e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

International Research Journal on Advanced Engineering
and Management
https://goldncloudpublications.com
https://doi.org/10.47392/IRJAEM.2026.0013

A Secure Medical Image Scrambling Using Argon2i, AES-CTR with

Feedback-Based Diffusion

Ms. Lakshmamma T2, Dr. Lakshmi J V N?

'Phd Scholar, School of Computer Science and Application, Reva University, Bangalore 560064, Karnataka,
India.

2Associate Professor, School of Computer Science and Application, Reva University, Bangalore 560064,
Karnataka, India.

Emails: lakshmammat69@gmail.com?, lakshmi.jvn@reva.edu.in?

Abstract

The modern healthcare systems consider the secure transmission and storage of medical images as vital
because of the sensitivity of patient data and the strict privacy regulations. This paper presents a secure and
reversible RGB medical image scrambling and encryption scheme that aims to defend diagnostic images from
unauthorized access, while, guaranteeing the integrity of the data. A 512- bit master key is generated through
the memory-hard Argon2i algorithm which makes the system extremely resistant to brute-force and dictionary
attacks. Domain-separated subkeys are generated using master key via AES in counter (CTR) mode. These
subkeys are utilized at confusion and diffusion stages of the encryption and decryption process. The image
confusion is performed with the use of a Fisher-Yates permutation which is controlled by cryptographically
secure keystreams thereby disrupting spatial pixel relationships. The diffusion is done at both single colour
channel and total colour channel levels utilizing a feedback-based mechanism that combines XOR operation,
modular addition, and bit-level permutation. Both confusion and diffusion process ensures a strong avalanche
effect across the entire image. Performance analysis shows that the proposed method provides an effective
balance between security and computational efficiency, making it suitable for secure storage and transmission
of medical images in telemedicine and healthcare information systems.

Keywords: AES-CTR; Argon2i; Feedback-Based Diffusion; Medical Image encryption; Medical Image
scrambling.

1. Introduction

Healthcare systems are experiencing a rapid shift
toward digital technologies. As part of this
transformation, medical imaging has become central
to clinical practice, with widespread use of
endoscopic imaging, magnetic resonance imaging
(MRI), computed tomography (CT), ultrasound,
treatment planning, and long-term storage of patient
records. These digital images play a vital role in
supporting clinical decision-making. However, their
increasing use has also introduced significant
concerns related to data security and patient privacy.
Unauthorized access, modification, or manipulation
of these images constitutes a serious breach of
privacy and may result in misdiagnosis,
compromised treatment decisions, or legal
consequences. For these reasons, protecting medical

images has become an essential requirement in
modern healthcare environments. Ensuring
confidentiality, integrity, and authenticity during
both storage and transmission is now a critical
component of medical information systems.
Conventional cryptographic techniques, which were
primarily developed for text-based data, are not
always suitable for securing medical images, because
medical images are typically large in size and exhibit
high redundancy and strong spatial correlation
between adjacent pixels. Even a minimal loss or
distortion of image details can adversely affect
diagnostic accuracy. This has led to the development
of image-specific encryption techniques. Confusion
and diffusion is one of the image scrambling
techniques used to effectively disrupt pixel

OPEN aAccsss IRIAEM

75

about:blank
mailto:lakshmammat69@gmail.com1

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

https://doi.org/10.47392/IRJAEM.2026.0013

relationships in images to prevent the unauthorized
interpretation of the image [12].
1.1. Literature Review

There has been a lot of research on scrambling-
diffusion image encryption schemes, and the majority
of these schemes rely on chaos for their pseudo-
randomness. The initial surveys point out that chaos
maps are very effective in image scrambling and
encryption [1]. The chaotic image scrambling
techniques such as those based on the Josephus cycle
[13, 14], logistic map [23], Rossler system [21], and
hyper-chaotic systems with multiple control
parameters [15, 16] have been proposed for securing
the images using chaos map features. Moreover,
some researchers have researched on of employing
DNA encoding and molecular mutation concepts as
image encryption to increase the security level.
Among the methods are double scrambling combined
with DNA row—column operations [2], DNA-based
key scrambling [3], multi-stream scrambling with
DNA encoding [4], and closed-loop diffusion with
DNA mutation [5]. They've paved the way for a
significant resistance against the two most common
attacks, namely statistical and differential ones. Also,
medical-image encryption systems employing hyper-
chaotic systems and DNA coding are reported to have
very strong security performance for sensitive
clinical data [6,25,26]. Additionally, biologically
inspired approaches such as protein-chain-based
cryptography have been explored to enhance
cryptographic complexity [17]. At the same time,
lightweight and block-based encryption algorithms
were created to solve the problem of limited
resources in 10T and telemedicine applications. These
algorithms includes the multi-round confusion-
diffusion cryptosystems [7], and spatio-color
scrambling techniques compatible with JPEG [8],
device-constrained color image encryption [9],
chaos-based encryption combined with JPEG
compression [10]. More advanced designs
incorporate complex network scrambling and multi-
directional diffusion [11], bit-level encryption with
fully connected networks [12], and hyper-chaotic
self-adaptive diffusion mechanisms [18]. New
inventions in image security research have targeted
deep learning, diffusion models, and hybrid

encryption—compression frameworks as recent
trends. These include diffusion-model-based image
protection [28,29], deep-learning-assisted block-
scrambling encryption for remote sensing images
[30], CNN-assisted scrambling and steganography
[31], and robust compression—encryption using
scrambled block sampling [19].

1.2. Research Gap
Although there are a variety of image encryption
methods available, there are still some limitations that
can be highlighted. A lot of chaos-based algorithms
are dependent on floating-point arithmetic, which
makes these algorithms subject to the limitations of
precise representation of numbers, numerical
instability, and behavior that is dependent on the
specific implementation. All these things can cause a
reduction in the size of the possible key space and the
ability to reproduce the results. Another problem is
that a lot of schemes directly use user passwords or
chaotic parameters as keys without proper key
derivation methods, leaving them open to related-
key, dictionary, and brute-force attacks. Besides that,
even though the DNA-based and hyper-chaotic
methods provide a remarkable amount of nonlinearity
and diffusion strength, they are still quite
computationally expensive compared to other
methods. In addition, some of the lightweight
encryption methods provide low-security levels in
order to be efficient while others provide high
security but not fast enough for real-time
applications. All these drawbacks call for an
encryption framework for medical images that is not
only cryptographically secure but also efficient and
lossless, and at the same time incorporates image-
specific operations together with modern key
management techniques.

1.3. Objectives
To address the above research gaps, this research
aims to develop a secure, lossless, and efficient
medical image encryption scheme that integrates
modern cryptographic techniques with image-
oriented confusion and diffusion mechanisms. The
specific objectives of this research are as follows:

e To design a robust password-based master

key generation using argon 2i, a password-

OPEN aAccsss IRIAEM

76

about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

https://doi.org/10.47392/IRJAEM.2026.0013

based key derivation function to resist brute-
force and side channel attacks.

e To derive independent, domain-separated
subkeys from the master key using HKDF
(HMAC-based Key Derivation Function)
with SHA-256 for using different keys for
confusion and diffusion stages.

e To implement a pixel position scrambling
method — confusion stage - for eliminating
spatial correlations in medical images by
using a secure permutation method.

e To develop a multi-stage diffusion
framework, including channel-wise and
combined RGB diffusion with nonlinear
feedback and bit-level permutation, so that a
strong avalanche effect can be assured.

e To guarantee perfect lossless decryption, to
ensure diagnostic integrity and clinical
reliability of medical images is preserved.

