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Abstract 

Timely detection of grape leaf diseases is essential for safeguarding vineyard productivity and preventing 

yield losses. This research presents a hybrid deep learning framework that combines generative data 

augmentation, transformer-based feature extraction, and capsule network classification to enhance multi-

class disease recognition. The experiments utilized the Niphad Grape Leaf Disease Dataset (NGLD), 

containing 2,726 images categorized into Bacterial Rot, Downy Mildew, Healthy Leaves, and Powdery 

Mildew. To mitigate class imbalance, additional synthetic samples for the three disease classes were created 

using a Deep Convolutional Generative Adversarial Network (DCGAN), trained for 50 epochs per class. Real 

and generated images were integrated and processed through a pretrained Swin Transformer (Base, patch 

size 4, window size 7) to extract high-dimensional feature vectors, which were then reduced to 768 dimensions. 

These features were classified using an Attention-Guided Capsule Network (AGCapNet), enabling the model 

to focus on disease-specific patterns. The proposed method attained an overall accuracy of 96%, with a macro-

averaged ROC-AUC of 0.97. A binary disease-versus-healthy analysis produced an AUC exceeding 0.95, 

highlighting the system’s suitability for early-stage disease identification. The results confirm that the 

integration of GAN-based augmentation with transformer and capsule architectures delivers a robust, 

scalable, and accurate approach to grape leaf disease detection. 

Keywords: Capsule network; DCGAN data augmentation; Early disease diagnosis; Grape leaf disease 

detection; Swin transformer. 

 

1. Introduction 

Grapes (Vitis vinifera L.) are one of the most 

economically significant fruit crops, are grown in 

diverse climatic conditions, and are one of the most 

important fruit crops worldwide. They are consumed 

fresh, processed into raisins and juice, and comprise 

the base of the wine industry. China, USA, Italy and 

Spain are some of the major countries of global 

production, given the diversity of varieties they can 

offer according to the agro-climatic condition. In 

addition to their “marketability”, grapes have also 

been emphasized because they are a source of 

vitamins and minerals, and bioactive compounds 

such as flavonoids and resveratrol with antioxidant, 

anti- inflammatory and cardioprotective activities. 

Though grapes are mainly grown in Maharashtra, 

Karnataka, Andhra Pradesh and Tamil Nadu, India 

has a significant share in the world’ s grapes 

production. The main grape growing regions in Tamil 

Nadu are Dindigul, Madurai, Theni district, 

especially the Cumbum Valley, Coimbatore, Tirupur, 

Erode and, Cuddalore. Thompson Seedless, Sharad 

Seedless, Red Globe, and Anab-e- are the most 

common varieties. For their part, Shahi and Kishmish 

were selected for their high yield potential, export 
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suitability, and/or resistance to some insects and 

diseases. Despite these strengths, grape cultivation is 

highly vulnerable to leaf diseases, including powdery 

mildew (Erysiphe necator), downy mildew 

(Plasmopara viticola), bacterial rot (Xanthomonas 

campestris), and anthracnose (Elsinoë ampelina), are 

illustrated in Figure 1. These sample images highlight 

the visual diversity and variability of symptoms that         

the model is intended to identify and categorize. 

These diseases, particularly prevalent under humid 

and warm conditions, can cause substantial yield loss, 

compromise fruit quality, and negatively impact 

market value. Early detection is critical because once 

a disease progresses, chemical intervention becomes 

less effective, and economic losses escalate. 

Traditionally, disease detection within the vineyard is 

typically done through manual scouting and relies on 

experience from experts, methods that are not only 

laborious and time-consuming but also variable 

across large areas of cultivation. Plus, some 

symptoms are common to various diseases and 

infections can also have a very faint appearance. 

More recently, ML and DL techniques have proven 

to be useful alternatives in automatic disease 

detection, capable of both identifying the type and 

severity of infections based on leaf images. CNN-

based models utilizing transfer learning based 

architectures, like VGG19, DenseNet121, and 

EfficientNet have recently been reported to yield 

greater than 95 % accuracy on public datasets of plant 

diseases. These networks are capable of learning in a 

hierarchical way about features directly from image 

data, and can understand very complex patterns in 

symptoms. But, there are still some significant 

challenges: Imbalanced data – some grape diseases 

are poorly represented in the training samples and the 

model is biased towards the more frequent classes. 

