

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 75

A Secure Medical Image Scrambling Using Argon2i, AES-CTR with

Feedback-Based Diffusion
Ms. Lakshmamma T1, Dr. Lakshmi J V N2
1Phd Scholar, School of Computer Science and Application, Reva University, Bangalore 560064, Karnataka,

India.
2Associate Professor, School of Computer Science and Application, Reva University, Bangalore 560064,

Karnataka, India.

Emails: lakshmammat69@gmail.com1, lakshmi.jvn@reva.edu.in2

Abstract

The modern healthcare systems consider the secure transmission and storage of medical images as vital

because of the sensitivity of patient data and the strict privacy regulations. This paper presents a secure and

reversible RGB medical image scrambling and encryption scheme that aims to defend diagnostic images from

unauthorized access, while, guaranteeing the integrity of the data. A 512- bit master key is generated through

the memory-hard Argon2i algorithm which makes the system extremely resistant to brute-force and dictionary

attacks. Domain-separated subkeys are generated using master key via AES in counter (CTR) mode. These

subkeys are utilized at confusion and diffusion stages of the encryption and decryption process. The image

confusion is performed with the use of a Fisher-Yates permutation which is controlled by cryptographically

secure keystreams thereby disrupting spatial pixel relationships. The diffusion is done at both single colour

channel and total colour channel levels utilizing a feedback-based mechanism that combines XOR operation,

modular addition, and bit-level permutation. Both confusion and diffusion process ensures a strong avalanche

effect across the entire image. Performance analysis shows that the proposed method provides an effective

balance between security and computational efficiency, making it suitable for secure storage and transmission

of medical images in telemedicine and healthcare information systems.

Keywords: AES-CTR; Argon2i; Feedback-Based Diffusion; Medical Image encryption; Medical Image

scrambling.

1. Introduction

Healthcare systems are experiencing a rapid shift

toward digital technologies. As part of this

transformation, medical imaging has become central

to clinical practice, with widespread use of

endoscopic imaging, magnetic resonance imaging

(MRI), computed tomography (CT), ultrasound,

treatment planning, and long-term storage of patient

records. These digital images play a vital role in

supporting clinical decision-making. However, their

increasing use has also introduced significant

concerns related to data security and patient privacy.

Unauthorized access, modification, or manipulation

of these images constitutes a serious breach of

privacy and may result in misdiagnosis,

compromised treatment decisions, or legal

consequences. For these reasons, protecting medical

images has become an essential requirement in

modern healthcare environments. Ensuring

confidentiality, integrity, and authenticity during

both storage and transmission is now a critical

component of medical information systems.

Conventional cryptographic techniques, which were

primarily developed for text-based data, are not

always suitable for securing medical images, because

medical images are typically large in size and exhibit

high redundancy and strong spatial correlation

between adjacent pixels. Even a minimal loss or

distortion of image details can adversely affect

diagnostic accuracy. This has led to the development

of image-specific encryption techniques. Confusion

and diffusion is one of the image scrambling

techniques used to effectively disrupt pixel

about:blank
mailto:lakshmammat69@gmail.com1

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 76

relationships in images to prevent the unauthorized

interpretation of the image [12].

1.1. Literature Review

There has been a lot of research on scrambling-

diffusion image encryption schemes, and the majority

of these schemes rely on chaos for their pseudo-

randomness. The initial surveys point out that chaos

maps are very effective in image scrambling and

encryption [1]. The chaotic image scrambling

techniques such as those based on the Josephus cycle

[13, 14], logistic map [23], Rossler system [21], and

hyper-chaotic systems with multiple control

parameters [15, 16] have been proposed for securing

the images using chaos map features. Moreover,

some researchers have researched on of employing

DNA encoding and molecular mutation concepts as

image encryption to increase the security level.

Among the methods are double scrambling combined

with DNA row–column operations [2], DNA-based

key scrambling [3], multi-stream scrambling with

DNA encoding [4], and closed-loop diffusion with

DNA mutation [5]. They've paved the way for a

significant resistance against the two most common

attacks, namely statistical and differential ones. Also,

medical-image encryption systems employing hyper-

chaotic systems and DNA coding are reported to have

very strong security performance for sensitive

clinical data [6,25,26]. Additionally, biologically

inspired approaches such as protein-chain-based

cryptography have been explored to enhance

cryptographic complexity [17]. At the same time,

lightweight and block-based encryption algorithms

were created to solve the problem of limited

resources in IoT and telemedicine applications. These

algorithms includes the multi-round confusion-

diffusion cryptosystems [7], and spatio-color

scrambling techniques compatible with JPEG [8],

device-constrained color image encryption [9],

chaos-based encryption combined with JPEG

compression [10]. More advanced designs

incorporate complex network scrambling and multi-

directional diffusion [11], bit-level encryption with

fully connected networks [12], and hyper-chaotic

self-adaptive diffusion mechanisms [18]. New

inventions in image security research have targeted

deep learning, diffusion models, and hybrid

encryption–compression frameworks as recent

trends. These include diffusion-model-based image

protection [28,29], deep-learning-assisted block-

scrambling encryption for remote sensing images

[30], CNN-assisted scrambling and steganography

[31], and robust compression–encryption using

scrambled block sampling [19].

1.2. Research Gap

Although there are a variety of image encryption

methods available, there are still some limitations that

can be highlighted. A lot of chaos-based algorithms

are dependent on floating-point arithmetic, which

makes these algorithms subject to the limitations of

precise representation of numbers, numerical

instability, and behavior that is dependent on the

specific implementation. All these things can cause a

reduction in the size of the possible key space and the

ability to reproduce the results. Another problem is

that a lot of schemes directly use user passwords or

chaotic parameters as keys without proper key

derivation methods, leaving them open to related-

key, dictionary, and brute-force attacks. Besides that,

even though the DNA-based and hyper-chaotic

methods provide a remarkable amount of nonlinearity

and diffusion strength, they are still quite

computationally expensive compared to other

methods. In addition, some of the lightweight

encryption methods provide low-security levels in

order to be efficient while others provide high

security but not fast enough for real-time

applications. All these drawbacks call for an

encryption framework for medical images that is not

only cryptographically secure but also efficient and

lossless, and at the same time incorporates image-

specific operations together with modern key

management techniques.

1.3. Objectives

To address the above research gaps, this research

aims to develop a secure, lossless, and efficient

medical image encryption scheme that integrates

modern cryptographic techniques with image-

oriented confusion and diffusion mechanisms. The

specific objectives of this research are as follows:

 To design a robust password-based master

key generation using argon 2i, a password-

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 77

based key derivation function to resist brute-

force and side channel attacks.

 To derive independent, domain-separated

subkeys from the master key using HKDF

(HMAC-based Key Derivation Function)

with SHA-256 for using different keys for

confusion and diffusion stages.

 To implement a pixel position scrambling

method – confusion stage - for eliminating

spatial correlations in medical images by

using a secure permutation method.