2. Method

This study is based on medical image scrambling,
which involves scrambling medical images through
confusion and diffusion processes.

2.1.Relevant Knowledge
2.1.1. Argon 2i and HKDF-Based Key

Derivation
The proposed image encryption technique uses
Argon2i and HKDF-Based Derivation mode for
Master key and 5 Sub keys generation. Argon2i is a
memory-hard password hashing function. It is
designed for strong defense against side-channel
attacks, making it ideal for key derivation [32, 33]. It
generates master key based on the password provided
by the user and a randomly selected salt.
General form
Argon2i(password, salt, time_cost, memory_cost,
parallelism, hash_length)
Parameter Description

e password: User provided password

« salt: Random value combined with password
to improve security

o time_cost (t): Number of iterations over
memory

e memory_cost (m): Amount of memory used,
typically in kilobytes

o parallelism (p): Number of parallel lanes or
threads
o hash_length (I): Desired length of the output
key in bytes
The addition of a random salt ensures that even two
perfectly matching passwords will not yield the same
master keys, thus stopping the precomputation and
rainbow-table attacks. In the process of using
Argon2i, a constant 256-bit master key is produced.
HMAC-based Key Derivation Function (HKDF) is
used to create a number of domain separated subkeys
that are independent from each other and derived
from master key.
General Form
hkdf = HKDF(hash, length, salt,info)
subkey = hkdf.derive(master_key)
HKDF Parameters
e hash : underlying hash function. We used

SHA256 as its collision resistance and
pseudorandom properties ensure secure key
expansion.

e length:

Specifies the length (in bytes) of the derived
subkey. In this project, a 32-byte (256-bit)
output is used for all cryptographic keys.
o salt = None:
When no salt is provided, HKDF uses an
implicit zero-valued salt. This is acceptable in
this design because the input key material (the
Argon2i-derived master key) already has high
entropy and includes a salt from the Argon2i
stage.
e info:
The info parameter is a context-specific
identifier used for domain separation. The
info parameter is used to derive distinct
subkeys for different stages of the encryption
algorithm as given below,
Kc = HKDF(master_key, info = "confusion")
2.1.2. AES in Counter (CTR) Mode
AES in Counter (CTR) mode is a symmetric-key
encryption mode that transforms the Advanced
Encryption Standard (AES) block cipher into a
stream cipher. AES can be initialized in Counter
(CTR) mode using a user-specified key and nonce.
This construction transforms AES into a stream

OPEN aAccsss IRIAEM

77

about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

https://doi.org/10.47392/IRJAEM.2026.0013

cipher capable of generating a cryptographically
secure keystream. The keystreams generated using
AES-CTR act as pseudorandom sequences which are
using in confusion and diffusion phases [34]. In this
research, a counter object is created with a total size
of 64 bits and is initialized with an explicit nonce as
its prefix. The nonce occupies the most significant 64
bits of the input block, while the remaining 64 bits are
used as an incrementing counter starting from zero.
This results in a 128-bit input block, which matches
the AES block size. Formally, each counter block
input to AES is constructed as:

e Input_block_i = nonce || counter _i

e Wwhere counter_i is a 64-bit integer that
increments sequentially for each block, and ||
denotes concatenation.

The AES encryption function is then applied to each
input block using the secret key to generate a
keystream block. The resulting keystream is used for
encryption or decryption by XORing it with the data
stream. The explicit use of a nonce ensures that each
AES-CTR instance produces a unique keystream,
even when the same key is reused.
2.1.3. Fisher-Yates algorithm

In the proposed image encryption algorithm, the
Fisher—Yates permutation is employed during the
confusion phase to achieve strong spatial scrambling
of image pixels. The Fisher—Yates algorithm
generates a uniformly random permutation of a finite
sequence. The following operations performed for
the Fisher—Yates Permutation

e The input image is flattened into a one-
dimensional array to allow global
permutation across all pixel positions.

e Random indices for the permutation are
derived from an AES-CTR-based keystream,
providing cryptographically secure
randomness.

e A unique nonce is used to initialize AES-
CTR, ensuring permutation uniqueness across
encryption sessions.

e Rejection sampling is applied during index
selection to eliminate modulo bias and
guarantee uniform distribution.

e During each iteration of the algorithm, a
random index is selected from a shrinking
range and swapped with the current element.

e The resulting permutation vector is stored as
encryption metadata and inverted during
decryption to recover the original pixel
ordering.

2.2.Encryption Process

Encryption of image is achieved by conducting
experiments on the endoscopic tested medical
images. These images are center-cropped to a square
region and resized to 256X256 pixels using bicubic
interpolation. The following procedure is followed
during the process.

2.2.1. Generation of master and sub key

Step 1. Salt Generation

e A 128-bit random salt is generated using a
cryptographically secure random number
generator:

e salte {0,1}"128

e The salt ensures that identical passwords
result in distinct master keys and provides
resistance against precomputation and
rainbow-table attacks. The salt is stored as
part of the encryption metadata.

Step 2. Master Key Derivation

e Using the input password and the generated
salt, a master key is derived through a
memory-hard key derivation function:

e master = Derive_Master_Key(password, salt)

e This function applies Argon2i with fixed
time, memory, and parallelism parameters to
produce a 256-bit master key.

Step 3. Domain-Separated Subkey Derivation

e From the master key, multiple independent
subkeys are derived using a key derivation
function with domain separation.

e Kc = Derive_Subkey(master, "confusion™)
Kr = Derive_Subkey(master, "diffusion-R")
Kg = Derive_Subkey(master, "diffusion-G")
Kb = Derive_Subkey(master, "diffusion-B")
Krgb = Derive_Subkey(master, "diffusion-
RGB")

e Image encryption is done in two phases: The
Confusion Phase (Phase 1) and the Diffusion
Phase (Phase 2).

OPEN aAccsss IRIAEM

78

about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

{ TRJAEM
Ner pe
il

> https://doi.org/10.47392/IRJAEM.2026.0013

2.2.2. Phase 1- Confusion Phase
During the confusion phase, a Fisher—Yates
permutation is constructed based on the total pixels
of the image. The following steps are followed.
Step 1. Nonce generation

e A nonce is generated randomly

e perm_nonce € {0,1}"64

e This nonce ensures that a unique permutation
is produced when the same key is reused and
it will be stored as part of the encryption
metadata

Step 2. AES-CTR Initialization

e Using the confusion subkey Kc and the
generated nonce perm_nonce, an AES cipher
is initialized in counter (CTR) mode:

e cipher = AES_CTR(Kc, perm_nonce)

Step 3. Permutation Array Initialization
fori=0ton—1

perm[i] =1,
where n denotes the total number of image elements
(n = image.size).
Step 4. Keystream Buffering

e To improve computational efficiency, a
fixed-size keystream buffer is generated by
encrypting a zero-filled byte array:

e BUFFER SIZE = 1024 x
buffer = AES_CTR(Kc,
BUFFER_SIZE)

Step 5. Fisher—Yates Shuffle with Rejection
Sampling (To perform shuffling as shown in
Figure 1)

For each index i fromn — 1 down to 1

“A 32-bit random value is extracted from the
keystream buffer:”

rnd = buffer[offset : offset + 4]

“To eliminate modulo bias, the extracted random
value is accepted only if it satisfies the condition. If
the condition is not met, the value is discarded and a
new random value is drawn.”