Environmental variability – Field conditions are 

subject to variability in lighting, leaf orientation, and 

background clutter, any of which can affect model 

performance. Difficulty in early detection – 

Symptoms are subtle at the time of infection and 

misclassification is common. Solutions to these 

problems should involve a combination of data 

augmentation, feature extraction with strong 

invariance properties, and discriminative 

classification. In order to augment the dataset, 

Conditional Generative Adversarial Networks 

(cGANs) are able to produce synthetic but realistic 

images of the minority class diseases. Both Capsule 

Networks (CapsNets) preserve spatial relationships 

between features, which is useful for recognizing 

fine-grained disease patterns, and Transformer-based 

architectures like Swin Transformer that handle long-

range dependencies and contextual information in the 

image rather than traditional CNNs. Incorporating 

attention mechanisms can further enhance the 

model’s focus on areas of the image relevant to the 

disease while also increasing interpretability and 

precision. Adopting these components, the proposed 

system intends to achieve high accuracy, sensitivity 

and specificity, over several classes of grape leaf 

diseases, also when variability in field conditions is 

tested. This framework would ideally help precision 

agriculture through reduced chemical application, 

real-time monitoring for disease, and ultimately 

sustainable grape production within Tamil Nadu and 

elsewhere. 

1.1. Related Work 

The automatic detection of grape leaf diseases has 

gained growing attention in recent years due to the 

pressing need for early diagnosis to protect yield and 

reduce excessive chemical treatments. Current 

literature largely falls into two main directions: (1) 

one-stage object detection and segmentation 

approaches—most notably from the YOLO family of 

algorithms, and (2) classification and feature 

extraction methods based on transfer learning or 

novel deep learning architectures. Across both trends, 

researchers frequently employ dataset augmentation, 

lightweight models for on-device deployment, and 

metaheuristic or ensemble-based optimization to 

improve robustness. YOLO-style detectors have been 

applied in vineyard monitoring with promising 

results for disease localization and detection. Ghiani 

et al. [1] implemented a YOLO-based model for 

downy and powdery mildew, reporting a mean 

average precision (mAP) of 0.73, and emphasized the 

importance of dataset diversity—suggesting 

multispectral imaging for improved generalization. 

Later YOLOv8-based studies reported even higher 

precision and recall values, but these models are often 
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validated on a small number of disease classes, 

limiting generalizability [2]. Transfer learning and 

lightweight CNN architectures remain popular for 

grape leaf classification. For instance, Karim et al. [4] 

deployed a MobileNetV3-Large variant on edge 

hardware, achieving over 99% accuracy with Grad-

CAM visualizations for lesion localization. While 

such results are promising for field deployment, the 

authors caution that dataset diversity and real-world 

validation remain key limitations. Similarly, 

depthwise-separable architectures like DSC-

TransNet have reported exceptional metrics 

(accuracy ≈ 99.97%, AUC ≈ 0.98) on benchmark 

datasets, illustrating how architectural efficiency can 

drive strong results; however, scalability and real-

time integration still require engineering solutions 

[3]. Hybrid transformer–CNN designs also feature 

prominently. A dual-track feature fusion model 

combining a Swin Transformer with Group Shuffle 

Residual DeformNet achieved over 98% accuracy 

and improved feature representation, but raised 

questions around interpretability and deployment 

complexity [5]. Capsule networks have also emerged 

as a promising tool for preserving part–whole 

relationships in lesion patterns. Mathew et al. [7] 

proposed a depthwise-separable VGG19 combined 

with Capsule Network and ensemble activations for 

bell pepper and grape leaf disease classification, 

balancing computational efficiency with spatial-

awareness capabilities and demonstrating strong 

cross-crop performance. Data augmentation 

techniques, particularly those using GANs, have been 

employed to mitigate class imbalance. DCGAN-

augmented CNN training has shown improvements in 

minority-class recall, though researchers caution that 

synthetic image quality must be closely monitored to 

avoid introducing artifacts. Metaheuristic 

optimization is another active area, with strategies 

like Hybrid Sparrow Search & Slime Mould 

Algorithm (HSMSSA) and Hyperband applied for 

hyperparameter tuning, yielding modest gains in 

accuracy and convergence stability. Adaptive 

preprocessing—such as hybrid segmentation 

combined with metaheuristic optimization—has also 

been reported to enhance robustness, albeit with 

increased preprocessing complexity [6]. Beyond 

RGB imaging, hyperspectral and multispectral 

methods provide access to biochemical information 

invisible to standard cameras. Estrada et al. [8] 

demonstrated the potential of early stress detection 

using such data, though current adoption is hindered 

by hardware costs and complex signal processing 

requirements. Consequently, many recent works 

focus on improving RGB-based models through 

augmentation, GANs, and domain adaptation to 

achieve lightweight, field-ready solutions.             

