Write Consistency levels, or JVM garbage collection

pause times. It is important to understand and

optimize these parameters to minimize data loss and

maximize throughput [6]. If you are experience high-

load or message throughput, or you just want to

improve the message delivery guarantees to

Cassandra in the pipeline, middleware that is built

with a microservice focus could help to buffer,

control the schema and guarantee delivery in a

reasonable time frame. Researchers have shown that

middleware layering can provide higher throughput

and better performance for delays in heterogeneous

environments with mixed formats and capabilities

[7]. Annotating these different configurations of

Kafka and Cassandra in Table 1 demonstrate how the

factors of batch size, commit intervals and Write

Consistency in Cassandra configuration impact

performance when using both Kafka and Cassandra.

Table 1 Performance Comparison Under Varying Kafka-Cassandra Configurations

Kafka Batch Size Cassandra Consistency Avg Throughput (MB/s) Latency (ms)

100 ONE 130 8

200 QUORUM 110 12

500 ALL 85 20

1000 ONE 140 9

(Source: Compiled based on test configurations in

[6][7]). Table 1 shows Performance Comparison

Under Varying Kafka-Cassandra Configurations.

2. Method

Implementing and integrating Apache Kafka with

Apache Cassandra for real-time data processing

requires a structured strategy providing deployment

in architecture, data modeling, and performance

enhancements. This section describes the

fundamental methodological framework utilized in

both research and practice for Kafka as stream

ingestion and Cassandra as persistent storage. The

methodology involved multi-stages including

configuration, data modeling, stream processing

pipeline development, middleware orchestration, and

optimization assessments. Apache Kafka acts as the

host for real-time data entry into the distributed

framework. Data producers—sensors, application

logs, transactional monitors—provide published

events to Kafka based topics, where the events run in

partitions and may be replicated across a predefined

set of Kafka nodes for availability and faults

tolerance. Middleware or stream processors instead

subscribe to these topics as consumers and pull via

subscription the unbounded data streams for

processing. Apache Cassandra serves as the backend

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0424

e ISSN: 2584-2854

Volume: 03

Issue: 08 August 2025

Page No: 2698 - 2704

 IRJAEM 2701

storage. Because it offers linear scalability and fault

tolerance, thanks to a peer-to-peer architecture,

Cassandra is an ideal candidate for use cases that need

low-latency reads and low-latency writes. First, data

from Kafka needs to be deserialized, transformed,

and mapped to the correct table schema in Cassandra.

Most of these transformations are done using Apache

Spark or Kafka Streams [5]. Stream processors may

just aggregate, filter, or enrich data for storage. For

example, where Spark Streaming processes the

stream operations in micro-batches, this data can be

streamed directly from Kafka to Cassandra with the

spark-cassandra-connector. Kafka Streams process

operations in real-time, and are also often supported

by microservices-based architectures. In the case of

schema enforcement, there are tools such as

Enforcing Apache Avro or Confluent Schema

Registry integrated into the pipeline to ensure data

formats meet specifications. Configuration of the

middleware is key to optimizing overall pipeline

performance. As research has shown, unless

continuously striving for the fastest ingestion and

write rates is important for research or industry,

adding a middleware layer to Kafka and Cassandra

can help improve overall pipeline performance,

especially in heterogeneous data environments.

Middleware layers can include stream routers,

schema validators, or asynchronous buffers that

decouple the ingestion from the write process, thus

increasing throughput and reducing latency [7]. In

experimental setups, different combinations of Kafka

producer batch sizes, consumer commit intervals, and

Cassandra write consistency levels are evaluated.

These tests are designed to identify bottlenecks in

ingestion, transformation, and storage. Additionally,

horizontal scaling of Kafka brokers and Cassandra

nodes is performed to study the impact of scale on

latency and throughput. Performance is monitored

using tools like Prometheus and Grafana. To

visualize performance variations, researchers often

plot throughput versus latency under different system

configurations. For example, one study plotted

Cassandra write latency as a function of Kafka

message batch size and discovered an inflection point

beyond which larger batches significantly degrade

latency despite higher throughput [6][7]. Figure 2

shows Cassandra Write Latency vs Kafka Message

Batch Size. (Source: Adapted from experimental

results in [6])

Figure 2 Cassandra Write Latency vs Kafka

Message Batch Size

2.1. Tables

Tables in experimental evaluations are critical for

summarizing the impact of various configurations.

Table 1 (presented earlier) illustrates the performance

variations across Kafka batch sizes and Cassandra

write consistency levels. These results are commonly

collected by benchmarking tools such as Yahoo!