rnd < 232 — (232 mod (i + 1)) (1)
“Once an acceptable random value is obtained, an
unbiased index j is computed as”

j=rnd mod (i + 1) (2)
“The elements at positions i and j in the permutation
array are swapped”

perml[i] <> perm[j] (3)

16 bytes
perm_nonce,

Step 6. Image Flattening
The input image is first converted into a one-
dimensional array to enable global permutation
across all pixel positions:

e image_flat = flatten(image)
Step 7. Permutation Application
The flattened image is permuted using the generated
permutation vector perm as follows:
fori=0ton-1
confused_flat[i] = image_flat[perm[i]] 4)
where n denotes the total number of elements in the
image. Figure 1 shows Confusion stage. (a) Pixel
Positions Before Confusion. (b) Pixel Positions After
Confusion
Step 8. Image Reshaping
The permuted one-dimensional array is reshaped
back into the original image dimensions to obtain the
spatially confused image:
Ic = reshape(confused_flat, shape(image)) (5)

123 4 8 | 9 | 16| 5
506 7|8 15016 |14
— v
9 | 10 | 11 | 12 711312 |10
13)14 15 16 1mi3 12| 4

@ (b)
Figure 1 Confusion stage. (a) Pixel Positions
Before Confusion. (b) Pixel Positions After
Confusion

2.2.3. Phase 2- Diffusion Phase
After confusion, diffusion is done on confused image
in two stages: one on a channel-wise diffusion and
another on the diffusion of the whole RGB channels
at once. For channel-wise diffusion, the red, green,
and blue channels are processed independently. Each
channel employs a unique AES-CTR keystreams
generated using its corresponding subkey and nonce.
The detailed steps of diffusion can be described as
follows
Step 1.
The confused image — Ic - is decomposed into its
three color channels as follows:

OPEN aAccsss IRIAEM

79

about:blank

International Research Journal on Advanced Engineering
and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

https://doi.org/10.47392/IRJAEM.2026.0013

R=1lc(;,:,1)
G=lc(:,:;,2)
B =Ic(:;,:,3)
Step 2.

Using the corresponding diffusion keys Kr, Kg, and
Kb, independent AES-CTR keystreams are generated
for each channel. The keystream generation is
defined as:

ksR = AES_CTR(KTr, r_nonce, |R|)
ksG = AES_CTR(Kg, g_nonce, |G|)
ksB = AES_CTR(Kb, b_nonce, |B|)

where |R|, |G|, and |B| denote the number of pixels in
the respective channels.
Step 3.
Build lookup table using BIT_LUT function
A fixed bit-permutation vector is defined as:
perm=[2,5,1,7,0, 3,6, 4].
A lookup table lut of size 256 is constructed
for x «— 0 to 255 do

y <0

fori« 0to7do

“Extract the bit at position perm[i] from x”

bit «— (x >> perm[i]) AND 1 (6)

“Place this bit into position i of y”’

y «— y OR (bit << 1) (7
end for

“After processing all 8 bit positions, the resulting
value y represents the bit-permuted version of x and
is stored in the lookup table”

lut[x] <y

end for
This lut lookup table is used in process of diffusion
operation of single and merged RGB channels
Step 4.
Each color channel is flattened into a one-
dimensional array.
For a flattened channel X in {R, G, B}, the diffusion
operation is performed sequentially as follows:
u_i=x_i XORK_i (8)
v_i=(u_i+k i+y (i-1)) mod 256 9)
y i=BIT_LUT[v_i] (10)
with the initial condition:
y_(-1)=0.

Here, x_i represents the i-th pixel of the flattened
channel, k_i is the corresponding keystream byte,
y_(i-1) is the previous encrypted output (feedback),
and y_i is the encrypted output pixel.
Step 5.
The encrypted channels are merged to form the final
encrypted image as:
merged = stack(R', G', B"),
where R', G', and B' denote the diffused red, green,
and blue channels, respectively.
To further enhance inter-channel diffusion, a final
combined diffusion stage is applied. First, a new
independent 64-bit random nonce is generated:

rgb_nonce € {0,1}"64.
Using the RGB diffusion key Krgb and the generated
nonce, an AES-CTR keystream is produced:
ksRGB = AES_CTR(Krgb, rgb_nonce, [merged)),
where |merged| denotes the total number of elements
in the merged RGB image.
The merged image is then flattened into a one-
dimensional array:

m_i = flatten(merged),

and encrypted using the same diffusion mechanism
as:

ai=m i XORK i (11)
bi=(a itk itc (i—1)) mod256 (12)
¢ i=BIT_LUT[b._i] (13)

with the initial condition:

c (-1H=0,

where Kk_i denotes the i-th byte of ksRGB and
BIT_LUT is the bit-permutation lookup table.
Finally, the diffused output is reshaped back to the
original image dimensions to obtain the final
encrypted image:

final = reshape(m_i, shape(merged)).

Final encrypted image, all nonces used in the
encryption process, and the salt is retained as part of
encryption metadata.

Algorithm for the Encryption of Image is as follows:

Algorithm 1. Encrypt_Image(image, password)
salt «— RandomBytes(16)
master «— Derive Master Key(password, salt)

OPEN aAccsss IRIAEM

80

about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

https://doi.org/10.47392/IRJAEM.2026.0013

Kc¢ « Derive Subkey(master, "confusion")

Kr <« Derive Subkey(master, "diffusion-R"™)
Kg <« Derive Subkey(master, "diffusion-G")
Kb « Derive Subkey(master, "diffusion-B")

Krgb <« Derive Subkey(master, "diffusion-
RGB")
(perm, perm_nonce) —

Fisher_Yates Permutation(size(image), Kc)

confused «— Image is permuted according to
generated permutation

R « confused image is decomposed into its red
channel

G <« confused image is decomposed into its green
channel

B « confused image is decomposed into its blue
channel

r_nonce < RandomBytes(8)
g nonce < RandomBytes(8)
b_nonce <+ RandomBytes(8)

ksR < AES CTR Cipher(Kr, r nonce,
Length(R))
ksG <« AES CTR Cipher(Kg, g_nonce,
Length(G))
ksB <« AES CTR Cipher(Kb, b nonce,
Length(B))

BIT PERM « [2,5,1,7,0,3, 6, 4]
BIT LUT « Build LUT(BIT PERM)

R < Diffuse Encrypt(Flatten(R), ksR, BIT _LUT)
G <« Diffuse Encrypt(Flatten(G), ksG, BIT _LUT)
B < Diffuse Encrypt(Flatten(B), ksB, BIT _LUT)

merged «— Stack(R, G, B)

rgb nonce <— RandomBytes(8)

ksRGB « AES CTR_ Cipher(Krgb, rgb nonce,
Length(merged))

cipher « Diffuse Encrypt(Flatten(merged),

ksRGB, BIT_LUT)

return {cipher, perm, perm_nonce,
g_nonce, b_nonce, rgh_nonce, salt}
End Algorithm

r_nonce,

Function Derive_Master_Key(password, salt)
master «— Argon2i(
password,
salt,
time_cost = 3,
memory_cost = 65536,
parallelism = 2,
hash_len = 32
)
return master
End Function

Function Derive_Subkey(master, info)
key «— HKDF SHAZ256(master, info, length = 32)
return key

End Function

Function AES_CTR_Cipher(key, nonce, L)
ctr «— InitializeCounter(64, nonce, 0)
cipher «<— AES(key, mode = CTR, counter = ctr)
keystream «— Encrypt(cipher, ZeroBytes(L))
return keystream