Despite the impressive metrics reported, common 

challenges persist: (1) dataset bias and insufficient 

environmental diversity, (2) risk of overfitting in 

small or curated datasets, (3) limited cross-dataset 

validation, and (4) narrow disease coverage in many 

detection frameworks. These limitations motivate 

integrated solutions that combine robust feature 

extraction (e.g., Swin Transformer), generative 

augmentation (e.g., DCGAN), and advanced 

classification modules (e.g., Attention-Gated Capsule 

Networks) to improve early-stage detection 

sensitivity while maintaining strong generalization in 

real-world vineyard conditions. The application of 

deep learning as well as hybrid techniques for the 

identification of diseases on grape leaves has been 

widely investigated. Table 1 depicts several recent 

contributions, their inferences and weaknesses in 

their methodologies. As the results indicate, most of 

the architectures with reported good performance, as 

YOLO-based detectors, MobileNet-based 

architectures, or Transformer-based models, still 

have restrictions for application under the diverse 

conditions found in the vineyard. The limitations of 

this approach, including narrow disease coverage, 

overfitting on curated datasets, and very high 

computational resource requirements highlight the 

need for a robust, generalizable solution. 

2. Methodology 

The framework proposed for the detection of grape 

leaf diseases is a deep learning pipeline composed by 

stages of data augmentation, feature extraction and 

classification which has been shown to be highly 

performance both in balanced and imbalanced dataset 

situations. A summary of the sequential workflow of 

the proposed pipeline is shown in Algorithm 1 and as 

a block diagram in Fig. 2. 
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2.1. Dataset Description 

The experimental study employed the Niphad Grape 

Leaf Disease Dataset (NGLD), comprising 2,726 

high-resolution grape leaf images categorized into 

four classes: 

Bacterial Rot — 100 images 

Downy Mildew — 996 images 

Healthy Leaves — 1,254 images 

Powdery Mildew — 406 images 

The dataset presents grape leaves with varying 

developmental stages and disease severities, in-field 

conditions. Factors such as lighting, background 

complexity, and leaf orientation are not controlled, 

and thus the images also contain realistic variation 

representative of real-world vineyard settings. This 

variability ultimately leads to a training of models on 

this dataset better fitted to generalize when exposed 

to real agricultural scenarios. 

2.2. Synthetic Data Generation using DCGAN 

The class imbalance problem—particularly the 

scarcity of Bacterial Rot and Powdery Mildew 

samples—was addressed using a Deep Convolution 

Generative Adversarial Network (DCGAN). The 

DCGAN synthetic image generation workflow is 

shown in Figure 3 

 Generator: Learned to produce realistic 

grape leaf images from 100-dimensional 

Gaussian noise vectors using transposed 

convolutional layers and ReLU activations. 

 Discriminator: Distinguished between real 

and synthetic images using convolutional 

layers with LeakyReLU activations. 

Training: 

 Class-wise training was conducted separately 

for Bacterial Rot, Downy Mildew, and 

Powdery Mildew classes. 

 Each class trained for 50 epochs using the 

Adam optimizer (learning rate = 0.0002, β1 = 

0.5).  

 Output images were saved every epoch, 

resulting in synthetic datasets that balanced 

all disease classes with respect to Healthy 

Leaves. 

 The augmented dataset after DCGAN 

generation contained an equal number of 

images per class, enabling more stable and 

unbiased training in subsequent stages. 

2.3. Dataset Merging and Preprocessing 

To address class imbalance in the NGLD dataset—

particularly for Bacterial Rot and Powdery Mildew—

synthetic images generated via DCGAN (Section 4.2) 

were merged with real images to create a balanced 

dataset across all four categories, including Healthy 

Leaves. 

Workflow: 

 Class-wise Directory Structure: Organized 

into PyTorch-compatible folders per 

category; synthetic images labeled with a 

“fake_” prefix for traceability. 