Streaming Benchmark (YSB), JMeter, or custom load

scripts written in Python or Java. Each row in the

table corresponds to a different set of parameters

applied during the benchmark test. Parameters such

as Kafka batch size, consumer polling rate, Cassandra

replication factor, and write consistency (e.g., ONE,

QUORUM, ALL) are carefully tuned to explore

performance trade-offs. Data points are averaged

over multiple test runs to account for network jitter

and system noise.

2.2. Figures

Figures used in these experiments typically include

architectural diagrams, latency-performance graphs,

and data flow models. Figure 1 earlier outlined a

high-level data pipeline involving Kafka, stream

processing, and Cassandra. Figure 2 quantifies

system behavior by showing Cassandra write latency

increasing with Kafka batch size beyond a threshold.

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0424

e ISSN: 2584-2854

Volume: 03

Issue: 08 August 2025

Page No: 2698 - 2704

 IRJAEM 2702

Such figures aid in understanding system bottlenecks

and making decisions on optimal parameter

configurations. Another common figure involves

real-time dashboards created using data stored in

Cassandra. These dashboards offer insights into the

state of the system, alert triggers, and event timelines.

Visualization tools like Grafana, Kibana, or Apache

Superset are often integrated with Cassandra to

enable visual analytics.

3. Results and Discussion

3.1. Results

Experimental and case study-based research has

consistently demonstrated the strength of the Kafka-

Cassandra integration in managing real-time data

pipelines. Kafka enables the decoupling of data

producers and consumers, thereby increasing

flexibility and resilience. Experimental comparisons

included many combinations of Kafka producer batch

sizes, consumer commit interval, and Cassandra write

consistency level.Cassandra, with its distributed

architecture and adjustable levels of consistency, can

sustain large scale workloads with fast writes,

without quickly becoming the bottleneck. For our

performance benchmarks that we wanted to run for

our research paper, we found that Kafka systems with

batch sizes of between 500-1000 and with a

consistency level of ONE in Cassandra were

consistently producing the highest throughput,

sometimes exceeding 130 MB/s. However, the write

latency (with respect to the batch sizes) tended to

grow with respective size, so there was a tradeoff as

throughput increased. All of these findings can be

important for real-world applications where time is

an important variable (for example, fraud detection,

and power grid monitoring) [6]. In a real-time case

involving monitoring of the power system, time-

series data were ingested into Kafka from distributed

sensors while they were stored in Cassandra for

dashboard analytics. This allowed us to achieve real-

time fault detection, by keeping time-stamped logs,

and leveraging anomaly detection algorithms, for

predictive maintenance [1]. In one other use case for

environmental monitoring, a team constructed a

stream processing middleware that ingested

heterogeneous data streams from temperature

sensors, humidity sensors, and pollution detectors.

Kafka served as the data ingestion pathway and

Cassandra was used for historical analysis and

alerting. The middleware played a crucial role in

normalizing data input formats and ensuring

guarantees on delivery [7]. As other experimental

configurations, this work also implemented Docker

and Kubernetes for containerized deployments. The

Kafka brokers, stream processors, and Cassandra

nodes were all deployed as containers under the

control of the Kubernetes system. Using containers

allowed the implementation to be easily scaled and

the components were operationally isolated in order

to withstand production-grade failures and bugs [9].

3.2. Discussion

The integration of Kafka and Cassandra provides

many benefits, but realizing these benefits

necessitates careful consideration of specific system

parameters and architectural design. For example,

poorly configured batch sizes or write consistency

can contribute to increased latency, lost data, or

blockages [10]. The main advantage of Kafka over

other messaging abstraction or frameworks is its log

based messaging abstraction, which allows stream

reprocessing and event replay: two of the most

important application characteristics for fault

recovery and auditing [8]. When used in conjunction

with Cassandra's wide-column data store and tunable

consistency, developers can create industrious data

lakes that are capable of using separate queries for

historical usage and performance statistics, and for

real-time analytics. Even so, successfully coupling

the two systems is not without its challenges. Data

serialization formats and schema evolution have to be

carefully managed to avoid ingestion problems.

Event-centric data model of Kafka and a command

(query) centric data model used in Cassandra will

require a thoughtful design decision such as smaller

time-series bucketing, what to compact, etc.

