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Abstract 

The modern healthcare systems consider the secure transmission and storage of medical images as vital 

because of the sensitivity of patient data and the strict privacy regulations. This paper presents a secure and 

reversible RGB medical image scrambling and encryption scheme that aims to defend diagnostic images from 

unauthorized access, while, guaranteeing the integrity of the data. A 512- bit master key is generated through 

the memory-hard Argon2i algorithm which makes the system extremely resistant to brute-force and dictionary 

attacks. Domain-separated subkeys are generated using master key via AES in counter (CTR) mode.  These 

subkeys are utilized at confusion and diffusion stages of the encryption and decryption process. The image 

confusion is performed with the use of a Fisher-Yates permutation which is controlled by cryptographically 

secure keystreams thereby disrupting spatial pixel relationships. The diffusion is done at both single colour 

channel and total colour channel levels utilizing a feedback-based mechanism that combines XOR operation, 

modular addition, and bit-level permutation. Both confusion and diffusion process ensures a strong avalanche 

effect across the entire image. Performance analysis shows that the proposed method provides an effective 

balance between security and computational efficiency, making it suitable for secure storage and transmission 

of medical images in telemedicine and healthcare information systems. 

Keywords: AES-CTR; Argon2i; Feedback-Based Diffusion; Medical Image encryption; Medical Image 

scrambling. 

 

1. Introduction  

Healthcare systems are experiencing a rapid shift 

toward digital technologies. As part of this 

transformation, medical imaging has become central 

to clinical practice, with widespread use of 

endoscopic imaging, magnetic resonance imaging 

(MRI), computed tomography (CT), ultrasound, 

treatment planning, and long-term storage of patient 

records. These digital images play a vital role in 

supporting clinical decision-making. However, their 

increasing use has also introduced significant 

concerns related to data security and patient privacy. 

Unauthorized access, modification, or manipulation 

of these images constitutes a serious breach of 

privacy and may result in misdiagnosis, 

compromised treatment decisions, or legal 

consequences. For these reasons, protecting medical 

images has become an essential requirement in 

modern healthcare environments. Ensuring 

confidentiality, integrity, and authenticity during 

both storage and transmission is now a critical 

component of medical information systems. 

Conventional cryptographic techniques, which were 

primarily developed for text-based data, are not 

always suitable for securing medical images, because 

medical images are typically large in size and exhibit 

high redundancy and strong spatial correlation 

between adjacent pixels. Even a minimal loss or 

distortion of image details can adversely affect 

diagnostic accuracy. This has led to the development 

of image-specific encryption techniques. Confusion 

and diffusion is one of the image scrambling 

techniques used to effectively disrupt pixel 
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relationships in images to prevent the unauthorized 

interpretation of the image [12]. 

1.1. Literature Review 

There has been a lot of research on scrambling-

diffusion image encryption schemes, and the majority 

of these schemes rely on chaos for their pseudo-

randomness. The initial surveys point out that chaos 

maps are very effective in image scrambling and 

encryption [1]. The chaotic image scrambling 

techniques such as those based on the Josephus cycle 

[13, 14], logistic map [23], Rossler system [21], and 

hyper-chaotic systems with multiple control 

parameters [15, 16] have been proposed for securing 

the images using chaos map features. Moreover, 

some researchers have researched on of employing 

DNA encoding and molecular mutation concepts as 

image encryption to increase the security level. 

Among the methods are double scrambling combined 

with DNA row–column operations [2], DNA-based 

key scrambling [3], multi-stream scrambling with 

DNA encoding [4], and closed-loop diffusion with 

DNA mutation [5]. They've paved the way for a 

significant resistance against the two most common 

attacks, namely statistical and differential ones. Also, 

medical-image encryption systems employing hyper-

chaotic systems and DNA coding are reported to have 

very strong security performance for sensitive 

clinical data [6,25,26]. Additionally, biologically 

inspired approaches such as protein-chain-based 

cryptography have been explored to enhance 

cryptographic complexity [17]. At the same time, 

lightweight and block-based encryption algorithms 

were created to solve the problem of limited 

resources in IoT and telemedicine applications. These 

algorithms includes the multi-round confusion-

diffusion cryptosystems [7], and spatio-color 

scrambling techniques compatible with JPEG [8],  

device-constrained color image encryption [9], 

chaos-based encryption combined with JPEG 

compression [10]. More advanced designs 

incorporate complex network scrambling and multi-

directional diffusion [11], bit-level encryption with 

fully connected networks [12], and hyper-chaotic 

self-adaptive diffusion mechanisms [18]. New 

inventions in image security research have targeted 

deep learning, diffusion models, and hybrid 

encryption–compression frameworks as recent 

trends. These include diffusion-model-based image 

protection [28,29], deep-learning-assisted block-

scrambling encryption for remote sensing images 

[30], CNN-assisted scrambling and steganography 

[31], and robust compression–encryption using 

scrambled block sampling [19].  

1.2. Research Gap 

Although there are a variety of image encryption 

methods available, there are still some limitations that 

can be highlighted. A lot of chaos-based algorithms 

are dependent on floating-point arithmetic, which 

makes these algorithms subject to the limitations of 

precise representation of numbers, numerical 

instability, and behavior that is dependent on the 

specific implementation. All these things can cause a 

reduction in the size of the possible key space and the 

ability to reproduce the results. Another problem is 

that a lot of schemes directly use user passwords or 

chaotic parameters as keys without proper key 

derivation methods, leaving them open to related-

key, dictionary, and brute-force attacks. Besides that, 

even though the DNA-based and hyper-chaotic 

methods provide a remarkable amount of nonlinearity 

and diffusion strength, they are still quite 

computationally expensive compared to other 

methods. In addition, some of the lightweight 

encryption methods provide low-security levels in 

order to be efficient while others provide high 

security but not fast enough for real-time 

applications.  All these drawbacks call for an 

encryption framework for medical images that is not 

only cryptographically secure but also efficient and 

lossless, and at the same time incorporates image-

specific operations together with modern key 

management techniques. 

1.3. Objectives 

To address the above research gaps, this research 

aims to develop a secure, lossless, and efficient 

medical image encryption scheme that integrates 

modern cryptographic techniques with image-

oriented confusion and diffusion mechanisms. The 

specific objectives of this research are as follows: 

 To design a robust password-based master 

key generation using argon 2i, a password-
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based key derivation function to resist brute-

force and side channel attacks. 