End Function

Function Fisher_Yates Permutation(n, key)
perm «— [0, 1, 2, ..., n—1]
nonce «— RandomBytes(8)
keystream <« AES CTR_Cipher(key,
buffer_size)
for i < n—1 downto 1 do
j < UnbiasedRandom(keystream, i + 1)
swap(perm[i], perm[j])
end for
return (perm, nonce)

nonce,

OPEN aAccsss IRIAEM

81

about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

https://doi.org/10.47392/IRJAEM.2026.0013

End Function

Function Build_LUT (perm[8])
for x < 0to 255 do
y<0
fori« 0to 7 do
bit « (x >> perm[i]) AND 1
y <y OR (bit <<1i)
end for
lut[x] <y
end for
return lut
End Function

Function Diffuse_Encrypt(arr, k, lut)
prev < 0
for i < 0 to Length(arr) — 1 do
x «— arr[i] XOR k[i]
X «— (x + k[i] + prev) mod 256
out[i] « lut[x]
prev «— out[i]
end for
return out
End Function

2.3.Decryption Process
Image decryption is done in reverse order which
consists of two phases: Diffusion Phase (Phase 1) and
the Confusion Phase (Phase 2).

2.3.1. Diffusion Phase
The diffusion phase consists of successively undoing
the combined RGB diffusion, the channel-wise
diffusion. The following steps are followed during
diffusion
Stepl.Key generation
The encrypted metadata contains the cipher image,
permutation, salt, and all nonces required for
decryption. Using the input password and the stored
salt, the master key is regenerated:
master = Derive_Master_Key(password, salt)

From the master key, the same set of subkeys used
during encryption are re-derived:
Kc = Derive_Subkey(master, "confusion™)
Kr = Derive_Subkey(master, "diffusion-R")
Kg = Derive_Subkey(master, "diffusion-G")
Kb = Derive_Subkey(master, "diffusion-B")
Krgb = Derive_Subkey(master, "diffusion-RGB")
These keys ensure cryptographic consistency
between encryption and decryption.
Step 2. Reverse Combined RGB Diffusion
The cipher image is first processed to reverse the
final combined RGB diffusion stage applied during
encryption.
Using the stored RGB nonce (rgb_nonce) and the
RGB diffusion key Krgb, an AES-CTR keystream is
generated as:
ksRGB = AES_CTR(Krgb, rgb_nonce, |cipher])
The cipher image is flattened into a one-dimensional
array and decrypted using the inverse diffusion
process with the inverse lookup table
BIT_ PERM=[2,5,1,7,0, 3, 6, 4]
INV_BIT_PERM = [0,0,0,0,0,0,0,0]
fori<« 0to7do

p < BIT PERM][i]

INV_BIT PERM[p] « |
end for

(14)
(15)

INV_BIT_LUT = Build_LUT((INV_BIT_PERM)

c_i = cipher_i

b_i=INV_BIT_LUT[c_i] (16)
ai=(b i—k i—d (i-1))mod 256 17
m_i=a i XORKk i (18)
with the initial condition:

d(-1H=0

Here, k_i denotes the i-th byte of ksRGB, and
d_(i—1) represents the previous decrypted output
used as feedback.

The decrypted array is then reshaped back to the
original image dimensions to obtain the merged
RGB image:

merged = reshape(m_i, shape(cipher))

Step 3. Reverse Channel-wise Diffusion

The merged RGB image is decomposed into its
three color channels:

OPEN aAccsss IRIAEM

82

about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

T }
e m
=

i

https://doi.org/10.47392/IRJAEM.2026.0013

R = merged(:,:,1)

G = merged(:,:,2)

B = merged(:,:,3)

using the stored nonces r_nonce, g_nonce, and
b_nonce, AES-CTR keystreams are regenerated for
each channel:

ksR = AES_CTR(KTr, r_nonce, |R|)

ksG = AES_CTR(Kg, g_nonce, |G|)

ksB = AES_CTR(Kb, b_nonce, |B|)

Each channel is flattened and decrypted
independently using the inverse diffusion process:
For a flattened channel X € {R, G, B}:

c_i =encrypted_pixel

b i=INV_BIT_LUT[c_i] (19)
ai=(b i—-k i—d (i-1)) mod 256 (20)
X_i=a i XORK_i (21)
with the initial condition:

d (-1)=0

Here, x_i represents the recovered pixel value of the
channel, k_i is the corresponding keystream byte,
and d_(i—1) is the feedback term.
After decryption, each channel is reshaped back to
its original dimensions.
Step 4. Channel Merging
The decrypted red, green, and blue channels are
merged to reconstruct the spatially confused image:
merged = stack(R, G, B)

2.3.2. Confusion Phase
Reverse confusion phase restores the original spatial
arrangement of the image pixels by applying the
inverse of the permutation on the merged image
generated in the previous stage.
Step 1. Inverse Permutation Construction
The encrypted metadata contains the permutation
array perm that was used during the confusion stage
of encryption. To reverse this operation, the inverse
permutation array inv_perm is constructed such that
each index is mapped back to its original position.
The inverse permutation is computed as follows:
fori=0ton—1
inv_perm[perm[i]] = I (22)
where n denotes the total number of elements in the
image. This operation ensures that inv_perm
represents the exact inverse mapping of the original
permutation perm.
Step 2. Application of Inverse Permutation

The spatially diffused image merged is first
flattened into a one-dimensional array:

merged_flat = flatten(merged)

The inverse permutation is then applied to reorder
the pixel elements back to their original positions:
fori=0ton—1

original_flat[i] = merged_flat[inv_perm[i]] (23)
where n denotes the total number of elements in the
image.

Step 3. Image Reshaping

Finally, the permuted one-dimensional array is
reshaped back into the original image dimensions to
reconstruct the decrypted image:

original = reshape(original_flat) (24)

Algorithm for decrypting the image is as follows:

Algorithm 2. Decrypt_Image(bundle, password)
bundle = retrieve_from_storage()
cipher < bundle["cipher"]
perm <« bundle["perm"]
salt <« bundle["salt"]

Il Key regeneration
master «— DeriveMaster Key(password, salt)

Kc « Derive_Subkey(master, "confusion")

Kr <« Derive Subkey(master, "diffusion-R")

Kg <« Derive Subkey(master, "diffusion-G")

Kb <« Derive Subkey(master, "diffusion-B")

Krgb <« Derive Subkey(master, "diffusion-
RGB")

/l Reverse combined RGB diffusion

ksRGB < AES CTR_Cipher(Krgb,
bundle["rgb_nonce"], Length(cipher))

BIT PERM «[2,5,1,7,0,3,6,4]
INV_BIT PERM « [0,0,0,0,0,0,0,0]
fori«< 0to 7 do

p < BIT_PERM]i]

INV_BIT PERM][p] « i
end for

OPEN aAccsss IRIAEM

83

about:blank

e ISSN: 2584-2854

International Research Journal on Advanced Engineering
Volume: 04 Issue: 01

https://goldncloudpublications.com

January 2026
Page No: 075 - 093

Jmy

==

} and Management
N

https://doi.org/10.47392/IRJAEM.2026.0013

INV_BIT LUT «
Build_LUT(INV_BIT_PERM)

merged «— Diffuse Decrypt(Flatten(cipher),
ksRGB, INV_BIT_LUT)

merged < Reshape(merged, Shape(cipher))
/I Reverse channel-wise diffusion

R < merged][:,:,0]

G < merged|:,:,1]

