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Abstract

Timely detection of grape leaf diseases is essential for safeguarding vineyard productivity and preventing
yield losses. This research presents a hybrid deep learning framework that combines generative data
augmentation, transformer-based feature extraction, and capsule network classification to enhance multi-
class disease recognition. The experiments utilized the Niphad Grape Leaf Disease Dataset (NGLD),
containing 2,726 images categorized into Bacterial Rot, Downy Mildew, Healthy Leaves, and Powdery
Mildew. To mitigate class imbalance, additional synthetic samples for the three disease classes were created
using a Deep Convolutional Generative Adversarial Network (DCGAN), trained for 50 epochs per class. Real
and generated images were integrated and processed through a pretrained Swin Transformer (Base, patch
size 4, window size 7) to extract high-dimensional feature vectors, which were then reduced to 768 dimensions.
These features were classified using an Attention-Guided Capsule Network (AGCapNet), enabling the model
to focus on disease-specific patterns. The proposed method attained an overall accuracy of 96%, with a macro-
averaged ROC-AUC of 0.97. A binary disease-versus-healthy analysis produced an AUC exceeding 0.95,
highlighting the system’s suitability for early-stage disease identification. The results confirm that the
integration of GAN-based augmentation with transformer and capsule architectures delivers a robust,
scalable, and accurate approach to grape leaf disease detection.

Keywords: Capsule network; DCGAN data augmentation; Early disease diagnosis; Grape leaf disease
detection; Swin transformer.

1. Introduction

Grapes (Vitis vinifera L.) are one of the most
economically significant fruit crops, are grown in
diverse climatic conditions, and are one of the most
important fruit crops worldwide. They are consumed
fresh, processed into raisins and juice, and comprise
the base of the wine industry. China, USA, Italy and
Spain are some of the major countries of global
production, given the diversity of varieties they can
offer according to the agro-climatic condition. In
addition to their “marketability”, grapes have also
been emphasized because they are a source of
vitamins and minerals, and bioactive compounds

such as flavonoids and resveratrol with antioxidant,
anti- inflammatory and cardioprotective activities.
Though grapes are mainly grown in Maharashtra,
Karnataka, Andhra Pradesh and Tamil Nadu, India
has a significant share in the world’ s grapes
production. The main grape growing regions in Tamil
Nadu are Dindigul, Madurai, Theni district,
especially the Cumbum Valley, Coimbatore, Tirupur,
Erode and, Cuddalore. Thompson Seedless, Sharad
Seedless, Red Globe, and Anab-e- are the most
common varieties. For their part, Shahi and Kishmish
were selected for their high yield potential, export
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suitability, and/or resistance to some insects and
diseases. Despite these strengths, grape cultivation is
highly vulnerable to leaf diseases, including powdery
mildew  (Erysiphe necator), downy mildew
(Plasmopara viticola), bacterial rot (Xanthomonas
campestris), and anthracnose (Elsinoé ampelina), are
illustrated in Figure 1. These sample images highlight
the visual diversity and variability of symptoms that
the model is intended to identify and categorize.
These diseases, particularly prevalent under humid
and warm conditions, can cause substantial yield loss,
compromise fruit quality, and negatively impact
market value. Early detection is critical because once
a disease progresses, chemical intervention becomes
less effective, and economic losses escalate.
Traditionally, disease detection within the vineyard is
typically done through manual scouting and relies on
experience from experts, methods that are not only
laborious and time-consuming but also variable
across large areas of cultivation. Plus, some
symptoms are common to various diseases and
infections can also have a very faint appearance.
More recently, ML and DL techniques have proven
to be useful alternatives in automatic disease
detection, capable of both identifying the type and
severity of infections based on leaf images. CNN-
based models utilizing transfer learning based
architectures, like VGG19, DenseNet121, and
EfficientNet have recently been reported to yield
greater than 95 % accuracy on public datasets of plant
diseases. These networks are capable of learning in a
hierarchical way about features directly from image
data, and can understand very complex patterns in
symptoms. But, there are still some significant
challenges: Imbalanced data — some grape diseases
are poorly represented in the training samples and the
model is biased towards the more frequent classes.
Environmental variability — Field conditions are
subject to variability in lighting, leaf orientation, and
background clutter, any of which can affect model
performance. Difficulty in early detection -
Symptoms are subtle at the time of infection and
misclassification is common. Solutions to these
problems should involve a combination of data
augmentation, feature extraction with strong
invariance properties, and discriminative