 To derive independent, domain-separated 

subkeys from the master key using HKDF 

(HMAC-based Key Derivation Function) 

with SHA-256 for using different keys for 

confusion and diffusion stages. 

 To implement a pixel position scrambling 

method – confusion stage - for eliminating 

spatial correlations in medical images by 

using a secure permutation method. 

 To develop a multi-stage diffusion 

framework, including channel-wise and 

combined RGB diffusion with nonlinear 

feedback and bit-level permutation, so that a 

strong avalanche effect can be assured. 

 To guarantee perfect lossless decryption, to 

ensure diagnostic integrity and clinical 

reliability of medical images is preserved.  

2. Method  

This study is based on medical image scrambling, 

which involves scrambling medical images through 

confusion and diffusion processes.  

2.1.Relevant Knowledge 

2.1.1. Argon 2i and HKDF-Based Key 

Derivation 

The proposed image encryption technique uses 

Argon2i and HKDF-Based Derivation mode for 

Master key and 5 Sub keys generation. Argon2i is a 

memory-hard password hashing function. It is 

designed for strong defense against side-channel 

attacks, making it ideal for key derivation [32, 33]. It 

generates master key based on the password provided 

by the user and a randomly selected salt.  

General form  

Argon2i(password, salt, time_cost, memory_cost, 

parallelism, hash_length) 

Parameter Description 

 password: User provided password 

 salt: Random value combined with password 

to improve security 

 time_cost (t): Number of iterations over 

memory  

 memory_cost (m): Amount of memory used, 

typically in kilobytes  

 parallelism (p): Number of parallel lanes or 

threads  

 hash_length (l): Desired length of the output 

key in bytes 

The addition of a random salt ensures that even two 

perfectly matching passwords will not yield the same 

master keys, thus stopping the precomputation and 

rainbow-table attacks. In the process of using 

Argon2i, a constant 256-bit master key is produced. 

HMAC-based Key Derivation Function (HKDF) is 

used to create a number of domain separated subkeys 

that are independent from each other and derived 

from master key. 

General Form 

hkdf = HKDF(hash, length, salt,info) 

subkey = hkdf.derive(master_key) 

HKDF Parameters 

 hash : underlying hash function. We used 

SHA256 as its collision resistance and 

pseudorandom properties ensure secure key 

expansion. 

 length: 
Specifies the length (in bytes) of the derived 

subkey. In this project, a 32-byte (256-bit) 

output is used for all cryptographic keys. 

 salt = None: 
When no salt is provided, HKDF uses an 

implicit zero-valued salt. This is acceptable in 

this design because the input key material (the 

Argon2i-derived master key) already has high 

entropy and includes a salt from the Argon2i 

stage. 

 info: 
The info parameter is a context-specific 

identifier used for domain separation. The 

info parameter is used to derive distinct 

subkeys for different stages of the encryption 

algorithm as given below, 

Kc   = HKDF(master_key, info = "confusion") 

2.1.2. AES in Counter (CTR) Mode 

AES in Counter (CTR) mode is a symmetric-key 

encryption mode that transforms the Advanced 

Encryption Standard (AES) block cipher into a 

stream cipher. AES can be initialized in Counter 

(CTR) mode using a user-specified key and nonce. 

This construction transforms AES into a stream 
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cipher capable of generating a cryptographically 

secure keystream. The keystreams generated using 

AES-CTR act as pseudorandom sequences which are 

using in confusion and diffusion phases [34]. In this 

research, a counter object is created with a total size 

of 64 bits and is initialized with an explicit nonce as 

its prefix. The nonce occupies the most significant 64 

bits of the input block, while the remaining 64 bits are 

used as an incrementing counter starting from zero. 

This results in a 128-bit input block, which matches 

the AES block size. Formally, each counter block 

input to AES is constructed as: 

 Input_block_i = nonce || counter_i 

 where counter_i is a 64-bit integer that 

increments sequentially for each block, and || 

denotes concatenation. 

The AES encryption function is then applied to each 

input block using the secret key to generate a 

keystream block. The resulting keystream is used for 

encryption or decryption by XORing it with the data 

stream. The explicit use of a nonce ensures that each 

AES-CTR instance produces a unique keystream, 

even when the same key is reused.  

2.1.3. Fisher–Yates algorithm 

In the proposed image encryption algorithm, the 

Fisher–Yates permutation is employed during the 

confusion phase to achieve strong spatial scrambling 

of image pixels. The Fisher–Yates algorithm 

generates a uniformly random permutation of a finite 

sequence. The following operations performed for 

the Fisher–Yates Permutation 

 The input image is flattened into a one-

dimensional array to allow global 

permutation across all pixel positions. 

 Random indices for the permutation are 

derived from an AES-CTR–based keystream, 

providing cryptographically secure 

randomness. 

 A unique nonce is used to initialize AES-

CTR, ensuring permutation uniqueness across 

encryption sessions. 

 Rejection sampling is applied during index 

selection to eliminate modulo bias and 

guarantee uniform distribution. 

 During each iteration of the algorithm, a 

random index is selected from a shrinking 

range and swapped with the current element. 

 The resulting permutation vector is stored as 

encryption metadata and inverted during 

decryption to recover the original pixel 

ordering. 

2.2.Encryption Process 

Encryption of image is achieved by conducting 

experiments on the endoscopic tested medical 

images.  These images are center-cropped to a square 

region and resized to 256X256 pixels using bicubic 

interpolation. The following procedure is followed 

during the process. 

2.2.1. Generation of master and sub key 

Step 1. Salt Generation 

 A 128-bit random salt is generated using a 

cryptographically secure random number 

generator: 

 salt ∈ {0,1}^128 

 The salt ensures that identical passwords 

result in distinct master keys and provides 

resistance against precomputation and 

rainbow-table attacks. The salt is stored as 

part of the encryption metadata. 

Step 2. Master Key Derivation 

 Using the input password and the generated 

salt, a master key is derived through a 

memory-hard key derivation function: 

 master = Derive_Master_Key(password, salt) 

 This function applies Argon2i with fixed 

time, memory, and parallelism parameters to 

produce a 256-bit master key.  

Step 3. Domain-Separated Subkey Derivation 

 From the master key, multiple independent 

subkeys are derived using a key derivation 

function with domain separation. 