 Image Resizing: All images resized to 

224×224 (Lanczos interpolation) to match 

Swin Transformer input while preserving 

disease-specific features. 

 Color Normalization: Converted to RGB and 

normalized using dataset-derived mean and 

standard deviation values to minimize 

lighting variations. 

 Data Integrity Checks: Removed unreadable, 

corrupted, or duplicate images to ensure 

dataset quality. 

 Balanced Composition: Minority classes 

were upsampled to match Healthy Leaves, 

preventing bias during training. 

 Rationale: Standardized dimensions improve 

computational efficiency, color normalization 

enhances feature extraction stability, integrity 

checks ensure reliability, and balanced 

classes improve robustness in disease 

recognition. 

2.4. Feature Extraction with Swin 

Transformer 

To capture fine-grained leaf textures and broader 

contextual cues, we used a Swin Transformer pre-

trained on ImageNet. Images were first split into 4×4 

patches and processed through a hierarchical shifted-

window attention mechanism, enabling the model to 

learn both local and long-range dependencies. The 

network produced 1024-dimensional feature vectors, 

which were reduced to 768 dimensions via a fully 

connected layer for compatibility with the AGCapNet 

classifier. Global Average Pooling (GAP) was 

applied to ensure fixed-length representations. These 
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768-D embeddings were extracted for every image in 

the merged dataset and stored for the classification 

stage. 

2.5. Classification with Attention-Gated 

Capsule Network (AGCapNet) 

The third step was to classify the 768-D features 

using AGCapNet, a hybrid attentional model 

comprised of attention models and capsule networks. 

This design maintains spatial relationships of features 

while highlighting portions of the leaf characteristic 

of disease symptoms, in order to distinguish early 

infections from background noise. Key Components: 

 Attention Block (attn_fc): Learns feature 

importance weights using fully connected 

layers and applies them to emphasize disease-

specific patterns. 

 Capsule Block (caps_fc): Converts 

attention-weighted features into 256-D 

capsules, preserving orientation and spatial 

configuration of symptoms. 

 Classifier: Maps capsule outputs to four 

classes—Bacterial Rot, Downy Mildew, 

Healthy, and Powdery Mildew—using a 

Softmax layer for probability-based 

predictions. 

Training Setup: 

Loss: Cross-entropy 

Optimizer: Adam (LR = 1×10⁻⁴) 

Batch Size: 32 

Epochs: 10 

Regularization: Dropout (0.2) in attention and 

capsule blocks 

Advantages: 

 Focuses on disease-relevant regions while 

ignoring irrelevant background. 

 Maintains spatial orientation of symptoms for 

robust detection. 

 Delivers higher recall for underrepresented 

diseases through attention-guided learning 

and balanced data. 

 Modular design suitable for other crop disease 

detection tasks. 

2.6. Evaluation Metrics 

Pipeline DCGAN–Swin Transformer–AGCapNet 

was assessed employing several classification 

metrics to make sure the pipeline reliably detected 

diseases in vineyards. 

 Confusion Matrix: Offered a class-wise 

summary of accurate and inaccurate 

predictions and some frequent mislabelings 

(ex: Bacterial Rot labeled as Powdery 

Mildew). 

 Accuracy: General ratio of correct 

predictions; is supplemented with other 

measures in order to deal with class 

imbalance. 

 Precision: The ratio of positive 

identifications to all positive samples, which 

minimizes false positives and spare treatment. 

Algorithm 1: GrapeLeafDiseaseDetection  

(D, E_GAN, E_train) 

# Step 1: Dataset Preparation 

Resize all images in D to R 

4:      Normalize pixel values to [0, 1] 

Split D into Train_Set and Test_Set (80:20) 

# Step 2: Data Augmentation using DCGAN 

For each class c in {Bacterial Rot, Downy Mildew, 

and Powdery Mildew} do 

Initialize Generator G and Discriminator D_net 

For epoch = 1 to E_GAN do 

Sample random noise z 

x_fake ← G (z) 