 To develop a multi-stage diffusion

framework, including channel-wise and

combined RGB diffusion with nonlinear

feedback and bit-level permutation, so that a

strong avalanche effect can be assured.

 To guarantee perfect lossless decryption, to

ensure diagnostic integrity and clinical

reliability of medical images is preserved.

2. Method

This study is based on medical image scrambling,

which involves scrambling medical images through

confusion and diffusion processes.

2.1.Relevant Knowledge

2.1.1. Argon 2i and HKDF-Based Key

Derivation

The proposed image encryption technique uses

Argon2i and HKDF-Based Derivation mode for

Master key and 5 Sub keys generation. Argon2i is a

memory-hard password hashing function. It is

designed for strong defense against side-channel

attacks, making it ideal for key derivation [32, 33]. It

generates master key based on the password provided

by the user and a randomly selected salt.

General form

Argon2i(password, salt, time_cost, memory_cost,

parallelism, hash_length)

Parameter Description

 password: User provided password

 salt: Random value combined with password

to improve security

 time_cost (t): Number of iterations over

memory

 memory_cost (m): Amount of memory used,

typically in kilobytes

 parallelism (p): Number of parallel lanes or

threads

 hash_length (l): Desired length of the output

key in bytes

The addition of a random salt ensures that even two

perfectly matching passwords will not yield the same

master keys, thus stopping the precomputation and

rainbow-table attacks. In the process of using

Argon2i, a constant 256-bit master key is produced.

HMAC-based Key Derivation Function (HKDF) is

used to create a number of domain separated subkeys

that are independent from each other and derived

from master key.

General Form

hkdf = HKDF(hash, length, salt,info)

subkey = hkdf.derive(master_key)

HKDF Parameters

 hash : underlying hash function. We used

SHA256 as its collision resistance and

pseudorandom properties ensure secure key

expansion.

 length:
Specifies the length (in bytes) of the derived

subkey. In this project, a 32-byte (256-bit)

output is used for all cryptographic keys.

 salt = None:
When no salt is provided, HKDF uses an

implicit zero-valued salt. This is acceptable in

this design because the input key material (the

Argon2i-derived master key) already has high

entropy and includes a salt from the Argon2i

stage.

 info:
The info parameter is a context-specific

identifier used for domain separation. The

info parameter is used to derive distinct

subkeys for different stages of the encryption

algorithm as given below,

Kc = HKDF(master_key, info = "confusion")

2.1.2. AES in Counter (CTR) Mode

AES in Counter (CTR) mode is a symmetric-key

encryption mode that transforms the Advanced

Encryption Standard (AES) block cipher into a

stream cipher. AES can be initialized in Counter

(CTR) mode using a user-specified key and nonce.

This construction transforms AES into a stream

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 78

cipher capable of generating a cryptographically

secure keystream. The keystreams generated using

AES-CTR act as pseudorandom sequences which are

using in confusion and diffusion phases [34]. In this

research, a counter object is created with a total size

of 64 bits and is initialized with an explicit nonce as

its prefix. The nonce occupies the most significant 64

bits of the input block, while the remaining 64 bits are

used as an incrementing counter starting from zero.

This results in a 128-bit input block, which matches

the AES block size. Formally, each counter block

input to AES is constructed as:

 Input_block_i = nonce || counter_i

 where counter_i is a 64-bit integer that

increments sequentially for each block, and ||

denotes concatenation.

The AES encryption function is then applied to each

input block using the secret key to generate a

keystream block. The resulting keystream is used for

encryption or decryption by XORing it with the data

stream. The explicit use of a nonce ensures that each

AES-CTR instance produces a unique keystream,

even when the same key is reused.

2.1.3. Fisher–Yates algorithm

In the proposed image encryption algorithm, the

Fisher–Yates permutation is employed during the

confusion phase to achieve strong spatial scrambling

of image pixels. The Fisher–Yates algorithm

generates a uniformly random permutation of a finite

sequence. The following operations performed for

the Fisher–Yates Permutation

 The input image is flattened into a one-

dimensional array to allow global

permutation across all pixel positions.

 Random indices for the permutation are

derived from an AES-CTR–based keystream,

providing cryptographically secure

randomness.

 A unique nonce is used to initialize AES-

CTR, ensuring permutation uniqueness across

encryption sessions.

 Rejection sampling is applied during index

selection to eliminate modulo bias and

guarantee uniform distribution.

 During each iteration of the algorithm, a

random index is selected from a shrinking

range and swapped with the current element.

 The resulting permutation vector is stored as

encryption metadata and inverted during

decryption to recover the original pixel

ordering.

2.2.Encryption Process

Encryption of image is achieved by conducting

experiments on the endoscopic tested medical

images. These images are center-cropped to a square

region and resized to 256X256 pixels using bicubic

interpolation. The following procedure is followed

during the process.

2.2.1. Generation of master and sub key

Step 1. Salt Generation

 A 128-bit random salt is generated using a

cryptographically secure random number

generator:

 salt ∈ {0,1}^128

 The salt ensures that identical passwords

result in distinct master keys and provides

resistance against precomputation and

rainbow-table attacks. The salt is stored as

part of the encryption metadata.

Step 2. Master Key Derivation

 Using the input password and the generated

salt, a master key is derived through a

memory-hard key derivation function:

 master = Derive_Master_Key(password, salt)

 This function applies Argon2i with fixed

time, memory, and parallelism parameters to

produce a 256-bit master key.

Step 3. Domain-Separated Subkey Derivation

 From the master key, multiple independent

subkeys are derived using a key derivation

function with domain separation.

 Kc = Derive_Subkey(master, "confusion")

Kr = Derive_Subkey(master, "diffusion-R")

Kg = Derive_Subkey(master, "diffusion-G")

Kb = Derive_Subkey(master, "diffusion-B")

Krgb = Derive_Subkey(master, "diffusion-

RGB")

 Image encryption is done in two phases: The

Confusion Phase (Phase 1) and the Diffusion

Phase (Phase 2).

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 79

2.2.2. Phase 1- Confusion Phase

During the confusion phase, a Fisher–Yates

permutation is constructed based on the total pixels

of the image. The following steps are followed.

Step 1. Nonce generation

 A nonce is generated randomly

 perm_nonce ∈ {0,1}^64

 This nonce ensures that a unique permutation

is produced when the same key is reused and

it will be stored as part of the encryption

metadata

Step 2. AES-CTR Initialization

 Using the confusion subkey Kc and the

generated nonce perm_nonce, an AES cipher

is initialized in counter (CTR) mode:

 cipher = AES_CTR(Kc, perm_nonce)

Step 3. Permutation Array Initialization

for i = 0 to n − 1

perm[i] = i,

where n denotes the total number of image elements

(n = image.size).