 Kc = Derive_Subkey(master, "confusion") 

Kr = Derive_Subkey(master, "diffusion-R") 

Kg = Derive_Subkey(master, "diffusion-G") 

Kb = Derive_Subkey(master, "diffusion-B") 

Krgb = Derive_Subkey(master, "diffusion-

RGB") 

 Image encryption is done in two phases: The 

Confusion Phase (Phase 1) and the Diffusion 

Phase (Phase 2). 
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2.2.2. Phase 1- Confusion Phase 

During the confusion phase, a Fisher–Yates 

permutation is constructed based on the total pixels 

of the image. The following steps are followed. 

Step 1. Nonce generation 

 A nonce is generated randomly  

 perm_nonce ∈ {0,1}^64 

 This nonce ensures that a unique permutation 

is produced when the same key is reused and 

it will be stored as part of the encryption 

metadata 

Step 2. AES-CTR Initialization 

 Using the confusion subkey Kc and the 

generated nonce perm_nonce, an AES cipher 

is initialized in counter (CTR) mode: 

 cipher = AES_CTR(Kc, perm_nonce) 

Step 3. Permutation Array Initialization 

for i = 0 to n − 1 

perm[i] = i,  

where n denotes the total number of image elements 

(n = image.size). 

Step 4. Keystream Buffering 

 To improve computational efficiency, a 

fixed-size keystream buffer is generated by 

encrypting a zero-filled byte array: 

 BUFFER_SIZE = 1024 × 16 bytes 

buffer = AES_CTR(Kc, perm_nonce, 

BUFFER_SIZE) 

Step 5. Fisher–Yates Shuffle with Rejection 

Sampling (To perform shuffling as shown in 

Figure 1) 

For each index i from n − 1 down to 1 

“A 32-bit random value is extracted from the 

keystream buffer:” 

rnd = buffer[offset : offset + 4] 

“To eliminate modulo bias, the extracted random 

value is accepted only if it satisfies the condition. If 

the condition is not met, the value is discarded and a 

new random value is drawn.” 

rnd < 2^32 − (2^32 mod (i + 1))   (1) 

“Once an acceptable random value is obtained, an 

unbiased index j is computed as” 

j = rnd mod (i + 1)     (2) 

“The elements at positions i and j in the permutation 

array are swapped” 

perm[i] ↔ perm[j]    (3) 

Step 6. Image Flattening 

The input image is first converted into a one-

dimensional array to enable global permutation 

across all pixel positions: 

 image_flat = flatten(image) 

Step 7. Permutation Application 

The flattened image is permuted using the generated 

permutation vector perm as follows: 

for i = 0 to n – 1 

confused_flat[i] = image_flat[perm[i]] (4) 

where n denotes the total number of elements in the 

image. Figure 1 shows Confusion stage. (a) Pixel 

Positions Before Confusion. (b) Pixel Positions After 

Confusion 

Step 8. Image Reshaping  

The permuted one-dimensional array is reshaped 

back into the original image dimensions to obtain the 

spatially confused image: 

Ic = reshape(confused_flat, shape(image)) (5) 

 

 
Figure 1 Confusion stage. (a) Pixel Positions 

Before Confusion. (b) Pixel Positions After 

Confusion 

 

2.2.3. Phase 2- Diffusion Phase 

After confusion, diffusion is done on confused image 

in two stages: one on a channel-wise diffusion and 

another on the diffusion of the whole RGB channels 

at once. For channel-wise diffusion, the red, green, 

and blue channels are processed independently. Each 

channel employs a unique AES-CTR keystreams 

generated using its corresponding subkey and nonce. 

The detailed steps of diffusion can be described as 

follows 

Step 1.   

The confused image – Ic - is decomposed into its 

three color channels as follows: 
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R = Ic(:,:,1) 

G = Ic(:,:,2) 

B = Ic(:,:,3) 

Step 2. 

Using the corresponding diffusion keys Kr, Kg, and 

Kb, independent AES-CTR keystreams are generated 

for each channel. The keystream generation is 

defined as: 

 

ksR = AES_CTR(Kr, r_nonce, |R|) 

ksG = AES_CTR(Kg, g_nonce, |G|) 

ksB = AES_CTR(Kb, b_nonce, |B|) 

 

where |R|, |G|, and |B| denote the number of pixels in 

the respective channels. 

Step 3. 

Build lookup table using BIT_LUT function 

A fixed bit-permutation vector is defined as:  

perm = [2, 5, 1, 7, 0, 3, 6, 4]. 

A lookup table lut of size 256 is constructed 

for x ← 0 to 255 do 

        y ← 0 

        for i ← 0 to 7 do 

          “Extract the bit at position perm[i] from x” 

            bit ← (x >> perm[i]) AND 1  (6) 

            “Place this bit into position i of y” 

            y ← y OR (bit << i)   (7) 

        end for 

       “After processing all 8 bit positions, the resulting 

value y represents the bit-permuted version of x and 

is stored in the lookup table” 

        lut[x] ← y 

    end for 

This lut lookup table is used in process of diffusion 

operation of single and merged RGB channels 

Step 4.  

Each color channel is flattened into a one-

dimensional array. 

For a flattened channel X in {R, G, B}, the diffusion 

operation is performed sequentially as follows: 

u_i = x_i XOR k_i    (8)                                          

v_i = (u_i + k_i + y_(i-1)) mod 256          (9)                                          

y_i = BIT_LUT[v_i]                                       (10)                                          

with the initial condition: 

y_(-1) = 0. 

Here, x_i represents the i-th pixel of the flattened 

channel, k_i is the corresponding keystream byte, 

y_(i-1) is the previous encrypted output (feedback), 

and y_i is the encrypted output pixel. 

Step 5.  
The encrypted channels are merged to form the final 

encrypted image as: 

merged = stack(R', G', B'), 

where R', G', and B' denote the diffused red, green, 

and blue channels, respectively. 

To further enhance inter-channel diffusion, a final 

combined diffusion stage is applied. First, a new 

independent 64-bit random nonce is generated: 

           rgb_nonce ∈ {0,1}^64. 

Using the RGB diffusion key Krgb and the generated 

nonce, an AES-CTR keystream is produced: 

ksRGB = AES_CTR(Krgb, rgb_nonce, |merged|), 

where |merged| denotes the total number of elements 

in the merged RGB image. 