B «— merged][:,:,2]

ksR «— AES CTR_Cipher(Kr, bundle["r _nonce"],

Length(R))

ksG — AES CTR_Cipher(Kg,
bundle["g_nonce"], Length(G))

ksB — AES CTR_Cipher(Kb,

bundle["b_nonce"], Length(B))

R < Diffuse Decrypt(Flatten(R), ksR,
INV_BIT_LUT)

G < Diffuse Decrypt(Flatten(G), ksG,
INV_BIT_LUT)

B — Diffuse Decrypt(Flatten(B), ksB,
INV_BIT_LUT)

R <« Reshape(R, Shape(merged[:,:,0]))
G <« Reshape(G, Shape(merged][:,:,1]))
B < Reshape(B, Shape(merged]:,:,2]))

merged «— Stack(R, G, B)

I/ Reverse confusion (inverse permutation)
inv_perm « Inverse Permutation(perm)

original < Flatten(merged)[inv_perm]
original «— Reshape(original, Shape(merged))
return original

End Algorithm

Function Inverse_Permutation(perm)
inv_perm «— Array of same length as perm

for i < 0 to Length(perm) — 1 do
inv_perm[perm[i]] < i
end for
return inv_perm
End Function

Function Diffuse_Decrypt(arr, k, inv_lut)
prev «— 0
for i < 0 to Length(arr) — 1 do
X «— inv_lut[arr[i]]
X «— (x — k[i] — prev) mod 256
out[i] « x XOR k][]
prev «— arr][i]
end for
return out
End Function

Flowchart for Encryption and Decryption image is
shown in Flowchart 1 and Flowchart 2.

3. Performance and Security Evaluation Results
In this section, we will check our encryption system
in terms of key space analysis, key sensitivity
analysis, histogram, entropy, correlation coefficient,
NPCR, UACI, PSNR and other values. Table 1 shows
the hardware, the software environment and the
image source. Three images - imgl, img2, and img3
—are used, which are related to endoscopy test images
of a medical nature.

3.1.Key Space

Table 1 Specification Table
Specification

12th Gen Intel(R)

Processor Core(TM) i5-12400
(2.50 GHz)
RAM 16.0 GB

Operating system Windows 11 Home

Programming

language Python

The Kvasir Dataset

Data source [35]

OPEN aAccsss IRIAEM

84

about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

https://doi.org/10.47392/IRJAEM.2026.0013

The proposed scheme derives a 256-bit master key using
Argon2i and HKDF, resulting in a cryptographic key

space of 2256. With this, our scheme provides resistance
against brute-force attacks due to its effective key space
exceeding 2128. Table 1 shows Specification Table

Generate Master key M ‘

using Argon2? key ‘L

derivation using password and
random salt

Diffusion Process

}47

Split confused image into

R, 5, and B channels

‘ Confustion Process

Generate 5 subkeys K1, K2, K3, K4 'L
and K5 using HKDF with master key

M, SHA-256 and and S separate

domains

Generate AES-CTR
keystreams separately
for R, =, and B channels

’

Generate 64-hit
nonce {Store for
decryption)

vy

Initialize AES-CTR with
key K1 and nonce

v

Initialize permutation
perm=[0,1,...,n"1]

!

Generate keystream
buffer
using AES-CTR

K1 Key

Fisher Yates permutation
wherei=n-1...2,1

» Extract 32-hit random value
= Apply rejection sampling
« Compute j = rand mod (i+1)
» Swap perm|[i] and permf[j]

K2, K3, K4, K5 i

using K2,K3, K4 Keys

Keys Apply channel-wise diffusion
with XOR, modular addition with

feedback, hit permutation

Merge diffused R, G, B
channels into RGE image

)

Generate AES-CTR
keystreams for combined RGE
diffusion using K5 Key
1

Apply combined diffasion
with XOR, modular addition with
feedback, hit permutation

1

Generate Encrypted Image

» Confused Image

Figure 2 Image Encryption Process

3.2.Key sensitivity analysis
Key sensitivity analysis is a method used to assess the
extent to which an encryption algorithm is influenced
by minor changes made to the secret key. A secure
algorithm shows high key sensitivity, to the change
of one bit in the key, resulting in an entirely different
cipher image. This is of utmost important as it stops
the attackers from taking advantage of the similarities
between the corresponding keys and guarantees the
resistance to both brute-force and related-key attacks.

Two tests are performed by giving correct key in the
first time, where

Kl=
9c7480080e302ac765f37f97706fe6761d231b5783
b8e13513b88061fac2826

Second test is performed by giving wrong key (one
bit change), where

K2=
9d7480080e302ac765f37f97706fe6761d231b5783b
b8e13513b88061fac2826

The Figure.2 illustrates the key sensitivity of the
proposed encryption scheme: the encrypted image

OPEN aAccsss IRIAEM

85

about:blank

International Research Journal on Advanced Engineering € ISSN: 2584-2854
Volume: 04 Issue: 01

and Manager_nen_t January 2026
https://goldncloudpublications.com Page No: 075 - 093
https://doi.org/10.47392/IRJAEM.2026.0013

appears random (Figure 2.b), decrypting the image incorrect key —K2 produces a noise-like image with
with correct key —K1 restores the original image (no recognizable structure (Figure 2 d).
Figure 2 c). However, decrypting with a slightly

Generate same Master key M
using Argon? key
derivation using password and
stored salt

Generate same 5 subkeys K1, K2, K3,
K4 and K5 using HKDF with master

key M, SHA-256 for 5 separate
| Encrypted Image | domains | Confusion Process |<ﬁ
‘ Diffusion Process ‘ K2 K3, K4 K5 [nitialize inverse permutation|
l v Keys array inv_perm
Generate same AES-CTR] l
keystreams using KS Compute inverse
Key and stored nonce permutation
l inv_perm[perml[i]] = i
with stored perm array
Apply reverse diffusion on
combined RGE channels with bit l
permutation, modular addition Re & pixels usin:
with feedback and XOR operation) € P N 2
inverse permutation on
‘L flattened merged image
Split image into Separate l
R, ¢, and B channels

‘ Generate original image

Generate same AES-CTH
keystreams separately
for R, 5, and E channels

using K2 ,K3,K4 Keys and

stored nonce

Apply channel-wise reverse diffusion
with bit permutation, modular
addition with feedbhack and XOR
operation

‘ Merged All

channels image

Figure 3 Image Decryption Process

(b) (b)

(<) (d)

Figure 4 (a) Original Image (b) Encrypted Image RS
(c) Decrypted Image with Correct Key (d) Figure 5 (a) Plain image (b) Histogram of plain
Decrypted Image with Wrong Key image (c) Encrypted image (d) Histogram of
encrypted image

3.3. Histogram Analysis
Histogram analysis studies the distribution of pixel
intensity values before and after encryption [2].

OPEN 8ACCESS IRIAEM 86

about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

https://doi.org/10.47392/IRJAEM.2026.0013

(a) ()

Figure 6 (a) Plain image img2 (b) Histogram of
plain image (c) Encrypted image (d) Histogram
of encrypted image

(@) ()

© ()

Figure 5 (a) Plain image img3 (b) Histogram of
plain image (c) Encrypted image (d) Histogram
of encrypted image

Referring to the Figure 3, 4 and 5, in the plain image,
the histograms of all three channels are unevenly
distributed with distinct peaks, reflecting the strong
spatial and statistical correlations. After encryption,
the histograms of the encrypted image are uniformly
distributed. As a result, the encrypted image does not
preserve any statistical characteristics of the original
image. This behaviour effectively hides pixel
intensity information and offers excellent resistance
against histogram-based and statistical attacks. The
Chi-square (y?) tests are done on histograms to
confirm the effectiveness of image encryption against

frequency attacks. This test checks if the histogram
of an encrypted image follows a uniform distribution.
The formula for the Chi-square (y?) test is shown
below.