Step 4. Keystream Buffering

 To improve computational efficiency, a

fixed-size keystream buffer is generated by

encrypting a zero-filled byte array:

 BUFFER_SIZE = 1024 × 16 bytes

buffer = AES_CTR(Kc, perm_nonce,

BUFFER_SIZE)

Step 5. Fisher–Yates Shuffle with Rejection

Sampling (To perform shuffling as shown in

Figure 1)

For each index i from n − 1 down to 1

“A 32-bit random value is extracted from the

keystream buffer:”

rnd = buffer[offset : offset + 4]

“To eliminate modulo bias, the extracted random

value is accepted only if it satisfies the condition. If

the condition is not met, the value is discarded and a

new random value is drawn.”

rnd < 2^32 − (2^32 mod (i + 1)) (1)

“Once an acceptable random value is obtained, an

unbiased index j is computed as”

j = rnd mod (i + 1) (2)

“The elements at positions i and j in the permutation

array are swapped”

perm[i] ↔ perm[j] (3)

Step 6. Image Flattening

The input image is first converted into a one-

dimensional array to enable global permutation

across all pixel positions:

 image_flat = flatten(image)

Step 7. Permutation Application

The flattened image is permuted using the generated

permutation vector perm as follows:

for i = 0 to n – 1

confused_flat[i] = image_flat[perm[i]] (4)

where n denotes the total number of elements in the

image. Figure 1 shows Confusion stage. (a) Pixel

Positions Before Confusion. (b) Pixel Positions After

Confusion

Step 8. Image Reshaping

The permuted one-dimensional array is reshaped

back into the original image dimensions to obtain the

spatially confused image:

Ic = reshape(confused_flat, shape(image)) (5)

Figure 1 Confusion stage. (a) Pixel Positions

Before Confusion. (b) Pixel Positions After

Confusion

2.2.3. Phase 2- Diffusion Phase

After confusion, diffusion is done on confused image

in two stages: one on a channel-wise diffusion and

another on the diffusion of the whole RGB channels

at once. For channel-wise diffusion, the red, green,

and blue channels are processed independently. Each

channel employs a unique AES-CTR keystreams

generated using its corresponding subkey and nonce.

The detailed steps of diffusion can be described as

follows

Step 1.

The confused image – Ic - is decomposed into its

three color channels as follows:

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 80

R = Ic(:,:,1)

G = Ic(:,:,2)

B = Ic(:,:,3)

Step 2.

Using the corresponding diffusion keys Kr, Kg, and

Kb, independent AES-CTR keystreams are generated

for each channel. The keystream generation is

defined as:

ksR = AES_CTR(Kr, r_nonce, |R|)

ksG = AES_CTR(Kg, g_nonce, |G|)

ksB = AES_CTR(Kb, b_nonce, |B|)

where |R|, |G|, and |B| denote the number of pixels in

the respective channels.

Step 3.

Build lookup table using BIT_LUT function

A fixed bit-permutation vector is defined as:

perm = [2, 5, 1, 7, 0, 3, 6, 4].

A lookup table lut of size 256 is constructed

for x ← 0 to 255 do

 y ← 0

 for i ← 0 to 7 do

 “Extract the bit at position perm[i] from x”

 bit ← (x >> perm[i]) AND 1 (6)

 “Place this bit into position i of y”

 y ← y OR (bit << i) (7)

 end for

 “After processing all 8 bit positions, the resulting

value y represents the bit-permuted version of x and

is stored in the lookup table”

 lut[x] ← y

 end for

This lut lookup table is used in process of diffusion

operation of single and merged RGB channels

Step 4.

Each color channel is flattened into a one-

dimensional array.

For a flattened channel X in {R, G, B}, the diffusion

operation is performed sequentially as follows:

u_i = x_i XOR k_i (8)

v_i = (u_i + k_i + y_(i-1)) mod 256 (9)

y_i = BIT_LUT[v_i] (10)

with the initial condition:

y_(-1) = 0.

Here, x_i represents the i-th pixel of the flattened

channel, k_i is the corresponding keystream byte,

y_(i-1) is the previous encrypted output (feedback),

and y_i is the encrypted output pixel.

Step 5.
The encrypted channels are merged to form the final

encrypted image as:

merged = stack(R', G', B'),

where R', G', and B' denote the diffused red, green,

and blue channels, respectively.

To further enhance inter-channel diffusion, a final

combined diffusion stage is applied. First, a new

independent 64-bit random nonce is generated:

 rgb_nonce ∈ {0,1}^64.

Using the RGB diffusion key Krgb and the generated

nonce, an AES-CTR keystream is produced:

ksRGB = AES_CTR(Krgb, rgb_nonce, |merged|),

where |merged| denotes the total number of elements

in the merged RGB image.

The merged image is then flattened into a one-

dimensional array:

 m_i = flatten(merged),

and encrypted using the same diffusion mechanism

as:

a_i = m_i XOR k_i (11)

b_i = (a_i + k_i + c_(i−1)) mod 256 (12)

c_i = BIT_LUT[b_i] (13)

with the initial condition:

c_(−1) = 0,

where k_i denotes the i-th byte of ksRGB and

BIT_LUT is the bit-permutation lookup table.

Finally, the diffused output is reshaped back to the

original image dimensions to obtain the final

encrypted image:

final = reshape(m_i, shape(merged)).

Final encrypted image, all nonces used in the

encryption process, and the salt is retained as part of

encryption metadata.

Algorithm for the Encryption of Image is as follows:

Algorithm 1. Encrypt_Image(image, password)

 salt ← RandomBytes(16)

 master ← Derive_Master_Key(password, salt)

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 81

 Kc ← Derive_Subkey(master, "confusion")

 Kr ← Derive_Subkey(master, "diffusion-R")

 Kg ← Derive_Subkey(master, "diffusion-G")

 Kb ← Derive_Subkey(master, "diffusion-B")

 Krgb ← Derive_Subkey(master, "diffusion-

RGB")

 (perm, perm_nonce) ←

Fisher_Yates_Permutation(size(image), Kc)

 confused ← Image is permuted according to

generated permutation

 R ← confused image is decomposed into its red

channel

 G ← confused image is decomposed into its green

channel

 B ← confused image is decomposed into its blue

channel

 r_nonce ← RandomBytes(8)

 g_nonce ← RandomBytes(8)

 b_nonce ← RandomBytes(8)

 ksR ← AES_CTR_Cipher(Kr, r_nonce,

Length(R))

 ksG ← AES_CTR_Cipher(Kg, g_nonce,

Length(G))

 ksB ← AES_CTR_Cipher(Kb, b_nonce,

Length(B))

 BIT_PERM ← [2, 5, 1, 7, 0, 3, 6, 4]

 BIT_LUT ← Build_LUT(BIT_PERM)

 R ← Diffuse_Encrypt(Flatten(R), ksR, BIT_LUT)

 G ← Diffuse_Encrypt(Flatten(G), ksG, BIT_LUT)