The merged image is then flattened into a one-

dimensional array: 

              m_i = flatten(merged), 

and encrypted using the same diffusion mechanism 

as: 

a_i = m_i XOR k_i           (11)              

    

b_i = (a_i + k_i + c_(i−1)) mod 256          (12) 

   

c_i = BIT_LUT[b_i]           (13) 

    

with the initial condition: 

c_(−1) = 0, 

where k_i denotes the i-th byte of ksRGB and 

BIT_LUT is the bit-permutation lookup table. 

Finally, the diffused output is reshaped back to the 

original image dimensions to obtain the final 

encrypted image: 

final = reshape(m_i, shape(merged)). 

Final encrypted image, all nonces used in the 

encryption process, and the salt is retained as part of 

encryption metadata. 

Algorithm for the Encryption of Image is as follows: 

_________________________________________ 

Algorithm 1. Encrypt_Image(image, password) 

    salt ← RandomBytes(16) 

    master ← Derive_Master_Key(password, salt) 
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    Kc   ← Derive_Subkey(master, "confusion") 

    Kr   ← Derive_Subkey(master, "diffusion-R") 

    Kg   ← Derive_Subkey(master, "diffusion-G") 

    Kb   ← Derive_Subkey(master, "diffusion-B") 

    Krgb ← Derive_Subkey(master, "diffusion-

RGB") 

 

    (perm, perm_nonce) ← 

Fisher_Yates_Permutation(size(image), Kc) 

 

    confused ← Image is permuted according to 

generated permutation 

 

    R ← confused image is decomposed into its red 

channel 

    G ← confused image is decomposed into its green 

channel    

    B ← confused image is decomposed into its blue 

channel    

 

    r_nonce ← RandomBytes(8) 

    g_nonce ← RandomBytes(8) 

    b_nonce ← RandomBytes(8) 

 

    ksR ← AES_CTR_Cipher(Kr, r_nonce, 

Length(R)) 

    ksG ← AES_CTR_Cipher(Kg, g_nonce, 

Length(G)) 

    ksB ← AES_CTR_Cipher(Kb, b_nonce, 

Length(B)) 

 

    BIT_PERM ← [2, 5, 1, 7, 0, 3, 6, 4] 

    BIT_LUT ← Build_LUT(BIT_PERM) 

 

    R ← Diffuse_Encrypt(Flatten(R), ksR, BIT_LUT) 

    G ← Diffuse_Encrypt(Flatten(G), ksG, BIT_LUT) 

    B ← Diffuse_Encrypt(Flatten(B), ksB, BIT_LUT) 

 

    merged ← Stack(R, G, B) 

 

    rgb_nonce ← RandomBytes(8) 

    ksRGB ← AES_CTR_Cipher(Krgb, rgb_nonce, 

Length(merged)) 

 

    cipher ← Diffuse_Encrypt(Flatten(merged), 

ksRGB, BIT_LUT) 

    return {cipher, perm, perm_nonce, r_nonce, 

g_nonce, b_nonce, rgb_nonce, salt} 

End Algorithm 

__________________________________________

______ 

Function Derive_Master_Key(password, salt) 

    master ← Argon2i( 

                password, 

                salt, 

                time_cost = 3, 

                memory_cost = 65536, 

                parallelism = 2, 

                hash_len = 32 

             ) 

    return master 

End Function 

__________________________________________

_____ 

 

Function Derive_Subkey(master, info) 

    key ← HKDF_SHA256(master, info, length = 32) 

    return key 

End Function 

__________________________________________

_____ 

 

Function AES_CTR_Cipher(key, nonce, L) 

    ctr ← InitializeCounter(64, nonce, 0) 

    cipher ← AES(key, mode = CTR, counter = ctr) 

    keystream ← Encrypt(cipher, ZeroBytes(L)) 

    return keystream 

End Function 

__________________________________________

_____ 

 

Function Fisher_Yates_Permutation(n, key) 

    perm ← [0, 1, 2, ..., n−1] 

    nonce ← RandomBytes(8) 

    keystream ← AES_CTR_Cipher(key, nonce, 

buffer_size) 

    for i ← n−1 downto 1 do 

        j ← UnbiasedRandom(keystream, i + 1) 

        swap(perm[i], perm[j]) 

    end for 

    return (perm, nonce) 
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End Function 

__________________________________________

_____ 

 

Function Build_LUT(perm[8]) 

    for x ← 0 to 255 do 

        y ← 0 

        for i ← 0 to 7 do 

            bit ← (x >> perm[i]) AND 1 

            y ← y OR (bit << i) 

        end for 

        lut[x] ← y 

    end for 

    return lut 

End Function 

__________________________________________

_____ 

 

Function Diffuse_Encrypt(arr, k, lut) 

    prev ← 0 

    for i ← 0 to Length(arr) − 1 do 

        x ← arr[i] XOR k[i] 

        x ← (x + k[i] + prev) mod 256 

        out[i] ← lut[x] 

        prev ← out[i] 

    end for 

    return out 

End Function 

__________________________________________

_____ 

 

2.3.Decryption Process 

 Image decryption is done in reverse order which 

consists of two phases: Diffusion Phase (Phase 1) and 

the Confusion Phase (Phase 2). 

2.3.1. Diffusion Phase 

The diffusion phase consists of successively undoing 

the combined RGB diffusion, the channel-wise 

diffusion. The following steps are followed during 

diffusion 

Step1.Key generation 

The encrypted metadata contains the cipher image, 

permutation, salt, and all nonces required for 

decryption. Using the input password and the stored 

salt, the master key is regenerated: 

master = Derive_Master_Key(password, salt) 

From the master key, the same set of subkeys used 

during encryption are re-derived: 

Kc = Derive_Subkey(master, "confusion") 

Kr = Derive_Subkey(master, "diffusion-R") 

Kg = Derive_Subkey(master, "diffusion-G") 

Kb = Derive_Subkey(master, "diffusion-B") 

Krgb = Derive_Subkey(master, "diffusion-RGB") 

These keys ensure cryptographic consistency 

between encryption and decryption. 

Step 2. Reverse Combined RGB Diffusion 

The cipher image is first processed to reverse the 

final combined RGB diffusion stage applied during 

encryption. 