. N\ 2
Chi_square = 2?33%
Where:

e O(i) = observed frequency of pixel value i

o E(i) = expected frequency of pixel value i

e i=0to 255 for an 8-bit image
The p-value is used as an another indicator to shows
whether the observed Chi-square value significantly
differs from a uniform distribution. For a secure
encryption algorithm, the p-value should be greater
than 0.05. In this case, the encrypted image acts like
random noise. The Table 2 displays the Chi-square
values and the corresponding p-values obtained from
the histogram analysis of the encrypted images. For
an 8-bit image, the expected Chi-square value for a
uniform distribution is about equal to the degrees of
freedom, which is 255. The observed Chi-square
values (239.95, 265.42, and 268.01) are all close to
this expected value, showing that the pixel intensity
distributions of the encrypted images resemble a
uniform distribution. The corresponding p-values
(0.7423, 0.3139, and 0.2755) are all significantly
higher than the commonly used significance
threshold of 0.05. This indicates that the null
hypothesis of a uniform distribution cannot be
rejected for any of the test images. The consistently
high p-values further confirm that the encrypted
images show strong randomness and do not reveal
statistical information through their histograms.

(25)

Table 2 Chi Square and p - Values

Image | Chi-square p-value
imgl 239.9453 0.7423
img2 265.4166 0.3139
Img3 268.0104 0.2755

3.4.Correlation analysis
In medical images, adjacent pixels (horizontal,
vertical, and diagonal) are highly correlated due to
spatial continuity. This correlation can be exploited

OPEN 8ACCESS IRJAEM

87

about:blank

International Research Journal on Advanced Engineering
and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

https://doi.org/10.47392/IRJAEM.2026.0013

by attackers if it is preserved after encryption.
Correlation analysis is used to evaluate how
effectively the proposed encryption scheme
eliminates the strong dependency between
neighboring pixels in an image. For the measurement
of this property, corresponding pixel pairs of adjacent
pixels are selected in the horizontal, vertical, and
diagonal directions, and the correlation coefficient is
computed using the standard formula:

Cov(xy)

F'= Ivarwvaro)

where x and y represent the color intensity values of
two neighboring pixels [3]. Strong similarity between
neighboring pixels is indicated by correlation
coefficients for the plain image, which are usually
close to 1. On the other hand, as shown in Figure 6,
and Table 3, the encrypted image produced by the
proposed scheme exhibits correlation coefficients
close to 0 in all directions and across all RGB
channels. This confirms the successful removal of
spatial dependencies and transforms the image into
statistically independent pixel values.

(26)

(a) (b)

Pixel j
=
S
e

50 100 150 200 0 50 100 150 200
Puxel | Pixel |

2501 R

200

=150
T
=
& 100

E) FR %

250

200
=150
]

X
%100

50

s

50 100 150 260 Z;O 0 50 100 150 200 250
Pixel | Pixel i

Figure 6 Adjacent pixel correlation of original
image img3 (a) Horizontal (b) Vertical (c)
Diagonal; Adjacent pixel correlation of
encrypted image img3 (d) Horizontal (e) Vertical

(f) Diagonal
Table 3 Correlation coefficients between adjacent pixels of Original image and Encrypted image
Original Image Encrypted Image
Horizontal Vertical Diagonal Horizontal Vertical Diagonal
imgl 0.9820 0.9842 0.9681 0.0002 0.0035 -0.0019
img2 0.9868 0.9829 0.9702 0.0031 -0.0005 0.0006
img3 0.9915 0.9786 0.9728 0.0016 -0.0020 0.0024

3.5.Differential Attack Analysis
Differential attack analysis is used to assess how well
an image encryption scheme responds to minor
changes in the plaintext image and whether those
changes result in large, unpredictable variations in the
encrypted output. A secure encryption algorithm

should make sure that even a tiny change in the input
image leads to significant changes in the encrypted
image [22, 26]. In our research, resistance to
differential attacks is obtained through key-
dependent pixel permutation, AES-CTR based
keystream mixing, nonlinear bit-level substitution,

OPEN aAccsss IRIAEM

88

about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

https://doi.org/10.47392/IRJAEM.2026.0013

and feedback-based diffusion. These methods ensure
that a small alteration in the plain image spreads
quickly across all pixels and color channels, creating
a strong avalanche effect. We measure how well this
works using NPCR (Number of Pixel Change Rate),
which shows the percentage of pixels that change in
the encrypted image, and UACI (Unified Average
Changing Intensity), which assesses the average
intensity difference between two encrypted images.
NPCR for R Channel

UACI for G Channel

UACL, = ((H*W)) * Zis1 21 255 *
100% (31)

UACI for B Channel
UACI, = ((H*w)) * YLy Z;’L% *

255
100% (32)

where H x W represents the height and width of
image which represents the size of the image, C1 and
C2 are two cipher images with only one different

NPCR, = ((H:w)) * YLy X%, Dr(1§) * 100% pixel. C1; and C2; represents the red channel of
27) encrypted image. If CLi(i, j) # C2(i, j), Di(i, j) = 1;
NPCR for G Channel otherwise, Di(i, j) = 0. This is similar to G and B
.. channels. The theoretical values of NPCR and UACI
NPCR = (i) * S D D)) » 100% (0% images are 99.6094% and 33.4635%,
(28) respectively. Referring Table 4. for the images img1,
NPCR for B Channel img2 and img3, the NPCR values are above
= 1 H yWw ii 99.60%.and the UACI values are near the ideal 33%.
NPCR,, = « Y YW Dy(1,j) * 100%
(29) b ((“*W)) Zi1 Zj=1 Do (1) ’ This shows strong diffusion characteristics and great
UACI for R Channel)) resistance to differential attacks.
0l = () BB ST
100% (30)
Table 4 NPCR and UACI values for R, G and B Channels
NPCR % UACI%
R G B | Mean NPCR R G B | Mean UACI
imgl 99.5803 | 99.6439 | 99.6201 | 99.0174 33.5507 333853 | 333198 | 334853
mg2 | 99.6337 | 99.5803 | 99.5936 | 99.6032 334857 33.483 335343 | 335039
img3 | 99.6429 | 99.5936 | 99.6063 | 99.6149 334425 335551 | 334025 | 3346067
House[22] | 99.6105 | 99.6077 | 99.6076 | 99.6086 334547 3346081 | 334735 | 334634
Img f]26] | 99.6094 | 99.6035 | 99.6177 | 99.6109 33,4633 334598 | 334702 | 334643

3.6.Information Entropy Analysis
Information entropy measures the randomness and
uncertainty of pixel values. A higher entropy, which
is closer to the theoretical maximum of 8 for
grayscale, indicates better security [22, 26].
Mathematically it is represented as

He = Y25 pe(i) log2 pe(i) (33)

where Hc is information entropy of a single color
channel which can be Red, Green, or Blue.)
(summation) indicates that the expression is summed
over all possible pixel intensity values. For gray-scale
image variable i has the value from 0 to 255. The pc(i)
represents the probability of occurrence of intensity

OPEN aAccsss IRIAEM

89

about:blank

International Research Journal on Advanced Engineering
and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

https://doi.org/10.47392/IRJAEM.2026.0013

value i in channel c. In this research, the information
entropy for each color channel is computed
separately. The overall entropy of the RGB image is
then defined as the average of the entropies of the red,
green, and blue channels. Table 5. shows the entropy
values of original image and encrypted image. After
encryption, the entropy values of the cipher images
for all three images img1, img2 and img3 are about
7.997. This is very close to the theoretical maximum
entropy of 8 bits for an 8-bit image. This near-ideal
entropy shows that the encrypted images have very
uniform pixel intensity distributions and act similarly
to random noise.