 B ← Diffuse_Encrypt(Flatten(B), ksB, BIT_LUT)

 merged ← Stack(R, G, B)

 rgb_nonce ← RandomBytes(8)

 ksRGB ← AES_CTR_Cipher(Krgb, rgb_nonce,

Length(merged))

 cipher ← Diffuse_Encrypt(Flatten(merged),

ksRGB, BIT_LUT)

 return {cipher, perm, perm_nonce, r_nonce,

g_nonce, b_nonce, rgb_nonce, salt}

End Algorithm

__

Function Derive_Master_Key(password, salt)

 master ← Argon2i(

 password,

 salt,

 time_cost = 3,

 memory_cost = 65536,

 parallelism = 2,

 hash_len = 32

)

 return master

End Function

__

Function Derive_Subkey(master, info)

 key ← HKDF_SHA256(master, info, length = 32)

 return key

End Function

__

Function AES_CTR_Cipher(key, nonce, L)

 ctr ← InitializeCounter(64, nonce, 0)

 cipher ← AES(key, mode = CTR, counter = ctr)

 keystream ← Encrypt(cipher, ZeroBytes(L))

 return keystream

End Function

__

Function Fisher_Yates_Permutation(n, key)

 perm ← [0, 1, 2, ..., n−1]

 nonce ← RandomBytes(8)

 keystream ← AES_CTR_Cipher(key, nonce,

buffer_size)

 for i ← n−1 downto 1 do

 j ← UnbiasedRandom(keystream, i + 1)

 swap(perm[i], perm[j])

 end for

 return (perm, nonce)

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 82

End Function

__

Function Build_LUT(perm[8])

 for x ← 0 to 255 do

 y ← 0

 for i ← 0 to 7 do

 bit ← (x >> perm[i]) AND 1

 y ← y OR (bit << i)

 end for

 lut[x] ← y

 end for

 return lut

End Function

__

Function Diffuse_Encrypt(arr, k, lut)

 prev ← 0

 for i ← 0 to Length(arr) − 1 do

 x ← arr[i] XOR k[i]

 x ← (x + k[i] + prev) mod 256

 out[i] ← lut[x]

 prev ← out[i]

 end for

 return out

End Function

__

2.3.Decryption Process

 Image decryption is done in reverse order which

consists of two phases: Diffusion Phase (Phase 1) and

the Confusion Phase (Phase 2).

2.3.1. Diffusion Phase

The diffusion phase consists of successively undoing

the combined RGB diffusion, the channel-wise

diffusion. The following steps are followed during

diffusion

Step1.Key generation

The encrypted metadata contains the cipher image,

permutation, salt, and all nonces required for

decryption. Using the input password and the stored

salt, the master key is regenerated:

master = Derive_Master_Key(password, salt)

From the master key, the same set of subkeys used

during encryption are re-derived:

Kc = Derive_Subkey(master, "confusion")

Kr = Derive_Subkey(master, "diffusion-R")

Kg = Derive_Subkey(master, "diffusion-G")

Kb = Derive_Subkey(master, "diffusion-B")

Krgb = Derive_Subkey(master, "diffusion-RGB")

These keys ensure cryptographic consistency

between encryption and decryption.

Step 2. Reverse Combined RGB Diffusion

The cipher image is first processed to reverse the

final combined RGB diffusion stage applied during

encryption.

Using the stored RGB nonce (rgb_nonce) and the

RGB diffusion key Krgb, an AES-CTR keystream is

generated as:

ksRGB = AES_CTR(Krgb, rgb_nonce, |cipher|)

The cipher image is flattened into a one-dimensional

array and decrypted using the inverse diffusion

process with the inverse lookup table

BIT_PERM = [2, 5, 1, 7, 0, 3, 6, 4]

INV_BIT_PERM = [0,0,0,0,0,0,0,0]

for i ← 0 to 7 do

 p ← BIT_PERM[i] (14)

 INV_BIT_PERM[p] ← I (15)

end for

INV_BIT_LUT = Build_LUT((INV_BIT_PERM)

c_i = cipher_i

b_i = INV_BIT_LUT[c_i] (16)

a_i = (b_i − k_i − d_(i−1)) mod 256 (17)

m_i = a_i XOR k_i (18)

with the initial condition:

d_(−1) = 0

Here, k_i denotes the i-th byte of ksRGB, and

d_(i−1) represents the previous decrypted output

used as feedback.

The decrypted array is then reshaped back to the

original image dimensions to obtain the merged

RGB image:

merged = reshape(m_i, shape(cipher))

Step 3. Reverse Channel-wise Diffusion

The merged RGB image is decomposed into its

three color channels:

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 83

R = merged(:,:,1)

G = merged(:,:,2)

B = merged(:,:,3)

using the stored nonces r_nonce, g_nonce, and

b_nonce, AES-CTR keystreams are regenerated for

each channel:

ksR = AES_CTR(Kr, r_nonce, |R|)

ksG = AES_CTR(Kg, g_nonce, |G|)

ksB = AES_CTR(Kb, b_nonce, |B|)

Each channel is flattened and decrypted

independently using the inverse diffusion process:

For a flattened channel X ∈ {R, G, B}:

c_i = encrypted_pixel

b_i = INV_BIT_LUT[c_i] (19)

a_i = (b_i − k_i − d_(i−1)) mod 256 (20)

x_i = a_i XOR k_i (21)

with the initial condition:

d_(−1) = 0

Here, x_i represents the recovered pixel value of the

channel, k_i is the corresponding keystream byte,

and d_(i−1) is the feedback term.

After decryption, each channel is reshaped back to

its original dimensions.

Step 4. Channel Merging

The decrypted red, green, and blue channels are

merged to reconstruct the spatially confused image:

merged = stack(R, G, B)

2.3.2. Confusion Phase

Reverse confusion phase restores the original spatial

arrangement of the image pixels by applying the

inverse of the permutation on the merged image

generated in the previous stage.

Step 1. Inverse Permutation Construction
The encrypted metadata contains the permutation

array perm that was used during the confusion stage

of encryption. To reverse this operation, the inverse

permutation array inv_perm is constructed such that

each index is mapped back to its original position.

The inverse permutation is computed as follows:

for i = 0 to n − 1

inv_perm[perm[i]] = I (22)

where n denotes the total number of elements in the

image. This operation ensures that inv_perm

represents the exact inverse mapping of the original

permutation perm.

Step 2. Application of Inverse Permutation

The spatially diffused image merged is first

flattened into a one-dimensional array:

merged_flat = flatten(merged)

The inverse permutation is then applied to reorder

the pixel elements back to their original positions:

for i = 0 to n − 1

original_flat[i] = merged_flat[inv_perm[i]] (23)

where n denotes the total number of elements in the

image.