Using the stored RGB nonce (rgb_nonce) and the 

RGB diffusion key Krgb, an AES-CTR keystream is 

generated as: 

ksRGB = AES_CTR(Krgb, rgb_nonce, |cipher|) 

The cipher image is flattened into a one-dimensional 

array and decrypted using the inverse diffusion 

process with the inverse lookup table  

BIT_PERM = [2, 5, 1, 7, 0, 3, 6, 4] 

INV_BIT_PERM = [0,0,0,0,0,0,0,0] 

for i ← 0 to 7 do 

        p ← BIT_PERM[i]   (14) 

        INV_BIT_PERM[p] ← I  (15) 

end for 

 

INV_BIT_LUT = Build_LUT( (INV_BIT_PERM)  

 

c_i = cipher_i 

b_i = INV_BIT_LUT[c_i]                        (16) 

a_i = (b_i − k_i − d_(i−1)) mod 256               (17) 

m_i = a_i XOR k_i    (18) 

with the initial condition: 

d_(−1) = 0 

Here, k_i denotes the i-th byte of ksRGB, and 

d_(i−1) represents the previous decrypted output 

used as feedback. 

The decrypted array is then reshaped back to the 

original image dimensions to obtain the merged 

RGB image: 

merged = reshape(m_i, shape(cipher)) 

Step 3. Reverse Channel-wise Diffusion 

The merged RGB image is decomposed into its 

three color channels: 

about:blank


 

International Research Journal on Advanced Engineering 

and Management 

https://goldncloudpublications.com 

https://doi.org/10.47392/IRJAEM.2026.0013 

e ISSN: 2584-2854 

Volume: 04 Issue: 01 

January 2026 

Page No: 075 - 093 

 

   

                        IRJAEM 83 

 

R = merged(:,:,1) 

G = merged(:,:,2) 

B = merged(:,:,3) 

using the stored nonces r_nonce, g_nonce, and 

b_nonce, AES-CTR keystreams are regenerated for 

each channel: 

ksR = AES_CTR(Kr, r_nonce, |R|) 

ksG = AES_CTR(Kg, g_nonce, |G|) 

ksB = AES_CTR(Kb, b_nonce, |B|) 

Each channel is flattened and decrypted 

independently using the inverse diffusion process: 

For a flattened channel X ∈ {R, G, B}: 

c_i = encrypted_pixel 

b_i = INV_BIT_LUT[c_i]                               (19) 

a_i = (b_i − k_i − d_(i−1)) mod 256                (20) 

x_i = a_i XOR k_i                                            (21) 

with the initial condition: 

d_(−1) = 0 

Here, x_i represents the recovered pixel value of the 

channel, k_i is the corresponding keystream byte, 

and d_(i−1) is the feedback term. 

After decryption, each channel is reshaped back to 

its original dimensions. 

Step 4. Channel Merging 

The decrypted red, green, and blue channels are 

merged to reconstruct the spatially confused image: 

merged = stack(R, G, B) 

2.3.2. Confusion Phase 

Reverse confusion phase restores the original spatial 

arrangement of the image pixels by applying the 

inverse of the permutation on the merged image 

generated in the previous stage. 

Step 1. Inverse Permutation Construction 
The encrypted metadata contains the permutation 

array perm that was used during the confusion stage 

of encryption. To reverse this operation, the inverse 

permutation array inv_perm is constructed such that 

each index is mapped back to its original position. 

The inverse permutation is computed as follows: 

for i = 0 to n − 1 

inv_perm[perm[i]] = I                              (22) 

where n denotes the total number of elements in the 

image. This operation ensures that inv_perm 

represents the exact inverse mapping of the original 

permutation perm. 

Step 2. Application of Inverse Permutation 

The spatially diffused image merged is first 

flattened into a one-dimensional array: 

merged_flat = flatten(merged) 

The inverse permutation is then applied to reorder 

the pixel elements back to their original positions: 

for i = 0 to n − 1 

original_flat[i] = merged_flat[inv_perm[i]]      (23) 

where n denotes the total number of elements in the 

image. 

Step 3. Image Reshaping 
Finally, the permuted one-dimensional array is 

reshaped back into the original image dimensions to 

reconstruct the decrypted image: 

original = reshape(original_flat)                       (24) 

 

 

Algorithm for decrypting the image is as follows: 

_______________________________________ 

Algorithm 2. Decrypt_Image(bundle, password) 

    bundle = retrieve_from_storage() 

    cipher ← bundle["cipher"] 

    perm   ← bundle["perm"] 

    salt   ← bundle["salt"] 

 

    // Key regeneration 

 

    master ← Derive_Master_Key(password, salt) 

 

    Kc   ← Derive_Subkey(master, "confusion") 

    Kr   ← Derive_Subkey(master, "diffusion-R") 

    Kg   ← Derive_Subkey(master, "diffusion-G") 

    Kb   ← Derive_Subkey(master, "diffusion-B") 

    Krgb ← Derive_Subkey(master, "diffusion-

RGB") 

 

    // Reverse combined RGB diffusion 

 

    ksRGB ← AES_CTR_Cipher(Krgb, 

bundle["rgb_nonce"], Length(cipher)) 

 

    BIT_PERM ← [2, 5, 1, 7, 0, 3, 6, 4] 

    INV_BIT_PERM ← [0,0,0,0,0,0,0,0] 

    for i ← 0 to 7 do 

        p ← BIT_PERM[i] 

        INV_BIT_PERM[p] ← i 

    end for 
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    INV_BIT_LUT ← 

Build_LUT(INV_BIT_PERM) 

 

    merged ← Diffuse_Decrypt(Flatten(cipher), 

ksRGB, INV_BIT_LUT) 

 

    merged ← Reshape(merged, Shape(cipher)) 

 

    // Reverse channel-wise diffusion 

 

    R ← merged[:,:,0] 

    G ← merged[:,:,1] 

    B ← merged[:,:,2] 

 

    ksR ← AES_CTR_Cipher(Kr, bundle["r_nonce"], 

Length(R)) 

    ksG ← AES_CTR_Cipher(Kg, 

bundle["g_nonce"], Length(G)) 

    ksB ← AES_CTR_Cipher(Kb, 

bundle["b_nonce"], Length(B)) 

 

    R ← Diffuse_Decrypt(Flatten(R), ksR, 

INV_BIT_LUT) 

    G ← Diffuse_Decrypt(Flatten(G), ksG, 

INV_BIT_LUT) 