classification. In order to augment the dataset,
Conditional  Generative ~ Adversarial ~Networks
(cGANS) are able to produce synthetic but realistic
images of the minority class diseases. Both Capsule
Networks (CapsNets) preserve spatial relationships
between features, which is useful for recognizing
fine-grained disease patterns, and Transformer-based
architectures like Swin Transformer that handle long-
range dependencies and contextual information in the
image rather than traditional CNNs. Incorporating
attention mechanisms can further enhance the
model’s focus on areas of the image relevant to the
disease while also increasing interpretability and
precision. Adopting these components, the proposed
system intends to achieve high accuracy, sensitivity
and specificity, over several classes of grape leaf
diseases, also when variability in field conditions is
tested. This framework would ideally help precision
agriculture through reduced chemical application,
real-time monitoring for disease, and ultimately
sustainable grape production within Tamil Nadu and
elsewhere.
1.1. Related Work

The automatic detection of grape leaf diseases has
gained growing attention in recent years due to the
pressing need for early diagnosis to protect yield and
reduce excessive chemical treatments. Current
literature largely falls into two main directions: (1)
one-stage object detection and segmentation
approaches—most notably from the YOLO family of
algorithms, and (2) classification and feature
extraction methods based on transfer learning or
novel deep learning architectures. Across both trends,
researchers frequently employ dataset augmentation,
lightweight models for on-device deployment, and
metaheuristic or ensemble-based optimization to
improve robustness. YOLO-style detectors have been
applied in vineyard monitoring with promising
results for disease localization and detection. Ghiani
et al. [1] implemented a YOLO-based model for
downy and powdery mildew, reporting a mean
average precision (mAP) of 0.73, and emphasized the
importance  of  dataset  diversity—suggesting
multispectral imaging for improved generalization.
Later YOLOv8-based studies reported even higher
precision and recall values, but these models are often
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validated on a small number of disease classes,
limiting generalizability [2]. Transfer learning and
lightweight CNN architectures remain popular for
grape leaf classification. For instance, Karim et al. [4]
deployed a MobileNetV3-Large variant on edge
hardware, achieving over 99% accuracy with Grad-
CAM visualizations for lesion localization. While
such results are promising for field deployment, the
authors caution that dataset diversity and real-world
validation remain key limitations. Similarly,
depthwise-separable  architectures like DSC-
TransNet have reported exceptional metrics
(accuracy = 99.97%, AUC = 0.98) on benchmark
datasets, illustrating how architectural efficiency can
drive strong results; however, scalability and real-
time integration still require engineering solutions
[3]. Hybrid transformer—-CNN designs also feature
prominently. A dual-track feature fusion model
combining a Swin Transformer with Group Shuffle
Residual DeformNet achieved over 98% accuracy
and improved feature representation, but raised
questions around interpretability and deployment
complexity [5]. Capsule networks have also emerged
as a promising tool for preserving part-whole
relationships in lesion patterns. Mathew et al. [7]
proposed a depthwise-separable VGG19 combined
with Capsule Network and ensemble activations for
bell pepper and grape leaf disease classification,
balancing computational efficiency with spatial-
awareness capabilities and demonstrating strong
cross-crop  performance. Data  augmentation
techniques, particularly those using GANSs, have been
employed to mitigate class imbalance. DCGAN-
augmented CNN training has shown improvements in
minority-class recall, though researchers caution that
synthetic image quality must be closely monitored to
avoid introducing  artifacts. Metaheuristic
optimization is another active area, with strategies
like Hybrid Sparrow Search & Slime Mould
Algorithm (HSMSSA) and Hyperband applied for
hyperparameter tuning, yielding modest gains in
accuracy and convergence stability. Adaptive
preprocessing—such as hybrid segmentation
combined with metaheuristic optimization—nhas also
been reported to enhance robustness, albeit with
increased preprocessing complexity [6]. Beyond