Step 3. Image Reshaping
Finally, the permuted one-dimensional array is

reshaped back into the original image dimensions to

reconstruct the decrypted image:

original = reshape(original_flat) (24)

Algorithm for decrypting the image is as follows:

Algorithm 2. Decrypt_Image(bundle, password)

 bundle = retrieve_from_storage()

 cipher ← bundle["cipher"]

 perm ← bundle["perm"]

 salt ← bundle["salt"]

 // Key regeneration

 master ← Derive_Master_Key(password, salt)

 Kc ← Derive_Subkey(master, "confusion")

 Kr ← Derive_Subkey(master, "diffusion-R")

 Kg ← Derive_Subkey(master, "diffusion-G")

 Kb ← Derive_Subkey(master, "diffusion-B")

 Krgb ← Derive_Subkey(master, "diffusion-

RGB")

 // Reverse combined RGB diffusion

 ksRGB ← AES_CTR_Cipher(Krgb,

bundle["rgb_nonce"], Length(cipher))

 BIT_PERM ← [2, 5, 1, 7, 0, 3, 6, 4]

 INV_BIT_PERM ← [0,0,0,0,0,0,0,0]

 for i ← 0 to 7 do

 p ← BIT_PERM[i]

 INV_BIT_PERM[p] ← i

 end for

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 84

 INV_BIT_LUT ←

Build_LUT(INV_BIT_PERM)

 merged ← Diffuse_Decrypt(Flatten(cipher),

ksRGB, INV_BIT_LUT)

 merged ← Reshape(merged, Shape(cipher))

 // Reverse channel-wise diffusion

 R ← merged[:,:,0]

 G ← merged[:,:,1]

 B ← merged[:,:,2]

 ksR ← AES_CTR_Cipher(Kr, bundle["r_nonce"],

Length(R))

 ksG ← AES_CTR_Cipher(Kg,

bundle["g_nonce"], Length(G))

 ksB ← AES_CTR_Cipher(Kb,

bundle["b_nonce"], Length(B))

 R ← Diffuse_Decrypt(Flatten(R), ksR,

INV_BIT_LUT)

 G ← Diffuse_Decrypt(Flatten(G), ksG,

INV_BIT_LUT)

 B ← Diffuse_Decrypt(Flatten(B), ksB,

INV_BIT_LUT)

 R ← Reshape(R, Shape(merged[:,:,0]))

 G ← Reshape(G, Shape(merged[:,:,1]))

 B ← Reshape(B, Shape(merged[:,:,2]))

 merged ← Stack(R, G, B)

 // Reverse confusion (inverse permutation)

 inv_perm ← Inverse_Permutation(perm)

 original ← Flatten(merged)[inv_perm]

 original ← Reshape(original, Shape(merged))

 return original

End Algorithm

__

__

Function Inverse_Permutation(perm)

 inv_perm ← Array of same length as perm

 for i ← 0 to Length(perm) − 1 do

 inv_perm[perm[i]] ← i

 end for

 return inv_perm

End Function

__

Function Diffuse_Decrypt(arr, k, inv_lut)

 prev ← 0

 for i ← 0 to Length(arr) − 1 do

 x ← inv_lut[arr[i]]

 x ← (x − k[i] − prev) mod 256

 out[i] ← x XOR k[i]

 prev ← arr[i]

 end for

 return out

End Function

__

Flowchart for Encryption and Decryption image is

shown in Flowchart 1 and Flowchart 2.

3. Performance and Security Evaluation Results

In this section, we will check our encryption system

in terms of key space analysis, key sensitivity

analysis, histogram, entropy, correlation coefficient,

NPCR, UACI, PSNR and other values. Table 1 shows

the hardware, the software environment and the

image source. Three images - img1, img2, and img3

– are used, which are related to endoscopy test images

of a medical nature.

3.1.Key Space

Table 1 Specification Table

Specification

Processor

12th Gen Intel(R)

Core(TM) i5-12400

(2.50 GHz)

RAM 16.0 GB

Operating system Windows 11 Home

Programming

language
Python

Data source
The Kvasir Dataset

[35]

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 85

The proposed scheme derives a 256-bit master key using

Argon2i and HKDF, resulting in a cryptographic key

space of 2256. With this, our scheme provides resistance

against brute-force attacks due to its effective key space

exceeding 2128. Table 1 shows Specification Table

Figure 2 Image Encryption Process

3.2.Key sensitivity analysis

Key sensitivity analysis is a method used to assess the

extent to which an encryption algorithm is influenced

by minor changes made to the secret key. A secure

algorithm shows high key sensitivity, to the change

of one bit in the key, resulting in an entirely different

cipher image. This is of utmost important as it stops

the attackers from taking advantage of the similarities

between the corresponding keys and guarantees the

resistance to both brute-force and related-key attacks.

Two tests are performed by giving correct key in the

first time, where

 K1=

9c7480080e302ac765f37f97706fe6761d231b5783

b8e13513b88061fac2826

Second test is performed by giving wrong key (one

bit change), where

K2=

9d7480080e302ac765f37f97706fe6761d231b5783b

b8e13513b88061fac2826

The Figure.2 illustrates the key sensitivity of the

proposed encryption scheme: the encrypted image

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 86

appears random (Figure 2.b), decrypting the image

with correct key –K1 restores the original image (

Figure 2 c). However, decrypting with a slightly

incorrect key –K2 produces a noise-like image with

no recognizable structure (Figure 2 d).

Figure 3 Image Decryption Process

Figure 4 (a) Original Image (b) Encrypted Image

(c) Decrypted Image with Correct Key (d)

Decrypted Image with Wrong Key

3.3. Histogram Analysis

Histogram analysis studies the distribution of pixel

intensity values before and after encryption [2].

Figure 5 (a) Plain image (b) Histogram of plain

image (c) Encrypted image (d) Histogram of

encrypted image

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 87

Figure 6 (a) Plain image img2 (b) Histogram of

plain image (c) Encrypted image (d) Histogram

of encrypted image

Figure 5 (a) Plain image img3 (b) Histogram of

plain image (c) Encrypted image (d) Histogram

of encrypted image

Referring to the Figure 3, 4 and 5, in the plain image,

the histograms of all three channels are unevenly

distributed with distinct peaks, reflecting the strong

spatial and statistical correlations. After encryption,

the histograms of the encrypted image are uniformly

distributed. As a result, the encrypted image does not

preserve any statistical characteristics of the original

image. This behaviour effectively hides pixel

intensity information and offers excellent resistance

against histogram-based and statistical attacks. The

Chi-square (χ²) tests are done on histograms to

confirm the effectiveness of image encryption against

frequency attacks. This test checks if the histogram

of an encrypted image follows a uniform distribution.

The formula for the Chi-square (χ²) test is shown

below.

Chi_square = ∑
(O(i)− E(i))

2

E(i)

255
i=0 (25)

Where:

 O(i) = observed frequency of pixel value i

 E(i) = expected frequency of pixel value i

 i = 0 to 255 for an 8-bit image

The p-value is used as an another indicator to shows

whether the observed Chi-square value significantly

differs from a uniform distribution. For a secure

encryption algorithm, the p-value should be greater

than 0.05. In this case, the encrypted image acts like

random noise. The Table 2 displays the Chi-square

values and the corresponding p-values obtained from

the histogram analysis of the encrypted images. For

an 8-bit image, the expected Chi-square value for a

uniform distribution is about equal to the degrees of

freedom, which is 255. The observed Chi-square

values (239.95, 265.42, and 268.01) are all close to

this expected value, showing that the pixel intensity

distributions of the encrypted images resemble a

uniform distribution. The corresponding p-values

(0.7423, 0.3139, and 0.2755) are all significantly

higher than the commonly used significance

threshold of 0.05. This indicates that the null

hypothesis of a uniform distribution cannot be

rejected for any of the test images. The consistently

high p-values further confirm that the encrypted

images show strong randomness and do not reveal

statistical information through their histograms.