    B ← Diffuse_Decrypt(Flatten(B), ksB, 

INV_BIT_LUT) 

 

    R ← Reshape(R, Shape(merged[:,:,0])) 

    G ← Reshape(G, Shape(merged[:,:,1])) 

    B ← Reshape(B, Shape(merged[:,:,2])) 

 

    merged ← Stack(R, G, B) 

 

    // Reverse confusion (inverse permutation) 

    inv_perm ← Inverse_Permutation(perm) 

 

    original ← Flatten(merged)[inv_perm] 

    original ← Reshape(original, Shape(merged)) 

    return original 

End Algorithm 

__________________________________________

__ 

Function Inverse_Permutation(perm) 

    inv_perm ← Array of same length as perm 

    for i ← 0 to Length(perm) − 1 do 

        inv_perm[perm[i]] ← i 

    end for 

    return inv_perm 

End Function 

__________________________________________

___ 

Function Diffuse_Decrypt(arr, k, inv_lut) 

    prev ← 0 

    for i ← 0 to Length(arr) − 1 do 

        x ← inv_lut[arr[i]] 

        x ← (x − k[i] − prev) mod 256 

        out[i] ← x XOR k[i] 

        prev ← arr[i] 

    end for 

    return out 

End Function 

__________________________________________

____ 

Flowchart for Encryption and Decryption image is 

shown in Flowchart 1 and Flowchart 2. 

3. Performance and Security Evaluation Results 

In this section, we will check our encryption system 

in terms of key space analysis, key sensitivity 

analysis, histogram, entropy, correlation coefficient, 

NPCR, UACI, PSNR and other values. Table 1 shows 

the hardware, the software environment and the 

image source. Three images - img1, img2, and img3 

– are used, which are related to endoscopy test images 

of a medical nature. 

3.1.Key Space 

 

Table 1 Specification Table 

Specification  

Processor 

12th Gen Intel(R) 

Core(TM) i5-12400 

(2.50 GHz) 

RAM 16.0 GB 

Operating system Windows 11 Home 

Programming 

language 
Python 

Data source 
The Kvasir Dataset 

[35] 
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The proposed scheme derives a 256-bit master key using 

Argon2i and HKDF, resulting in a cryptographic key 

space of 2256. With this, our scheme provides resistance 

against brute-force attacks due to its effective key space 

exceeding 2128. Table 1 shows Specification Table

 

 
Figure 2 Image Encryption Process

 

3.2.Key sensitivity analysis 

Key sensitivity analysis is a method used to assess the 

extent to which an encryption algorithm is influenced 

by minor changes made to the secret key. A secure 

algorithm shows high key sensitivity, to the change 

of one bit in the key, resulting in an entirely different 

cipher image. This is of utmost important as it stops 

the attackers from taking advantage of the similarities 

between the corresponding keys and guarantees the 

resistance to both brute-force and related-key attacks.  

 

 

 

Two tests are performed by giving correct key in the 

first time, where  

 K1= 

9c7480080e302ac765f37f97706fe6761d231b5783 

b8e13513b88061fac2826   

Second test is performed by giving wrong key (one 

bit change), where 

K2= 

9d7480080e302ac765f37f97706fe6761d231b5783b

b8e13513b88061fac2826 

The Figure.2 illustrates the key sensitivity of the 

proposed encryption scheme: the encrypted image 
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appears random (Figure 2.b), decrypting the image 

with correct key –K1 restores the original image ( 

Figure 2 c). However, decrypting with a slightly 

incorrect key –K2 produces a noise-like image with 

no recognizable structure (Figure 2 d). 

 

 
Figure 3 Image Decryption Process 

 

 
Figure 4 (a) Original Image (b) Encrypted Image 

(c) Decrypted Image with Correct Key (d) 

Decrypted Image with Wrong Key 

 

3.3.  Histogram Analysis 

Histogram analysis studies the distribution of pixel 

intensity values before and after encryption [2]. 

 

 

 
Figure 5 (a) Plain image (b) Histogram of plain 

image (c) Encrypted image (d) Histogram of 

encrypted image 
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Figure 6 (a) Plain image img2 (b) Histogram of 

plain image (c) Encrypted image (d) Histogram 

of encrypted image 

 

 
Figure 5 (a) Plain image img3  (b) Histogram of 

plain image (c) Encrypted image (d) Histogram 

of encrypted image 

 

Referring to the Figure 3, 4 and 5, in the plain image, 

the histograms of all three channels are unevenly 

distributed with distinct peaks, reflecting the strong 

spatial and statistical correlations. After encryption, 

the histograms of the encrypted image are uniformly 

distributed. As a result, the encrypted image does not 

preserve any statistical characteristics of the original 

image. This behaviour effectively hides pixel 

intensity information and offers excellent resistance 

against histogram-based and statistical attacks. The 

Chi-square (χ²) tests are done on histograms to 

confirm the effectiveness of image encryption against 

frequency attacks. This test checks if the histogram 

of an encrypted image follows a uniform distribution. 

The formula for the Chi-square (χ²) test is shown 

below.  

 

Chi_square =  ∑
(O(i)− E(i))

2

E(i)

255
i=0                 (25) 

Where: 

 O(i) = observed frequency of pixel value i 

 E(i) = expected frequency of pixel value i 

 i = 0 to 255 for an 8-bit image 

The p-value is used as an another indicator to shows 

whether the observed Chi-square value significantly 

differs from a uniform distribution. For a secure 

encryption algorithm, the p-value should be greater 

than 0.05. In this case, the encrypted image acts like 

random noise. The Table 2 displays the Chi-square 

values and the corresponding p-values obtained from 

the histogram analysis of the encrypted images. For 

an 8-bit image, the expected Chi-square value for a 

uniform distribution is about equal to the degrees of 

freedom, which is 255. The observed Chi-square 

values (239.95, 265.42, and 268.01) are all close to 

this expected value, showing that the pixel intensity 

distributions of the encrypted images resemble a 

uniform distribution. The corresponding p-values 

(0.7423, 0.3139, and 0.2755) are all significantly 

higher than the commonly used significance 

threshold of 0.05. This indicates that the null 

hypothesis of a uniform distribution cannot be 

rejected for any of the test images. The consistently 

high p-values further confirm that the encrypted 

images show strong randomness and do not reveal 

statistical information through their histograms. 