RGB imaging, hyperspectral and multispectral
methods provide access to biochemical information
invisible to standard cameras. Estrada et al. [8]
demonstrated the potential of early stress detection
using such data, though current adoption is hindered
by hardware costs and complex signal processing
requirements. Consequently, many recent works
focus on improving RGB-based models through
augmentation, GANs, and domain adaptation to
achieve  lightweight,  field-ready  solutions.
Despite the impressive metrics reported, common
challenges persist: (1) dataset bias and insufficient
environmental diversity, (2) risk of overfitting in
small or curated datasets, (3) limited cross-dataset
validation, and (4) narrow disease coverage in many
detection frameworks. These limitations motivate
integrated solutions that combine robust feature
extraction (e.g., Swin Transformer), generative
augmentation (e.g., DCGAN), and advanced
classification modules (e.g., Attention-Gated Capsule
Networks) to improve early-stage detection
sensitivity while maintaining strong generalization in
real-world vineyard conditions. The application of
deep learning as well as hybrid techniques for the
identification of diseases on grape leaves has been
widely investigated. Table 1 depicts several recent
contributions, their inferences and weaknesses in
their methodologies. As the results indicate, most of
the architectures with reported good performance, as
YOLO-based detectors, MobileNet-based
architectures, or Transformer-based models, still
have restrictions for application under the diverse
conditions found in the vineyard. The limitations of
this approach, including narrow disease coverage,
overfitting on curated datasets, and very high
computational resource requirements highlight the
need for a robust, generalizable solution.

2. Methodology

The framework proposed for the detection of grape
leaf diseases is a deep learning pipeline composed by
stages of data augmentation, feature extraction and
classification which has been shown to be highly
performance both in balanced and imbalanced dataset
situations. A summary of the sequential workflow of
the proposed pipeline is shown in Algorithm 1 and as
a block diagram in Fig. 2.
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2.1. Dataset Description
The experimental study employed the Niphad Grape
Leaf Disease Dataset (NGLD), comprising 2,726
high-resolution grape leaf images categorized into
four classes:

Bacterial Rot — 100 images

Downy Mildew — 996 images

Healthy Leaves — 1,254 images

Powdery Mildew — 406 images

The dataset presents grape leaves with varying
developmental stages and disease severities, in-field
conditions. Factors such as lighting, background
complexity, and leaf orientation are not controlled,
and thus the images also contain realistic variation
representative of real-world vineyard settings. This
variability ultimately leads to a training of models on
this dataset better fitted to generalize when exposed
to real agricultural scenarios.

2.2. Synthetic Data Generation using DCGAN
The class imbalance problem—particularly the
scarcity of Bacterial Rot and Powdery Mildew
samples—was addressed using a Deep Convolution
Generative Adversarial Network (DCGAN). The
DCGAN synthetic image generation workflow is
shown in Figure 3

e Generator: Learned to produce realistic
grape leaf images from 100-dimensional
Gaussian noise vectors using transposed
convolutional layers and ReLU activations.

e Discriminator: Distinguished between real
and synthetic images using convolutional
layers with LeakyRelL U activations.

Training:

e Class-wise training was conducted separately
for Bacterial Rot, Downy Mildew, and
Powdery Mildew classes.

e Each class trained for 50 epochs using the
Adam optimizer (learning rate = 0.0002, B1 =
0.5).

e OQutput images were saved every epoch,
resulting in synthetic datasets that balanced
all disease classes with respect to Healthy
Leaves.

e The augmented dataset after DCGAN
generation contained an equal number of
images per class, enabling more stable and

unbiased training in subsequent stages.