Train D_net on real images x_real and fake images 

x_fake 

Train G to minimize Discriminator loss 

End For 

Save generated images for class c 

End For 

# Step 3: Feature Extraction using Swin Transformer 

Load pre-trained Swin Transformer model 

For each image in (Train_Set ∪ Test_Set) do 

Extract 768-dimensional feature vector f_i 

End For 

# Step 4: Classification using AGCapNet 

Initialize AGCapNet model with attention gates and 

capsule layers 

For epoch = 1 to E_train do 

Train AGCapNet on training feature vectors {f_i} 

Update weights using Adam optimizer 

End For 

# Step 5: Model Evaluation 

Predict labels for Test_Set 
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Compute Accuracy, Precision, Recall, Specificity, 

and F1-score 

Plot Confusion Matrix and ROC Curve 

Return predicted labels and evaluation metrics 

End Procedure 

 Recall (Sensitivity): Fraction of true positive 

detected; important to identify early stages of 

the disease. 

 F1-Score: Harmonic mean of precision and 

recall; useful with imbalanced dataset. 

 Specificity: True positives on healthy leaves; 

avoids over-treatment. 

 AUC-ROC: assessed the capability of the 

model to discriminate between diseased and 

healthy leaves at different threshold values. 

AUC values were class-wise and overall. 

 Macro & Weighted Averages: Ensured fair 

performance evaluation across all classes, 

accounting for imbalance. 

 These metrics were chosen to balance high 

sensitivity (early detection) with high 

specificity (reducing false alarms), ensuring 

practical deployment in real vineyards. 

Computational Setup 

Platform: Google Colab 

Hardware: Intel Xeon CPU, 12 GB RAM 

Frameworks: PyTorch, TIMM, Scikit-learn 

Execution Times: Dataset merging (~10.6 s), feature 

extraction (~1932.45 s), AGCapNet training 

(~18.66s) 

3. Results and Discussion 

3.1. Experimental Setup 

The proposed approach was evaluated on the Niphad 

Grape Leaf Disease Dataset (NGLD), consisting of 

2,726 real grape leaf images across four classes: 

Bacterial Rot (100), Downy Mildew (996), Healthy 

Leaves (1,254), and Powdery Mildew (406). Data 

augmentation was applied using DCGAN for the 

three disease classes (Bacterial Rot, Downy Mildew, 

and Powdery Mildew) to address class imbalance, 

while the Healthy class remained unaltered. The 

augmented dataset was merged and resized to 224 × 

224 pixels before feature extraction. Feature 

extraction was performed using a Swin Transformer 

(base, patch4, window7, 224) pretrained on 

ImageNet, producing 1,024-dimensional vectors, 

which were reduced to 768 dimensions via a fully 

connected layer. These features were used as input to 

the proposed Attention-Gated Capsule Network 

(AGCapNet) for classification. The model was 

trained for 10 epochs using the Adam optimizer 

(learning rate 1e-4) and evaluated with an 80/20 train-

test split, stratified by class. 

3.2. Quantitative Performance 

The classification report and confusion matrix (Table 

2, Figure 4) show that the proposed framework 

achieved 96% overall accuracy, with high per-class 

precision, recall, and F1-scores. The confusion 

matrix shows minimal misclassification, with the 

most errors occurring between Downy Mildew and 

Powdery Mildew, likely due to their similar lesion 

patterns at early stages. 

3.3. Sensitivity, Specificity, and AUC 
Sensitivity (recall) and specificity were computed to 

better assess the model’s medical-diagnostic 

reliability: 

Sensitivity (average): 0.94 

Specificity (average): 0.98 

Macro AUC: 0.97 (disease vs. healthy binary 

classification) 

These values demonstrate the model’s strong 

capability for early disease detection, minimizing 

false negatives (high sensitivity) while maintaining 

very low false positives (high specificity). Sensitivity 

and Specificity performance of each class in 

presented in fig 5. 

3.4. Impact of DCGAN Augmentation 

Before augmentation, the dataset was highly 

imbalanced, with Bacterial Rot comprising only 

~3.6% of samples. DCGAN generated synthetic 

images to balance disease class representation, 

enabling the model to learn richer feature 

representations for minority classes. This was 

particularly beneficial for Bacterial Rot and Powdery 

Mildew, whose F1-scores improved significantly 

compared to baseline models trained without 

augmentation in prior studies. As shown in Figure 6, 

the DCGAN was able to produce realistic images of 

the three intended grape leaf diseases Downy 

Mildew, Bacterial Rot, and Powdery Mildew. These 

synthetic samples are similar to symptomatic leaves 

in terms of visual patterns of diversity and symptom 
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variation. The inclusion of these types of images in 

the dataset provides the model with an improved 

capacity to generalize beyond varying levels of 

symptom severity and environmental conditions in 

order to classify images. 