 

Table 2 Chi Square and p - Values 

Image Chi-square p-value 

img1 239.9453 0.7423 

img2 265.4166 0.3139 

Img3 268.0104 0.2755 

3.4.Correlation analysis 

In medical images, adjacent pixels (horizontal, 

vertical, and diagonal) are highly correlated due to 

spatial continuity. This correlation can be exploited 
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by attackers if it is preserved after encryption. 

Correlation analysis is used to evaluate how 

effectively the proposed encryption scheme 

eliminates the strong dependency between 

neighboring pixels in an image. For the measurement 

of this property, corresponding pixel pairs of adjacent 

pixels are selected in the horizontal, vertical, and 

diagonal directions, and the correlation coefficient is 

computed using the standard formula: 

 

r =
Cov(x,y)

√{Var(x)∗Var(y)}
                          (26) 

 

where x and y represent the color intensity values of 

two neighboring pixels [3]. Strong similarity between 

neighboring pixels is indicated by correlation 

coefficients for the plain image, which are usually 

close to 1. On the other hand, as shown in Figure 6, 

and Table 3, the encrypted image produced by the 

proposed scheme exhibits correlation coefficients 

close to 0 in all directions and across all RGB 

channels. This confirms the successful removal of 

spatial dependencies and transforms the image into 

statistically independent pixel values. 
 

Figure 6 Adjacent pixel correlation of original 

image img3 (a) Horizontal (b) Vertical (c) 

Diagonal; Adjacent pixel correlation of 

encrypted image img3 (d) Horizontal (e) Vertical 

(f) Diagonal 

 

Table 3 Correlation coefficients between adjacent pixels of Original image and Encrypted image 

 Original Image Encrypted Image 

 Horizontal Vertical Diagonal Horizontal Vertical Diagonal 

img1 0.9820 0.9842 0.9681 0.0002 0.0035 -0.0019 

img2 0.9868 0.9829 0.9702 0.0031 -0.0005 0.0006 

img3 0.9915 0.9786 0.9728 0.0016 -0.0020 0.0024 

3.5.Differential Attack Analysis 

Differential attack analysis is used to assess how well 

an image encryption scheme responds to minor 

changes in the plaintext image and whether those 

changes result in large, unpredictable variations in the 

encrypted output. A secure encryption algorithm 

should make sure that even a tiny change in the input 

image leads to significant changes in the encrypted 

image [22, 26]. In our research, resistance to 

differential attacks is obtained through key-

dependent pixel permutation, AES-CTR based 

keystream mixing, nonlinear bit-level substitution, 
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and feedback-based diffusion. These methods ensure 

that a small alteration in the plain image spreads 

quickly across all pixels and color channels, creating 

a strong avalanche effect. We measure how well this 

works using NPCR (Number of Pixel Change Rate), 

which shows the percentage of pixels that change in 

the encrypted image, and UACI (Unified Average 

Changing Intensity), which assesses the average 

intensity difference between two encrypted images. 

NPCR for R Channel 

𝐍𝐏𝐂𝐑𝐫 =  ( 
𝟏

(𝐇∗𝐖)
) ∗  ∑ ∑ 𝐃𝐫(𝐢, 𝐣)𝐖

𝐣=𝟏  𝐇
𝐢=𝟏 ∗  𝟏𝟎𝟎%         

(27) 

NPCR for G Channel 

𝐍𝐏𝐂𝐑𝐠 =  ( 
𝟏

(𝐇∗𝐖)
) ∗  ∑ ∑ 𝐃𝐠(𝐢, 𝐣)𝐖

𝐣=𝟏  𝐇
𝐢=𝟏 ∗  𝟏𝟎𝟎%         

(28)    

NPCR for B Channel 

𝐍𝐏𝐂𝐑𝐛 =  ( 
𝟏

(𝐇∗𝐖)
) ∗  ∑ ∑ 𝐃𝐛(𝐢, 𝐣)𝐖

𝐣=𝟏  𝐇
𝐢=𝟏 ∗  𝟏𝟎𝟎%         

(29) 

UACI for R Channel 

𝐔𝐀𝐂𝐈𝐫 =  ( 
𝟏

(𝐇∗𝐖)
) ∗  ∑ ∑

|𝐂𝟏𝐫(𝐢,𝐣)−𝐂𝟐𝐫(𝐢,𝐣)|

𝟐𝟓𝟓

𝐖
𝐣=𝟏  𝐇

𝐢=𝟏 ∗

 𝟏𝟎𝟎%          (30) 

UACI for G Channel 

𝐔𝐀𝐂𝐈𝐠 =  ( 
𝟏

(𝐇∗𝐖)
) ∗  ∑ ∑

|𝐂𝟏𝐠(𝐢,𝐣)−𝐂𝟐𝐠(𝐢,𝐣)|

𝟐𝟓𝟓

𝐖
𝐣=𝟏  𝐇

𝐢=𝟏 ∗

 𝟏𝟎𝟎%          (31) 

UACI for B Channel 

𝐔𝐀𝐂𝐈𝐛 =  ( 
𝟏

(𝐇∗𝐖)
) ∗  ∑ ∑

|𝐂𝟏𝐛(𝐢,𝐣)−𝐂𝟐𝐛(𝐢,𝐣)|

𝟐𝟓𝟓

𝐖
𝐣=𝟏  𝐇

𝐢=𝟏 ∗

 𝟏𝟎𝟎%           (32) 

where H × W represents the height and width of 

image which represents the size of the image, C1 and 

C2 are two cipher images with only one different 

pixel. C1r and C2r represents the red channel of 

encrypted image. If C1r(i, j) ≠ C2r(i, j), Dr(i, j) = 1; 

otherwise, Dr(i, j) = 0. This is similar to G and B 

channels. The theoretical values of NPCR and UACI 

for 8 bit images are 99.6094% and 33.4635%, 

respectively. Referring Table 4. for the images img1, 

img2 and img3, the NPCR values are above 

99.60%.and the UACI values are near the ideal 33%. 

This shows strong diffusion characteristics and great 

resistance to differential attacks.

 

Table 4 NPCR and UACI values for R, G and B Channels 

 
 

3.6.Information Entropy Analysis 

Information entropy measures the randomness and 

uncertainty of pixel values. A higher entropy, which 

is closer to the theoretical maximum of 8 for 

grayscale, indicates better security [22, 26]. 