Table 2 Chi Square and p - Values

Image Chi-square p-value

img1 239.9453 0.7423

img2 265.4166 0.3139

Img3 268.0104 0.2755

3.4.Correlation analysis

In medical images, adjacent pixels (horizontal,

vertical, and diagonal) are highly correlated due to

spatial continuity. This correlation can be exploited

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 88

by attackers if it is preserved after encryption.

Correlation analysis is used to evaluate how

effectively the proposed encryption scheme

eliminates the strong dependency between

neighboring pixels in an image. For the measurement

of this property, corresponding pixel pairs of adjacent

pixels are selected in the horizontal, vertical, and

diagonal directions, and the correlation coefficient is

computed using the standard formula:

r =
Cov(x,y)

√{Var(x)∗Var(y)}
 (26)

where x and y represent the color intensity values of

two neighboring pixels [3]. Strong similarity between

neighboring pixels is indicated by correlation

coefficients for the plain image, which are usually

close to 1. On the other hand, as shown in Figure 6,

and Table 3, the encrypted image produced by the

proposed scheme exhibits correlation coefficients

close to 0 in all directions and across all RGB

channels. This confirms the successful removal of

spatial dependencies and transforms the image into

statistically independent pixel values.

Figure 6 Adjacent pixel correlation of original

image img3 (a) Horizontal (b) Vertical (c)

Diagonal; Adjacent pixel correlation of

encrypted image img3 (d) Horizontal (e) Vertical

(f) Diagonal

Table 3 Correlation coefficients between adjacent pixels of Original image and Encrypted image

 Original Image Encrypted Image

 Horizontal Vertical Diagonal Horizontal Vertical Diagonal

img1 0.9820 0.9842 0.9681 0.0002 0.0035 -0.0019

img2 0.9868 0.9829 0.9702 0.0031 -0.0005 0.0006

img3 0.9915 0.9786 0.9728 0.0016 -0.0020 0.0024

3.5.Differential Attack Analysis

Differential attack analysis is used to assess how well

an image encryption scheme responds to minor

changes in the plaintext image and whether those

changes result in large, unpredictable variations in the

encrypted output. A secure encryption algorithm

should make sure that even a tiny change in the input

image leads to significant changes in the encrypted

image [22, 26]. In our research, resistance to

differential attacks is obtained through key-

dependent pixel permutation, AES-CTR based

keystream mixing, nonlinear bit-level substitution,

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 89

and feedback-based diffusion. These methods ensure

that a small alteration in the plain image spreads

quickly across all pixels and color channels, creating

a strong avalanche effect. We measure how well this

works using NPCR (Number of Pixel Change Rate),

which shows the percentage of pixels that change in

the encrypted image, and UACI (Unified Average

Changing Intensity), which assesses the average

intensity difference between two encrypted images.

NPCR for R Channel

𝐍𝐏𝐂𝐑𝐫 = (
𝟏

(𝐇∗𝐖)
) ∗ ∑ ∑ 𝐃𝐫(𝐢, 𝐣)𝐖

𝐣=𝟏 𝐇
𝐢=𝟏 ∗ 𝟏𝟎𝟎%

(27)

NPCR for G Channel

𝐍𝐏𝐂𝐑𝐠 = (
𝟏

(𝐇∗𝐖)
) ∗ ∑ ∑ 𝐃𝐠(𝐢, 𝐣)𝐖

𝐣=𝟏 𝐇
𝐢=𝟏 ∗ 𝟏𝟎𝟎%

(28)

NPCR for B Channel

𝐍𝐏𝐂𝐑𝐛 = (
𝟏

(𝐇∗𝐖)
) ∗ ∑ ∑ 𝐃𝐛(𝐢, 𝐣)𝐖

𝐣=𝟏 𝐇
𝐢=𝟏 ∗ 𝟏𝟎𝟎%

(29)

UACI for R Channel

𝐔𝐀𝐂𝐈𝐫 = (
𝟏

(𝐇∗𝐖)
) ∗ ∑ ∑

|𝐂𝟏𝐫(𝐢,𝐣)−𝐂𝟐𝐫(𝐢,𝐣)|

𝟐𝟓𝟓

𝐖
𝐣=𝟏 𝐇

𝐢=𝟏 ∗

 𝟏𝟎𝟎% (30)

UACI for G Channel

𝐔𝐀𝐂𝐈𝐠 = (
𝟏

(𝐇∗𝐖)
) ∗ ∑ ∑

|𝐂𝟏𝐠(𝐢,𝐣)−𝐂𝟐𝐠(𝐢,𝐣)|

𝟐𝟓𝟓

𝐖
𝐣=𝟏 𝐇

𝐢=𝟏 ∗

 𝟏𝟎𝟎% (31)

UACI for B Channel

𝐔𝐀𝐂𝐈𝐛 = (
𝟏

(𝐇∗𝐖)
) ∗ ∑ ∑

|𝐂𝟏𝐛(𝐢,𝐣)−𝐂𝟐𝐛(𝐢,𝐣)|

𝟐𝟓𝟓

𝐖
𝐣=𝟏 𝐇

𝐢=𝟏 ∗

 𝟏𝟎𝟎% (32)

where H × W represents the height and width of

image which represents the size of the image, C1 and

C2 are two cipher images with only one different

pixel. C1r and C2r represents the red channel of

encrypted image. If C1r(i, j) ≠ C2r(i, j), Dr(i, j) = 1;

otherwise, Dr(i, j) = 0. This is similar to G and B

channels. The theoretical values of NPCR and UACI

for 8 bit images are 99.6094% and 33.4635%,

respectively. Referring Table 4. for the images img1,

img2 and img3, the NPCR values are above

99.60%.and the UACI values are near the ideal 33%.

This shows strong diffusion characteristics and great

resistance to differential attacks.

Table 4 NPCR and UACI values for R, G and B Channels

3.6.Information Entropy Analysis

Information entropy measures the randomness and

uncertainty of pixel values. A higher entropy, which

is closer to the theoretical maximum of 8 for

grayscale, indicates better security [22, 26].

Mathematically it is represented as

Hc = ∑ pc(i) log2 pc(i)255
i=0 (33)

where Hc is information entropy of a single color

channel which can be Red, Green, or Blue. ∑

(summation) indicates that the expression is summed

over all possible pixel intensity values. For gray-scale

image variable i has the value from 0 to 255. The pc(i)

represents the probability of occurrence of intensity

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 90

value i in channel c. In this research, the information

entropy for each color channel is computed

separately. The overall entropy of the RGB image is

then defined as the average of the entropies of the red,

green, and blue channels. Table 5. shows the entropy

values of original image and encrypted image. After

encryption, the entropy values of the cipher images

for all three images img1, img2 and img3 are about

7.997. This is very close to the theoretical maximum

entropy of 8 bits for an 8-bit image. This near-ideal

entropy shows that the encrypted images have very

uniform pixel intensity distributions and act similarly

to random noise.