2.3. Dataset Merging and Preprocessing
To address class imbalance in the NGLD dataset—
particularly for Bacterial Rot and Powdery Mildew—
synthetic images generated via DCGAN (Section 4.2)
were merged with real images to create a balanced
dataset across all four categories, including Healthy
Leaves.
Workflow:

e Class-wise Directory Structure: Organized
into  PyTorch-compatible  folders  per
category; synthetic images labeled with a
“fake ” prefix for traceability.

e Image Resizing: All images resized to
224x224 (Lanczos interpolation) to match
Swin Transformer input while preserving
disease-specific features.

e Color Normalization: Converted to RGB and
normalized using dataset-derived mean and
standard deviation values to minimize
lighting variations.

e Data Integrity Checks: Removed unreadable,
corrupted, or duplicate images to ensure
dataset quality.

e Balanced Composition: Minority classes
were upsampled to match Healthy Leaves,
preventing bias during training.

e Rationale: Standardized dimensions improve
computational efficiency, color normalization
enhances feature extraction stability, integrity

checks ensure reliability, and balanced
classes improve robustness in disease
recognition.

2.4. Feature Extraction with Swin
Transformer

To capture fine-grained leaf textures and broader
contextual cues, we used a Swin Transformer pre-
trained on ImageNet. Images were first split into 4x4
patches and processed through a hierarchical shifted-
window attention mechanism, enabling the model to
learn both local and long-range dependencies. The
network produced 1024-dimensional feature vectors,
which were reduced to 768 dimensions via a fully
connected layer for compatibility with the AGCapNet
classifier. Global Average Pooling (GAP) was
applied to ensure fixed-length representations. These
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768-D embeddings were extracted for every image in
the merged dataset and stored for the classification
stage.

2.5. Classification  with  Attention-Gated

Capsule Network (AGCapNet)
The third step was to classify the 768-D features
using AGCapNet, a hybrid attentional model
comprised of attention models and capsule networks.
This design maintains spatial relationships of features
while highlighting portions of the leaf characteristic
of disease symptoms, in order to distinguish early
infections from background noise. Key Components:

e Attention Block (attn_fc): Learns feature
importance weights using fully connected
layers and applies them to emphasize disease-
specific patterns.

e Capsule Block (caps_fc):  Converts
attention-weighted features into 256-D
capsules, preserving orientation and spatial
configuration of symptoms.

e Classifier: Maps capsule outputs to four
classes—Bacterial Rot, Downy Mildew,
Healthy, and Powdery Mildew—using a
Softmax layer for  probability-based
predictions.

Training Setup:

Loss: Cross-entropy

Optimizer: Adam (LR = 1x107%)

Batch Size: 32

Epochs: 10

Regularization: Dropout (0.2) in attention and
capsule blocks

Advantages:

e Focuses on disease-relevant regions while
ignoring irrelevant background.

e Maintains spatial orientation of symptoms for
robust detection.

e Delivers higher recall for underrepresented
diseases through attention-guided learning
and balanced data.

e Modular design suitable for other crop disease
detection tasks.

2.6. Evaluation Metrics

Pipeline  DCGAN-Swin Transformer—AGCapNet
was assessed employing several classification
metrics to make sure the pipeline reliably detected

diseases in vineyards.
e Confusion Matrix: Offered a class-wise
summary of accurate and inaccurate
predictions and some frequent mislabelings

(ex: Bacterial Rot labeled as Powdery
Mildew).

e Accuracy: General ratio of correct
predictions; is supplemented with other
measures in order to deal with class
imbalance.