3.5. Comparative Analysis 

Compared to conventional CNN-based grape leaf 

disease classifiers, the proposed DCGAN + Swin 

Transformer + AGCapNet pipeline achieved a 

substantial performance boost, particularly in early 

detection scenarios. While baseline CNN models 

(~2024) typically achieve accuracies in the 88–92% 

range, their performance tends to degrade in the 

presence of small lesion areas or in minority classes 

due to limited feature diversity and poor spatial 

feature preservation [4][6]. The proposed system 

outperformed EfficientNet-B0 (93.05% accuracy), 

VGG19 (91.15%), and ResNet50 (92.38%) by an 

absolute margin of +2–5% in accuracy, and similar 

gains were observed in precision, recall, and F1-score 

metrics [3], [5], [7]. Table 3 compares different 

current methods of grape leave disease detection with 

the suggested DCGAN–Swin Transformer–

AGCapNet method. The table presents an outline of 

each method and its process, their main implications 

found in the practice of them, and some of their major 

limitations to their actual use. This defined contrast 

works on illustrating the newness and benefits of the 

proposed method for the aspects of dataset 

augmentation, feature extraction, and robustness of 

classification under varying environmental 

conditions. Key differentiators of the proposed 

approach include: 

3.5.1. Enhanced Data Diversity via DCGAN 

Traditional CNN-based systems rely heavily on 

manual data augmentation (flip, rotation, scaling), 

which offers limited variability [4]. The use of 

DCGAN in our pipeline generated class-specific 

synthetic images for Bacterial Rot, Downy Mildew, 

and Powdery Mildew, enriching the dataset with 

realistic lesion variations and helping the model 

generalize to unseen patterns [7]. 

3.5.2. Transformer-Based Global Context 

Modeling 

The Swin Transformer extracts multi-scale 

hierarchical features with a strong global context 

understanding, enabling early recognition of subtle 

discolorations or texture irregularities that often 

indicate pre-symptomatic disease stages [5]. This 

contrasts with CNNs, which primarily focus on local 

receptive fields and can miss long-range 

dependencies [6]. 

3.5.3. Capsule Network for Spatial 

Relationship Preservation 

AGCapNet incorporates an attention-guided capsule 

structure, which preserves spatial relationships 

between leaf structures and lesion regions. This is 

critical for differentiating between diseases that 

present with visually similar lesion patterns but differ 

in spread direction, shape, or location [7]. 

3.5.4. Superior Early Detection Capability 

Early-stage lesions often occupy <10% of the leaf 

area and have low contrast against healthy tissue [1]. 

The proposed hybrid model's combination of 

attention mechanisms and capsule routing enables it 

to prioritize such lesion areas, thereby detecting 

diseases earlier than conventional CNN pipelines [3], 

[9]. 

3.5.5. Balanced Computational Efficiency 

While transformer-based models are often 

computationally expensive, using Swin Transformer 

(small variant) combined with feature-level fusion in 

AGCapNet kept the compute cost at a medium level, 

suitable for real-time field deployment on moderate 

GPU hardware [4], [5]. 

3.6. Discussion 

The experimental results validate the effectiveness of 

the proposed framework for early grape leaf disease 

detection. The combination of DCGAN 

augmentation, Swin Transformer features, and 

AGCapNet classification ensures both accuracy and 

robustness in challenging field conditions. The high 

AUC value reflects strong binary discrimination 

between healthy and diseased leaves, essential for 

precision agriculture applications where early 

intervention can prevent significant yield loss [1], [3]. 

While performance is high, certain challenges remain 

— specifically, differentiating between visually 

similar mildew diseases at early symptom stages [7], 

[5]. Future work may integrate hyperspectral data or 

multi-view leaf imaging to further improve 

discrimination capability [8]. Figure 7 shows the 

about:blank


 

International Research Journal on Advanced Engineering and 

Management 

https://goldncloudpublications.com 

https://doi.org/10.47392/IRJAEM.2026.0005 

e ISSN: 2584-2854 

Volume: 04 Issue: 01 

January 2026 

Page No: 031- 040 

 

   

                        IRJAEM 38 

 

ROC curve resulting from the model’s ability to 

discriminate between diseased and healthy grape 

leaves. Notably, the AUC score reaches 1.00, 

demonstrating almost perfect discrimination power. 