Table 5. Entropy of Original Image and Cipher

Image

Image Original Image Cipher Image

img1 7.2916 7.9971

img2 7.4086 7.9972

img3 7.4295 7.9972

House[22] - 7.9974

Img_f[26] - 7.9994

3.7.Mean Squared Error (MSE) and Peak

Signal-to-Noise Ratio (PSNR) Analysis

Mean Squared Error (MSE)

Mean Squared Error (MSE) measures the average

squared difference between two images. In image

encryption research, MSE is mainly used to check

correct decryption (original vs. decrypted image) and

to measure how different two images are at the pixel

level. A lower MSE means that two images are very

similar, while a higher MSE shows large differences.

𝐌𝐒𝐄 =
𝟏

(𝐇∗𝐖)
 ∑ [𝐈(𝐢, 𝐣) − 𝐊(𝐢, 𝐣)]𝟐 (34)

where I(i,j) = pixel value of the original image at

position (i,j),

K(i,j) = pixel value of the decrypted image,

H = image height,

W = image width,

∑ = summation over all pixels

Peak Signal-to-Noise Ratio (PSNR)

PSNR measures the quality of a reconstructed

(decrypted) image compared to the original image. It

is expressed in decibels (dB) and comes from MSE.

In encryption, a high PSNR between the original and

decrypted images indicates correct decryption. A low

PSNR between the original and encrypted images

indicates strong encryption. Mathematically it is

represented as;

𝐏𝐒𝐍𝐑 = 𝟏𝟎 ∗ 𝐥𝐨𝐠𝟏𝟎 (
 𝐌𝐀𝐗²

𝐌𝐒𝐄
) (35)

Where:

 MAX = maximum possible pixel value

(for 8-bit images, MAX = 255)

 MSE = mean squared error

Table 6 MSE and PSNR Values

Image
MSE Original

vs Encrypted

MSE Original

vs Decrypted

PSNR Original

vs Encrypted

PSNR Original

vs Decrypted

img1 12372.235 0 7.206322 ∞

img2 10466.141 0 7.9329 ∞

img3 9701.19 0 8.2625 ∞

The Table 6 shows the Mean Squared Error (MSE)

and Peak Signal-to-Noise Ratio (PSNR) values by

comparing the original image with its encrypted and

decrypted versions for three test images. For the

Original vs Encrypted images, the MSE values are

quite high, ranging from about 9701 to 12372. This

indicates a large pixel-wise difference between the

original and encrypted images. As a result, the PSNR

values are very low, about 7 to 8 dB. This confirms

that the encrypted images are heavily distorted and do

not resemble the original images. This outcome

shows strong confusion and diffusion of encryption

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 91

process. It makes the cipher images resilient to visual

and statistical attacks. For the Original vs Decrypted

images, the MSE values are zero for all test images,

and the PSNR values are infinite (∞). An MSE of zero

means there is no difference between the original and

decrypted images at any pixel position.

Consequently, PSNR becomes infinite, indicating

perfect reconstruction. This shows that the decryption

process is lossless and accurately recovers the

original image without any loss.

3.8.Encryption speed analysis

The proposed method achieves an encryption time of

0.17108 seconds. This is much lower than the

referred algorithms. This shows that the proposed

algorithm is efficient and fits well for time-sensitive

applications. In terms of encryption speed, the

proposed scheme reaches 9.19 Mbps. This is

significantly higher than the speeds of other referred

algorithms listed in Table 7. This improvement

comes from using efficient cryptographic tools like

AES-CTR for generating keystreams and optimizing

permutation and diffusion operations. Overall, the

results show that the proposed encryption scheme not

only offers strong security but also delivers better

performance than current methods. This makes it

suitable for real-time and large-scale image

encryption scenarios.

Table 7 Encryption Time and Speed

Encryption

Time(s)

Encryption

Speed

(Mbps)

Ours 0.17108 9.19

Ref[2] 5.1 -

Ref[11] 0.324 1.618

Ref[12] 0.266 1.973

Conclusion

This study proposed a secure medical image

encryption scheme to address privacy and security

challenges associated with digital healthcare

systems. This method, is rooted in the context of a

confusion-diffusion architecture and the use of

password-derived key generation. It is capable of

effectively handling the peculiarities of the

medical images having high redundancy and

strong spatial correlation. Master key derivation

based on Argon2, subkeys of different domains,

secure pixel shuffling, and multi-layer diffusion

are all parts of the encryption process. The design

choices made here give rise to a very low pixel

correlation and a considerable increase in the

randomness of the cipher image. The results of the

experiments show that the achieved entropy is

close to the ideal level. The resistance to

differential and key sensitivity attacks is very

strong. The pixels are distributed uniformly.

Additionally, the correct key ensures an exact

reconstruction of the image with better

performance. The proposed method has a great

deal of security and low computational

requirements; thus, it can be regarded as an

excellent means for secure storage and

transmission of medical images. The performance

optimization and other types of medical data

extension will be the subject of future research.

References

[1]. Agarwal, S. (2018). A review of image

scrambling technique using chaotic maps.

International Journal of Engineering and

Technology Innovation, 8(2), 77–98.

[2]. Ran, W., Wang, E., & Tong, Z. (2022). A

double scrambling–DNA row and column

closed loop image encryption algorithm

based on chaotic system. PLoS ONE, 17(7),

e0267094.doi:10.1371/journal.pone.026709

4

[3]. Uddin, M., Jahan, F., Islam, M. K., &

Hassan, M. R. (2021). A novel DNA-based

key scrambling technique for image

encryption. Complex & Intelligent Systems,

7, 3241–3258.

[4]. Alsandi, N. S. A., Zebari, D. A., Haron, H.,

Zebari, R. R., & Zeebaree, S. R. M. (2021).

A multi-stream scrambling and DNA

encoding method based image encryption.

Journal of Information Security and

Applications, 58, 102735.

[5]. Gong, L.-H., Du, J., Wan, J., & Zhou, N.-R.

(2021). Image encryption scheme based on

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 92

block scrambling, closed-loop diffusion, and

DNA molecular mutation. Security and

Communication Networks, 2021:6627005,

1–16. doi:10.1155/2021/6627005

[6]. Li, M., Pan, S., Mou, X., & Zhou, Y. (2019).

Medical image encryption algorithm based

on hyper-chaotic system and DNA coding.

Journal of Medical Imaging and Health

Informatics, 9(5), 1071–1082.

[7]. Anujaa, Amirtharajan, R., Thenmozhi, K., &

Rayappan, J. B. B. (2022). Lightweight

multi-round confusion–diffusion

cryptosystem for securing images using a

modified 5D chaotic system. Multimedia

Tools and Applications, 81(8), 10819–

10847.