Mathematically it is represented as 

 

Hc = ∑ pc(i) log2 pc(i)255
i=0    (33) 

where Hc is information entropy of a single color 

channel which can be Red, Green, or Blue. ∑ 

(summation) indicates that the expression is summed 

over all possible pixel intensity values. For gray-scale 

image variable i has the value from 0 to 255. The pc(i) 

represents the probability of occurrence of intensity 
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value i in channel c.  In this research, the information 

entropy for each color channel is computed 

separately. The overall entropy of the RGB image is 

then defined as the average of the entropies of the red, 

green, and blue channels. Table 5. shows the entropy 

values of original image and encrypted image. After 

encryption, the entropy values of the cipher images 

for all three images img1, img2 and img3 are about 

7.997. This is very close to the theoretical maximum 

entropy of 8 bits for an 8-bit image. This near-ideal 

entropy shows that the encrypted images have very 

uniform pixel intensity distributions and act similarly 

to random noise. 

 

Table 5. Entropy of Original Image and Cipher 

Image 

Image Original Image Cipher Image 

img1 7.2916 7.9971 

img2 7.4086 7.9972 

img3 7.4295 7.9972 

House[22] - 7.9974 

Img_f[26] - 7.9994 

 

3.7.Mean Squared Error (MSE) and Peak 

Signal-to-Noise Ratio (PSNR) Analysis 

Mean Squared Error (MSE) 

Mean Squared Error (MSE) measures the average 

squared difference between two images. In image 

encryption research, MSE is mainly used to check 

correct decryption (original vs. decrypted image) and 

to measure how different two images are at the pixel 

level. A lower MSE means that two images are very 

similar, while a higher MSE shows large differences. 

 

𝐌𝐒𝐄 =  
𝟏

(𝐇∗𝐖)
 ∑  [ 𝐈(𝐢, 𝐣) −  𝐊(𝐢, 𝐣)]𝟐      (34) 

 

where I(i,j) = pixel value of the original image at 

position (i,j), 

K(i,j) = pixel value of the decrypted image, 

H = image height, 

W = image width, 

∑ = summation over all pixels 

 

Peak Signal-to-Noise Ratio (PSNR) 

PSNR measures the quality of a reconstructed 

(decrypted) image compared to the original image. It 

is expressed in decibels (dB) and comes from MSE. 

In encryption, a high PSNR between the original and 

decrypted images indicates correct decryption. A low 

PSNR between the original and encrypted images 

indicates strong encryption. Mathematically it is 

represented as; 

𝐏𝐒𝐍𝐑 =  𝟏𝟎 ∗  𝐥𝐨𝐠𝟏𝟎 (
  𝐌𝐀𝐗²

𝐌𝐒𝐄
 )                      (35) 

Where: 

 MAX = maximum possible pixel value 

(for 8-bit images, MAX = 255) 

 MSE = mean squared error 

 

 

Table 6 MSE and PSNR Values 

Image 
MSE Original 

vs Encrypted 

MSE Original 

vs Decrypted 

PSNR Original 

vs Encrypted 

PSNR Original 

vs Decrypted 

img1 12372.235 0 7.206322 ∞ 

img2 10466.141 0 7.9329 ∞ 

img3 9701.19 0 8.2625 ∞ 

The Table 6 shows the Mean Squared Error (MSE) 

and Peak Signal-to-Noise Ratio (PSNR) values by 

comparing the original image with its encrypted and 

decrypted versions for three test images. For the 

Original vs Encrypted images, the MSE values are 

quite high, ranging from about 9701 to 12372. This 

indicates a large pixel-wise difference between the 

original and encrypted images. As a result, the PSNR 

values are very low, about 7 to 8 dB. This confirms 

that the encrypted images are heavily distorted and do 

not resemble the original images. This outcome 

shows strong confusion and diffusion of encryption 
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process. It makes the cipher images resilient to visual 

and statistical attacks. For the Original vs Decrypted 

images, the MSE values are zero for all test images, 

and the PSNR values are infinite (∞). An MSE of zero 

means there is no difference between the original and 

decrypted images at any pixel position. 

Consequently, PSNR becomes infinite, indicating 

perfect reconstruction. This shows that the decryption 

process is lossless and accurately recovers the 

original image without any loss. 

3.8.Encryption speed analysis 

The proposed method achieves an encryption time of 

0.17108 seconds. This is much lower than the 

referred algorithms. This shows that the proposed 

algorithm is efficient and fits well for time-sensitive 

applications. In terms of encryption speed, the 

proposed scheme reaches 9.19 Mbps. This is 

significantly higher than the speeds of other referred 

algorithms listed in Table 7. This improvement 

comes from using efficient cryptographic tools like 

AES-CTR for generating keystreams and optimizing 

permutation and diffusion operations. Overall, the 

results show that the proposed encryption scheme not 

only offers strong security but also delivers better 

performance than current methods. This makes it 

suitable for real-time and large-scale image 

encryption scenarios. 

 

Table 7 Encryption Time and Speed 

 
Encryption 

Time(s) 

Encryption 

Speed 

(Mbps) 

Ours 0.17108 9.19 

Ref[2] 5.1 - 

Ref[11] 0.324 1.618 

Ref[12] 0.266 1.973 

 

Conclusion 

This study proposed a secure medical image 

encryption scheme to address privacy and security 

challenges associated with digital healthcare 

systems. This method, is rooted in the context of a 

confusion-diffusion architecture and the use of 

password-derived key generation. It is capable of 

effectively handling the peculiarities of the 

medical images having high redundancy and 

strong spatial correlation. Master key derivation 

based on Argon2, subkeys of different domains, 

secure pixel shuffling, and multi-layer diffusion 

are all parts of the encryption process. The design 

choices made here give rise to a very low pixel 

correlation and a considerable increase in the 

randomness of the cipher image. The results of the 

experiments show that the achieved entropy is 

close to the ideal level. The resistance to 

differential and key sensitivity attacks is very 

strong. The pixels are distributed uniformly. 

Additionally, the correct key ensures an exact 

reconstruction of the image with better 

performance. The proposed method has a great 

deal of security and low computational 

requirements; thus, it can be regarded as an 

excellent means for secure storage and 

transmission of medical images. The performance 

optimization and other types of medical data 

extension will be the subject of future research. 
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