The high sensitivity at the various levels of specificity 

indicates the capability of identifying diseased 

samples with low false positive detection, which is an 

optimal characteristic for a model that is used for 

early intervention in disease management of the 

vineyard [9].  

4. List of Figures 
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5. List of Table  

 

Table 1 Summary of Recent Grape Leaf Disease Detection Approaches, Highlighting Methodologies, 

Inferences, And Drawbacks 
S. 

No 
Reference Methodology Inferences Drawback 

 

1. 

[1] Ghiani et 

al., 2025 

YOLO-based detection of 

downy and powdery 

mildew using RGB 

vineyard images 

Achieved strong localization 

in clear conditions; 

highlighted the need for 

dataset diversity 

Limited to two disease 

classes; struggles to 

generalize in varied 

environments 

 

2. 

[2] Mamun et 

al., 2025 

YOLOv8-based mobile app 

for grape leaf disease 

detection 

Demonstrated high precision 

and recall; proved the 

feasibility of mobile 

deployment 

Tested on a limited set of 

diseases; lacks validation in 

diverse real-world scenarios 

 

3. 

[4] Karim et 

al., 2024 

MobileNetV3-Large with 

Grad-CAM for edge device 

deployment 

Delivered highly 

interpretable results with 

clear lesion localization 

Possible overfitting; limited 

evaluation in uncontrolled 

field conditions 

 

4. 

[3] Mathew 

et al., 2025 

DSC-TransNet (depthwise 

separable CNN) for real-

time classification 

Provided excellent 

classification performance; 

suitable for handheld devices 

Real-time robustness under 

heterogeneous conditions 

remains unproven 

 

5. 

[5] Karthik et 

al., 2024 

Swin Transformer + Group 

Shuffle Residual 

DeformNet 

Offered improved feature 

representation through dual-

track fusion 

Computationally expensive; 

interpretability remains a 

challenge 

 

6. 

[7] Mathew 

et al., 2025 

Depthwise-separable 

VGG19 + Capsule 

Network + ensemble 

activations 

Balanced computational 

efficiency with strong spatial 

awareness 

Requires careful Capsule 

tuning; complex for 

deployment 

 

7. 

[6] 

Naveenkumar 

& 

Nandagopal, 

2025 

Adaptive hybrid 

segmentation + 

metaheuristic optimization 

Enhanced robustness and 

classification consistency in 

variable conditions 

Involves complex 

preprocessing; extended 

training times 

 

8. 

[8] Estrada et 

al., 2025 

Hyperspectral/multispectral 

imaging for early stress 

detection 

Detected subtle biochemical 

and structural changes before 

visible symptoms 

Requires costly hardware and 

sophisticated signal 

processing 

 
Figure 7 Overall ROC of the Binary 

Classification of Grape Sample Leaves (Disease 

Vs. Healthy) with AUC of 1.00 

Conclusion and Future Scope 

This study introduced a robust pipeline for early 

grape leaf disease detection, combining DCGAN-

based synthetic augmentation, Swin Transformer 

feature extraction, and an Attention-Gated Capsule 

Network (AGCapNet) classifier. DCGAN addressed 

dataset imbalance by generating realistic synthetic 

images for minority disease classes, while the Swin 

Transformer extracted rich global–local features. The 

AGCapNet further enhanced performance through 

attention-driven refinement and capsule-based spatial 

preservation. The proposed model achieved 96.87% 

accuracy, outperforming CNN-based baselines 
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(VGG19, ResNet50, and EfficientNet-B0) by +2–

5%, with better generalization to minority classes and 

improved early detection capability. ROC–AUC 

analysis confirmed its strong discriminative ability 

for disease-vs-healthy classification. These results 

demonstrate the synergy of transformer-based 

context modeling and capsule-based fine-grained 

lesion representation, making the model a reliable 

decision-support tool for viticulture. This framework 

can be extended by integrating real-time deployment 

on mobile/IoT devices, fusing multimodal imaging 

(RGB, hyperspectral, thermal), and incorporating 

explainable AI techniques to enhance transparency 

and adoption. Expanding datasets across regions and 

grape varieties will further improve robustness and 

adaptability to real-world vineyard conditions. 
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