e Precision: The ratio of  positive

identifications to all positive samples, which
minimizes false positives and spare treatment.
Algorithm 1: GrapeLeafDiseaseDetection
(D, E_GAN, E_train)
# Step 1: Dataset Preparation
Resize all imagesin D to R
4:  Normalize pixel values to [0, 1]
Split D into Train_Set and Test_Set (80:20)
# Step 2: Data Augmentation using DCGAN
For each class c in {Bacterial Rot, Downy Mildew,
and Powdery Mildew} do
Initialize Generator G and Discriminator D_net
For epoch =1to E_GAN do
Sample random noise z
x_fake «— G (z)
Train D_net on real images x_real and fake images
x_fake
Train G to minimize Discriminator loss
End For
Save generated images for class ¢
End For
# Step 3: Feature Extraction using Swin Transformer
Load pre-trained Swin Transformer model
For each image in (Train_Set U Test_Set) do
Extract 768-dimensional feature vector f_i
End For
# Step 4: Classification using AGCapNet
Initialize AGCapNet model with attention gates and
capsule layers
For epoch =1 to E_train do
Train AGCapNet on training feature vectors {f i}
Update weights using Adam optimizer
End For
# Step 5: Model Evaluation
Predict labels for Test_Set
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Compute Accuracy, Precision, Recall, Specificity,
and F1-score

Plot Confusion Matrix and ROC Curve

Return predicted labels and evaluation metrics

End Procedure

e Recall (Sensitivity): Fraction of true positive
detected; important to identify early stages of
the disease.

e F1-Score: Harmonic mean of precision and
recall; useful with imbalanced dataset.

e Specificity: True positives on healthy leaves;
avoids over-treatment.

e AUC-ROC: assessed the capability of the
model to discriminate between diseased and
healthy leaves at different threshold values.
AUC values were class-wise and overall.

e Macro & Weighted Averages: Ensured fair
performance evaluation across all classes,
accounting for imbalance.

e These metrics were chosen to balance high
sensitivity (early detection) with high
specificity (reducing false alarms), ensuring
practical deployment in real vineyards.

Computational Setup
Platform: Google Colab
Hardware: Intel Xeon CPU, 12 GB RAM
Frameworks: PyTorch, TIMM, Scikit-learn
Execution Times: Dataset merging (~10.6 s), feature
extraction (~1932.45 s), AGCapNet training
(~18.665)
3. Results and Discussion

3.1. Experimental Setup
The proposed approach was evaluated on the Niphad
Grape Leaf Disease Dataset (NGLD), consisting of
2,726 real grape leaf images across four classes:
Bacterial Rot (100), Downy Mildew (996), Healthy
Leaves (1,254), and Powdery Mildew (406). Data
augmentation was applied using DCGAN for the
three disease classes (Bacterial Rot, Downy Mildew,
and Powdery Mildew) to address class imbalance,
while the Healthy class remained unaltered. The
augmented dataset was merged and resized to 224 x
224 pixels before feature extraction. Feature
extraction was performed using a Swin Transformer
(base, patch4, window?7, 224) pretrained on
ImageNet, producing 1,024-dimensional vectors,

which were reduced to 768 dimensions via a fully
connected layer. These features were used as input to
the proposed Attention-Gated Capsule Network
(AGCapNet) for classification. The model was
trained for 10 epochs using the Adam optimizer
(learning rate 1e-4) and evaluated with an 80/20 train-
test split, stratified by class.

3.2. Quantitative Performance
The classification report and confusion matrix (Table
2, Figure 4) show that the proposed framework
achieved 96% overall accuracy, with high per-class
precision, recall, and F1-scores. The confusion
matrix shows minimal misclassification, with the
most errors occurring between Downy Mildew and
Powdery Mildew, likely due to their similar lesion
patterns at early stages.

3.3. Sensitivity, Specificity, and AUC
Sensitivity (recall) and specificity were computed to
better assess the model’s medical-diagnostic
reliability:

Sensitivity (average): 0.94

Specificity (average): 0.98

Macro AUC: 0.97 (disease vs. healthy binary
classification)

These values demonstrate the model’s strong
capability for early disease detection, minimizing
false negatives (high sensitivity) while maintaining
very low false positives (high specificity). Sensitivity
and Specificity performance of each class in
presented in fig 5.