Middleware frameworks gain you some of that lost

buffering and transformation back. Docker and

container orchestration will help you further bring

down deployment and monitoring complexities,

making both systems more acceptable as viable

enterprise applications. In short, the empirical

evidence from testing and multiple case studies

provides a strong endorsement for both Kafka and

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0424

e ISSN: 2584-2854

Volume: 03

Issue: 08 August 2025

Page No: 2698 - 2704

 IRJAEM 2703

Cassandra as components of a highly scalable and

performant streaming data processing system—if

implemented correctly. Regular monitoring, testing,

and tuning is not easy will much larger datasets and

larger datasets moving at a velocity.

Conclusion

Real-time data processing has become a key aspect of

modern computing, allowing for prompt decision

making, dynamic monitoring, and responsive design

of systems across a number of domains including

power systems, environmental monitoring, and

health care. This review has carefully discussed the

pairing of Apache Kafka and Apache Cassandra,

examined their respective strengths, and discussed

how they can work together or complement each

other in distributed architectures. Kafka's distributed

publish-subscribe architecture is an approach to event

ingestion pipelines that emphasizes higher

throughput, durability, and high availability.

Meanwhile, Cassandra provides a fault-tolerant

mechanism for storing and querying large volumes of

time-series and transactional data. Together, the

combination of these Technologies provides a

sufficient ecosystem for deploying complicated real-

time data stream processing systems especially when

both technologies have dependent middleware or

orchestration strategies behind them to optimize their

performance, scalability and fault recovery. The

review detailed a number of optimizations that can be

achieved by tuning the Kafka producer batch sizes,

choosing Cassandra consistency levels, leveraging

containerized deployment models that lend elasticity

and fault tolerance, etc. Trials and the usage of t both

Kafka and Cassandra indicate, using proper

configuration and scaling, improve throughput and

reduce latency significantly. However, there are still

obstacles in bringing the disparate data abstractions

into a common modifier, managing schema change,

and efficiently translating streamed data into more

query-friendly collections of data. As companies

continue to deploy and leverage real-time data

systems, it will be increasingly important to

implement a solid layer of middleware and automated

process helpers to maintain performant scale. The

review points out an important notion for proper and

sufficient design and optimization of distributed

systems, such as Kafka and Cassandra. Companies

can build such systems with resiliency and

performance with the right tuning and the correct

architectural discipline. This would help ingest,

process and retain high speed real-time datasets in all

sorts of mission-critical uses.

Acknowledgements

The author is grateful to the researchers and

institutions referenced in this paper whose

foundational work and insights made this review

possible.

References

[1]. Wu, J., & Li, H. (2025, April). Real-time data

flow processing and optimization scheduling

scheme for power system based on Kafka. In

Fifth International Conference on

Telecommunications, Optics, and Computer

Science (TOCS 2024) (Vol. 13629, pp. 461-

471). SPIE.

[2]. Rani, S. (2025). Tools and techniques for real-

time data processing: A review. International

Journal of Science and Research Archive,

14(1), 1872-1881.

[3]. Mazher, N., & Azmat, H. (2024). Real-Time

Data Streaming and Analysis Using SQL

Server with Apache Kafka. Pioneer Research

Journal of Computing Science, 1(3), 44-52.

[4]. Sultan Saeed, J. O., & Frank, E. (2024). Real-

time analytics with Apache Cassandra and

apache spark.

[5]. Chinthapatla, S. (2020). Unleashing

Scalability: Cassandra Databases with Kafka

Integration.

[6]. Alang, K. S. Stream Processing with Apache

Kafka: Real-Time Data Pipelines.

[7]. Akanbi, A., & Masinde, M. (2020). A

distributed stream processing middleware

framework for real-time analysis of

heterogeneous data on big data platform: Case

of environmental monitoring. Sensors,

20(11), 3166.

[8]. Raptis, T. P., & Passarella, A. (2023). A

survey on networked data streaming with

apache kafka. IEEE access, 11, 85333-85350.

[9]. Oza, J., Patil, A., Maniyath, C., More, R.,

Kambli, G., & Maity, A. (2024, May).

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0424

e ISSN: 2584-2854

Volume: 03

Issue: 08 August 2025

Page No: 2698 - 2704

 IRJAEM 2704

Harnessing insights from streams: Unlocking

real-time data flow with docker and cassandra

in the apache ecosystem. In 2024 IEEE

Recent Advances in Intelligent

Computational Systems (RAICS) (pp. 1-6).

IEEE.

[10]. Ed-daoudy, A., Maalmi, K., & El Ouaazizi,

A. (2023). A scalable and real-time system for

disease prediction using big data processing.

Multimedia Tools and Applications, 82(20),

30405-30434.

about:blank