Table 5. Entropy of Original Image and Cipher

Image
Image Original Image | Cipher Image
imgl 7.2916 7.9971
img2 7.4086 7.9972
img3 7.4295 7.9972
House[22] | - 7.9974
Img_f[26] | - 7.9994

to measure how different two images are at the pixel
level. A lower MSE means that two images are very
similar, while a higher MSE shows large differences.

1

MSE = oW

Y [1G,)) - KG,DI? (34)
where 1(i,j) = pixel value of the original image at
position (i,j),

K(i,j) = pixel value of the decrypted image,

H = image height,

W = image width,

> =summation over all pixels

Peak Signal-to-Noise Ratio (PSNR)

PSNR measures the quality of a reconstructed
(decrypted) image compared to the original image. It
is expressed in decibels (dB) and comes from MSE.
In encryption, a high PSNR between the original and
decrypted images indicates correct decryption. A low
PSNR between the original and encrypted images
indicates strong encryption. Mathematically it is

represented as;
MAX?

PSNR = 10 * log10 (AX' (35)
3.7.Mean Squared Error (MSE) and Peak \yhore: MSE
Signal'tO'NOise Ratio (PSNR) AnaIySiS e MAX = maximum pOSSible pixel value

Mean Squared Error (MSE)

Mean Squared Error (MSE) measures the average
squared difference between two images. In image
encryption research, MSE is mainly used to check
correct decryption (original vs. decrypted image) and

(for 8-bit images, MAX = 255)
e MSE = mean squared error

Table 6 MSE and PSNR Values

Image MSE Original MSE Original | PSNR Original | PSNR Original
vs Encrypted vs Decrypted vs Encrypted vs Decrypted

imgl 12372.235 0 7.206322 0

img2 10466.141 0 7.9329 0

img3 9701.19 0 8.2625 0

The Table 6 shows the Mean Squared Error (MSE)
and Peak Signal-to-Noise Ratio (PSNR) values by
comparing the original image with its encrypted and
decrypted versions for three test images. For the
Original vs Encrypted images, the MSE values are
quite high, ranging from about 9701 to 12372. This

indicates a large pixel-wise difference between the
original and encrypted images. As a result, the PSNR
values are very low, about 7 to 8 dB. This confirms
that the encrypted images are heavily distorted and do
not resemble the original images. This outcome
shows strong confusion and diffusion of encryption

OPEN aAccsss IRIAEM

90

about:blank

International Research Journal on Advanced Engineering

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

Ty
7

and Management
https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

process. It makes the cipher images resilient to visual
and statistical attacks. For the Original vs Decrypted
images, the MSE values are zero for all test images,
and the PSNR values are infinite (c0). An MSE of zero
means there is no difference between the original and
decrypted images at any pixel position.
Consequently, PSNR becomes infinite, indicating
perfect reconstruction. This shows that the decryption
process is lossless and accurately recovers the
original image without any loss.
3.8.Encryption speed analysis

The proposed method achieves an encryption time of
0.17108 seconds. This is much lower than the
referred algorithms. This shows that the proposed
algorithm is efficient and fits well for time-sensitive
applications. In terms of encryption speed, the
proposed scheme reaches 9.19 Mbps. This is
significantly higher than the speeds of other referred
algorithms listed in Table 7. This improvement
comes from using efficient cryptographic tools like
AES-CTR for generating keystreams and optimizing
permutation and diffusion operations. Overall, the
results show that the proposed encryption scheme not
only offers strong security but also delivers better
performance than current methods. This makes it

suitable for real-time and large-scale image
encryption scenarios.
Table 7 Encryption Time and Speed
Encryption Encryptjlon
Time(s) Spee
(Mbps)
Ours 0.17108 9.19
Ref[2] 5.1 -
Ref[11] 0.324 1.618
Ref[12] 0.266 1.973
Conclusion

This study proposed a secure medical image
encryption scheme to address privacy and security
challenges associated with digital healthcare
systems. This method, is rooted in the context of a
confusion-diffusion architecture and the use of
password-derived key generation. It is capable of

effectively handling the peculiarities of the
medical images having high redundancy and
strong spatial correlation. Master key derivation
based on Argon2, subkeys of different domains,
secure pixel shuffling, and multi-layer diffusion
are all parts of the encryption process. The design
choices made here give rise to a very low pixel
correlation and a considerable increase in the
randomness of the cipher image. The results of the
experiments show that the achieved entropy is
close to the ideal level. The resistance to
differential and key sensitivity attacks is very
strong. The pixels are distributed uniformly.
Additionally, the correct key ensures an exact
reconstruction of the image with better
performance. The proposed method has a great
deal of security and low computational
requirements; thus, it can be regarded as an
excellent means for secure storage and
transmission of medical images. The performance
optimization and other types of medical data
extension will be the subject of future research.
References

[1]. Agarwal, S. (2018). A review of image
scrambling technique using chaotic maps.
International Journal of Engineering and
Technology Innovation, 8(2), 77-98.

[2]. Ran, W., Wang, E., & Tong, Z. (2022). A
double scrambling-DNA row and column
closed loop image encryption algorithm
based on chaotic system. PLoS ONE, 17(7),
€0267094.doi:10.1371/journal.pone.026709
4

[3]. Uddin, M., Jahan, F., Islam, M. K., &
Hassan, M. R. (2021). A novel DNA-based
key scrambling technique for image
encryption. Complex & Intelligent Systems,
7, 3241-3258.

[4]. Alsandi, N. S. A., Zebari, D. A., Haron, H.,
Zebari, R. R., & Zeebaree, S. R. M. (2021).
A multi-stream scrambling and DNA
encoding method based image encryption.
Journal of Information Security and
Applications, 58, 102735.

[5]. Gong, L.-H., Du, J., Wan, J., & Zhou, N.-R.
(2021). Image encryption scheme based on

OPEN aAccsss IRIAEM

91

about:blank

[6].

[7].

[8].

[9].

[10].

[11].

[12].

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

https://doi.org/10.47392/IRJAEM.2026.0013

block scrambling, closed-loop diffusion, and
DNA molecular mutation. Security and
Communication Networks, 2021:6627005,
1-16. d0i:10.1155/2021/6627005

Li, M., Pan, S., Mou, X., & Zhou, Y. (2019).
Medical image encryption algorithm based
on hyper-chaotic system and DNA coding.
Journal of Medical Imaging and Health
Informatics, 9(5), 1071-1082.

Anujaa, Amirtharajan, R., Thenmozhi, K., &
Rayappan, J. B. B. (2022). Lightweight
multi-round confusion—diffusion
cryptosystem for securing images using a
modified 5D chaotic system. Multimedia
Tools and Applications, 81(8), 10819-
10847.

Nakachi, T., Kato, Y., Fukuhara, T., &
Watanabe, K. (2022). Privacy protection in
JPEG XS: A lightweight spatio-color
scrambling approach. IEEE Transactions on
Circuits and Systems for Video Technology,
32(5), 2951-2965.