3.4. Impact of DCGAN Augmentation
Before augmentation, the dataset was highly
imbalanced, with Bacterial Rot comprising only
~3.6% of samples. DCGAN generated synthetic
images to balance disease class representation,
enabling the model to learn richer feature
representations for minority classes. This was
particularly beneficial for Bacterial Rot and Powdery
Mildew, whose F1-scores improved significantly
compared to baseline models trained without
augmentation in prior studies. As shown in Figure 6,
the DCGAN was able to produce realistic images of
the three intended grape leaf diseases Downy
Mildew, Bacterial Rot, and Powdery Mildew. These
synthetic samples are similar to symptomatic leaves
in terms of visual patterns of diversity and symptom
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variation. The inclusion of these types of images in
the dataset provides the model with an improved
capacity to generalize beyond varying levels of
symptom severity and environmental conditions in
order to classify images.

3.5. Comparative Analysis
Compared to conventional CNN-based grape leaf
disease classifiers, the proposed DCGAN + Swin
Transformer + AGCapNet pipeline achieved a
substantial performance boost, particularly in early
detection scenarios. While baseline CNN models
(~2024) typically achieve accuracies in the 88-92%
range, their performance tends to degrade in the
presence of small lesion areas or in minority classes
due to limited feature diversity and poor spatial
feature preservation [4][6]. The proposed system
outperformed EfficientNet-BO (93.05% accuracy),
VGG19 (91.15%), and ResNet50 (92.38%) by an
absolute margin of +2-5% in accuracy, and similar
gains were observed in precision, recall, and F1-score
metrics [3], [5], [7]. Table 3 compares different
current methods of grape leave disease detection with
the suggested DCGAN-Swin  Transformer—
AGCapNet method. The table presents an outline of
each method and its process, their main implications
found in the practice of them, and some of their major
limitations to their actual use. This defined contrast
works on illustrating the newness and benefits of the
proposed method for the aspects of dataset
augmentation, feature extraction, and robustness of
classification ~ under  varying  environmental
conditions. Key differentiators of the proposed
approach include:

3.5.1. Enhanced Data Diversity via DCGAN
Traditional CNN-based systems rely heavily on
manual data augmentation (flip, rotation, scaling),
which offers limited variability [4]. The use of
DCGAN in our pipeline generated class-specific
synthetic images for Bacterial Rot, Downy Mildew,
and Powdery Mildew, enriching the dataset with
realistic lesion variations and helping the model
generalize to unseen patterns [7].

3.5.2. Transformer-Based Global Context
Modeling
The Swin Transformer extracts multi-scale

hierarchical features with a strong global context

understanding, enabling early recognition of subtle
discolorations or texture irregularities that often
indicate pre-symptomatic disease stages [5]. This
contrasts with CNNSs, which primarily focus on local

receptive fields and can miss long-range
dependencies [6].
3.5.3. Capsule  Network  for  Spatial

Relationship Preservation
AGCapNet incorporates an attention-guided capsule
structure, which preserves spatial relationships
between leaf structures and lesion regions. This is
critical for differentiating between diseases that
present with visually similar lesion patterns but differ
in spread direction, shape, or location [7].

3.5.4. Superior Early Detection Capability
Early-stage lesions often occupy <10% of the leaf
area and have low contrast against healthy tissue [1].
The proposed hybrid model's combination of
attention mechanisms and capsule routing enables it
to prioritize such lesion areas, thereby detecting
diseases earlier than conventional CNN pipelines [3],
[9].

3.5.5. Balanced Computational Efficiency
While transformer-based models are often
computationally expensive, using Swin Transformer
(small variant) combined with feature-level fusion in
AGCapNet kept the compute cost at a medium level,
suitable for real-time field deployment on moderate
GPU hardware [4], [5].

3.6. Discussion
The experimental results validate the effectiveness of
the proposed framework for early grape leaf disease
detection. The combination of DCGAN
augmentation, Swin Transformer features, and
AGCapNet classification ensures both accuracy and
robustness in challenging field conditions. The high
AUC value reflects strong binary discrimination
between healthy and diseased leaves, essential for
precision agriculture applications where early
intervention can prevent significant yield loss [1], [3].
While performance is high, certain challenges remain
— specifically, differentiating between visually
similar mildew diseases at early symptom stages [7],
[5]. Future work may integrate hyperspectral data or
multi-view leaf imaging to further improve
discrimination capability [8]. Figure 7 shows the
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ROC curve resulting from the model’s ability to —

discriminate between diseased and healthy grape images |—
leaves. Notably, the AUC score reaches 1.00,
demonstrating almost perfect discrimination power.
The high sensitivity at the various levels of specificity | ., ————ff :
indicates the capability of identifying diseased
samples with low false positive detection, which is an
optimal characteristic for a model that is used for
early intervention in disease management of the =~ | —r
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Table 1 Summary of Recent Grape Leaf Disease Detection Approaches, Highlighting Methodologies,
Inferences, And Drawbacks

S(‘J Reference Methodology Inferences Drawback
YOLO-based detection of | Achieved strong localization Limited to two disease
iani et owny and powdery in clear conditions; classes; struggles to
[1] Ghiani d d d incl diti | |
1. al., 2025 mildew using RGB highlighted the need for generalize in varied
vineyard images dataset diversity environments
. Demonstrated high precision .
[2] Mamun et YOLOv8-based mc_)blle app and recall: proved the Tested .on a I|m|tc_ad set 01_‘
9 for grape leaf disease S . diseases; lacks validation in
: al., 2025 . feasibility of mobile . .
detection diverse real-world scenarios
deployment
. obileNetV3-Large wit elivered highly ossible overfitting; limite
[4] Karim et MobileNetV3-L ith Delivered highl Possibl fitting; limited
3 al. 2024 Grad-CAM for edge device interpretable results with evaluation in uncontrolled
' B deployment clear lesion localization field conditions
[3] Mathew DSC-TransNet (depthwise Provided excellent Real-time robustness under
4 et al. 2025 separable CNN) for real- classification performance; heterogeneous conditions
' B time classification suitable for handheld devices remains unproven
[5] Karthik et Swin Transformer + Group Offered improved feature Computationally expensive;
5 al. 2024 Shuffle Residual representation through dual- interpretability remains a
' B DeformNet track fusion challenge
Depthwise-separable . .
Muates | VGGIS+Caple | oo conpuaiong | Reduie et copule
6. et al., 2025 Network + ensemble )gwareness gsp dg, o n?ent
activations ploy
] o
Naveenkumar Adaptive hybrid Enhanced robustness and Involves complex
7 & segmentation + classification consistency in preprocessing; extended
' Nandagopal, | metaheuristic optimization variable conditions training times
2025
[8] Estrada et Hyperspectral/multispectral | Detected subtle biochemical | Requires costly hardware and
8 al. 2025 imaging for early stress and structural changes before sophisticated signal
' B detection visible symptoms processing
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Conclusion and Future Scope

This study introduced a robust pipeline for early
grape leaf disease detection, combining DCGAN-
based synthetic augmentation, Swin Transformer
feature extraction, and an Attention-Gated Capsule
Network (AGCapNet) classifier. DCGAN addressed
dataset imbalance by generating realistic synthetic
images for minority disease classes, while the Swin
Transformer extracted rich global-local features. The
AGCapNet further enhanced performance through
attention-driven refinement and capsule-based spatial

accuracy,

preservation. The proposed model achieved 96.87%
outperforming CNN-based baselines
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(VGG19, ResNet50, and EfficientNet-B0O) by +2—
5%, with better generalization to minority classes and
improved early detection capability. ROC-AUC
analysis confirmed its strong discriminative ability
for disease-vs-healthy classification. These results
demonstrate the synergy of transformer-based
context modeling and capsule-based fine-grained
lesion representation, making the model a reliable
decision-support tool for viticulture. This framework
can be extended by integrating real-time deployment
on mobile/loT devices, fusing multimodal imaging
(RGB, hyperspectral, thermal), and incorporating
explainable Al technigues to enhance transparency
and adoption. Expanding datasets across regions and
grape varieties will further improve robustness and
adaptability to real-world vineyard conditions.
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