Ince, C., Ince, K., & Hanbay, D. (2022).
Novel image pixel scrambling technique for
efficient color image encryption in resource-
constrained 10T devices. IEEE Internet of
Things Journal, 9(5), 3554-3566.

Zang, W., Zhang, Y., Wang, X., & Zhu, Z.
(2021). Chaos-based color image encryption
with JPEG compression: Balancing security

and compression efficiency. Signal
Processing: Image Communication, 96,
116301.

Sheng, Y., Li,J., Zhang, Y., & Liu, Z. (2020).
An image encryption algorithm based on
complex network scrambling and multi-
directional diffusion. Signal Processing, 171,
107484.

doi: 10.1016/j.sigpro.2020.107484

Sheng, Y., & Li, J. (2021). Bit-level image
encryption algorithm based on fully-
connected-like network and random
modification of edge pixels. Information
Sciences, 565, 343-360.
doi: 10.1016/j.ins.2021.02.046

OPEN aAccsss IRIAEM

[13].

[14].

[15].

[16].

[17].

[18].

[19].

[20].

[21].

Zhang, H., Sun, W., & Lu, L. (2020). Chaotic
encryption algorithm with scrambling
diffusion based on the Josephus cycle.
Nonlinear Dynamics, 99(3), 2291-2310.
doi: 10.1007/s11071-019-05407-9

Guan, Z. (2021). A novel and fast encryption
system based on improved Josephus
scrambling and chaotic mapping. Optik, 231,
166406.

doi: 10.1016/j.ijle0.2021.166406

Huang, Y., & Bi, X. (2021). Development of
a novel hyperchaos-based image encryption
algorithm consisting of two scrambling—
diffusion operations. Multimedia Tools and
Applications, 80(4), 5417-5440.doi:
10.1007/s11042-020-09932-8

Tang, Y. (2019). Image encryption scheme
based on hyper-chaotic map and self-
adaptive diffusion. Signal Processing: Image
Communication, 74, 189-201. doi:
10.1016/j.image.2019.02.005

Mawla, N. A., & Khafaji, H. K. (2023).
Enhancing data security: A cutting-edge
approach utilizing protein chains in
cryptography and steganography. Journal of
Information Security and Applications, 75,
103514.doi: 10.1016/j.jisa.2023.103514
Wang, T., Ge, B., Xia, C., & Dai, G. (2021).
Multi-image encryption algorithm based on
cascaded modulation chaotic system and
block-scrambling-diffusion. Chaos, Solitons
& Fractals, 148, 111024.
doi: 10.1016/j.chaos.2021.111024

Chen, Z., Ma, C., Wang, T., Feng, Y., Hou,
X., & Qian, X. (2021). Robust image
compression—encryption via scrambled
block Bernoulli sampling with diffusion
noise. Signal Processing, 181, 107909.
doi: 10.1016/j.sigpro.2020.107909

Satpute, N. R., & Hajare, H. (2018).
Scrambling with image processing.
International ~ Journal of Computer
Applications, 180(44), 15-19.

Zulfigar, N., Ahmad, T., Ghazal, T. M.,
Ikram, A., & Khan, M. A. (2022). Securing
digital images: A chaos-driven scrambling

92

about:blank

[22].

[23].

[24].

[25].

[26].

[27].

[28].

[29].

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 04 Issue: 01
January 2026

Page No: 075 - 093

https://doi.org/10.47392/IRJAEM.2026.0013

algorithm using the Rossler
Mathematics, 10(3),

doi: 10.3390/math10030443

Ge, B., Shen, Z, & Wang, X. (2020).
Symmetric color image encryption using a
novel cross-plane joint scrambling—diffusion
method. Signal Processing: Image
Communication, 83, 115773.
doi: 10.1016/j.image.2019.115773

Thomas, M. Y. S. (2020). Image encryption
algorithm with block scrambling based on
logistic map. Procedia Computer Science,
171, 906-915.
doi: 10.1016/j.procs.2020.04.098

Wang, J., & Liu, L. (2020). A novel chaos-
based image encryption using magic square
scrambling and octree diffusing. Multimedia
Tools and Applications, 79(7), 4897-4923.
doi: 10.1007/s11042-019-08306-4
Sanaboina, C. S. (2020). A novel chaos-
based cryptographic scrambling technique to
secure medical images. International Journal
of Medical Engineering and Informatics,
12(3), 249-264.
doi: 10.1504/IIMEI.2020.107331

Setiadi, D. R. I. M., Rachmawanto, E. H., &

system.
1-20.

Sari, C. A. (2022). Medical image
cryptosystem using dynamic Josephus
sequence and chaotic-hash scrambling.

Journal of King Saud University — Computer
and Information Sciences, 34(5), 2030-2042.
doi: 10.1016/j.jksuci.2020.10.006

Abusham, E. (2020). An integration of new
digital image scrambling technique on PCA-
based face recognition system. Journal of
King Saud University — Computer and
Information Sciences, 32(4), 507-516.
doi: 10.1016/j.jksuci.2018.11.004

Liu, Y., Chen, Z., Zhang, X., & Zhao, J.
(2023). A state-of-the-art review of diffusion
model applications for microscopic image
and micro-alike image analysis. Atrtificial
Intelligence Review, 56(2), 1109-1150.
doi: 10.1007/s10462-022-10250-9

Chen, H., Yang, Y., Zhong, N., & Ma, K.
(2023). Hiding images in diffusion models by

OPEN aAccsss IRIAEM

[30].

[31].

[32].

[33].

[34].

[35].

editing learned score functions. In
Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition
(pp. 18900-18909).
doi: 10.1109/CVPR52729.2023.01814
Alsubael, F. S., Alhassan, A., & Alshahrani,
A. M. (2022). Block-scrambling-based
encryption with deep-learning-driven remote
sensing image classification. Remote
Sensing, 14(19), 4829.
doi: 10.3390/rs14194829

Sharma, V. K., Sharma, A. K., & Kumar, R.
(2021). Secret image scrambling and DWT-
based image steganography using smoothing
operation and convolution neural networks.
Multimedia Tools and Applications, 80(19),
29767-29792.

doi: 10.1007/s11042-021-10954-4

George, A. T., Kumar, S. S., & Kumar, R. S.
(2020). Argon2: The secure password
hashing function. International Journal of
Engineering Research & Technology, 9(6),
721-725.

Eum, S., Kim, J.,, & Park, J. H. (2021).
Optimized implementation of Argon2
utilizing the graphics processing unit. IEEE
Access, 9, 148321-148334.
doi: 10.1109/ACCESS.2021.3124206
Malliga, L., Priyanka, S., & Suresh, R.
(2019). A new secure data hiding AES-CTR
key modulation. International Journal of
Advanced Research in Computer and
Communication Engineering, 8(4), 38-43.
doi: 10.17148/1JARCCE.2019.8406
Pogorelov, K., Randel, K. R., Griwodz, C.,
Eskeland, S. L., de Lange, T., Johansen, D.,
& Halvorsen, P. (2017). Kvasir: A multi-
class image dataset for computer aided
gastrointestinal ~ disease detection. In
Proceedings of ACM Multimedia Systems

Conference (MMSys’17). ACM.
doi: 10.1145/3083187.3083212. Kvasir
Dataset (Kaggle).

https://www.kaggle.com/datasets/yasserhess
ein/the-kvasir-dataset

93

about:blank
https://www.kaggle.com/datasets/yasserhessein/the-kvasir-dataset
https://www.kaggle.com/datasets/yasserhessein/the-kvasir-dataset