[8]. Nakachi, T., Kato, Y., Fukuhara, T., &

Watanabe, K. (2022). Privacy protection in

JPEG XS: A lightweight spatio-color

scrambling approach. IEEE Transactions on

Circuits and Systems for Video Technology,

32(5), 2951–2965.

[9]. İnce, C., İnce, K., & Hanbay, D. (2022).

Novel image pixel scrambling technique for

efficient color image encryption in resource-

constrained IoT devices. IEEE Internet of

Things Journal, 9(5), 3554–3566.

[10]. Zang, W., Zhang, Y., Wang, X., & Zhu, Z.

(2021). Chaos-based color image encryption

with JPEG compression: Balancing security

and compression efficiency. Signal

Processing: Image Communication, 96,

116301.

[11]. Sheng, Y., Li, J., Zhang, Y., & Liu, Z. (2020).

An image encryption algorithm based on

complex network scrambling and multi-

directional diffusion. Signal Processing, 171,

107484.

doi: 10.1016/j.sigpro.2020.107484

[12]. Sheng, Y., & Li, J. (2021). Bit-level image

encryption algorithm based on fully-

connected-like network and random

modification of edge pixels. Information

Sciences, 565, 343–360.

doi: 10.1016/j.ins.2021.02.046

[13]. Zhang, H., Sun, W., & Lu, L. (2020). Chaotic

encryption algorithm with scrambling

diffusion based on the Josephus cycle.

Nonlinear Dynamics, 99(3), 2291–2310.

doi: 10.1007/s11071-019-05407-9

[14]. Guan, Z. (2021). A novel and fast encryption

system based on improved Josephus

scrambling and chaotic mapping. Optik, 231,

166406.

doi: 10.1016/j.ijleo.2021.166406

[15]. Huang, Y., & Bi, X. (2021). Development of

a novel hyperchaos-based image encryption

algorithm consisting of two scrambling–

diffusion operations. Multimedia Tools and

Applications, 80(4), 5417–5440.doi:

10.1007/s11042-020-09932-8

[16]. Tang, Y. (2019). Image encryption scheme

based on hyper-chaotic map and self-

adaptive diffusion. Signal Processing: Image

Communication, 74, 189–201. doi:

10.1016/j.image.2019.02.005

[17]. Mawla, N. A., & Khafaji, H. K. (2023).

Enhancing data security: A cutting-edge

approach utilizing protein chains in

cryptography and steganography. Journal of

Information Security and Applications, 75,

103514.doi: 10.1016/j.jisa.2023.103514

[18]. Wang, T., Ge, B., Xia, C., & Dai, G. (2021).

Multi-image encryption algorithm based on

cascaded modulation chaotic system and

block-scrambling-diffusion. Chaos, Solitons

& Fractals, 148, 111024.

doi: 10.1016/j.chaos.2021.111024

[19]. Chen, Z., Ma, C., Wang, T., Feng, Y., Hou,

X., & Qian, X. (2021). Robust image

compression–encryption via scrambled

block Bernoulli sampling with diffusion

noise. Signal Processing, 181, 107909.

doi: 10.1016/j.sigpro.2020.107909

[20]. Satpute, N. R., & Hajare, H. (2018).

Scrambling with image processing.

International Journal of Computer

Applications, 180(44), 15–19.

[21]. Zulfiqar, N., Ahmad, T., Ghazal, T. M.,

Ikram, A., & Khan, M. A. (2022). Securing

digital images: A chaos-driven scrambling

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2026.0013

e ISSN: 2584-2854

Volume: 04 Issue: 01

January 2026

Page No: 075 - 093

 IRJAEM 93

algorithm using the Rössler system.

Mathematics, 10(3), 1–20.

doi: 10.3390/math10030443

[22]. Ge, B., Shen, Z., & Wang, X. (2020).

Symmetric color image encryption using a

novel cross-plane joint scrambling–diffusion

method. Signal Processing: Image

Communication, 83, 115773.

doi: 10.1016/j.image.2019.115773

[23]. Thomas, M. Y. S. (2020). Image encryption

algorithm with block scrambling based on

logistic map. Procedia Computer Science,

171, 906–915.

doi: 10.1016/j.procs.2020.04.098

[24]. Wang, J., & Liu, L. (2020). A novel chaos-

based image encryption using magic square

scrambling and octree diffusing. Multimedia

Tools and Applications, 79(7), 4897–4923.

doi: 10.1007/s11042-019-08306-4

[25]. Sanaboina, C. S. (2020). A novel chaos-

based cryptographic scrambling technique to

secure medical images. International Journal

of Medical Engineering and Informatics,

12(3), 249–264.

doi: 10.1504/IJMEI.2020.107331

[26]. Setiadi, D. R. I. M., Rachmawanto, E. H., &

Sari, C. A. (2022). Medical image

cryptosystem using dynamic Josephus

sequence and chaotic-hash scrambling.

Journal of King Saud University – Computer

and Information Sciences, 34(5), 2030–2042.

doi: 10.1016/j.jksuci.2020.10.006

[27]. Abusham, E. (2020). An integration of new

digital image scrambling technique on PCA-

based face recognition system. Journal of

King Saud University – Computer and

Information Sciences, 32(4), 507–516.

doi: 10.1016/j.jksuci.2018.11.004

[28]. Liu, Y., Chen, Z., Zhang, X., & Zhao, J.

(2023). A state-of-the-art review of diffusion

model applications for microscopic image

and micro-alike image analysis. Artificial

Intelligence Review, 56(2), 1109–1150.

doi: 10.1007/s10462-022-10250-9

[29]. Chen, H., Yang, Y., Zhong, N., & Ma, K.

(2023). Hiding images in diffusion models by

editing learned score functions. In

Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition

(pp. 18900–18909).

doi: 10.1109/CVPR52729.2023.01814

[30]. Alsubaei, F. S., Alhassan, A., & Alshahrani,

A. M. (2022). Block-scrambling-based

encryption with deep-learning-driven remote

sensing image classification. Remote

Sensing, 14(19), 4829.

doi: 10.3390/rs14194829

[31]. Sharma, V. K., Sharma, A. K., & Kumar, R.

(2021). Secret image scrambling and DWT-

based image steganography using smoothing

operation and convolution neural networks.

Multimedia Tools and Applications, 80(19),

29767–29792.

doi: 10.1007/s11042-021-10954-4

[32]. George, A. T., Kumar, S. S., & Kumar, R. S.

(2020). Argon2: The secure password

hashing function. International Journal of

Engineering Research & Technology, 9(6),

721–725.

[33]. Eum, S., Kim, J., & Park, J. H. (2021).

Optimized implementation of Argon2

utilizing the graphics processing unit. IEEE

Access, 9, 148321–148334.

doi: 10.1109/ACCESS.2021.3124206

[34]. Malliga, L., Priyanka, S., & Suresh, R.

(2019). A new secure data hiding AES-CTR

key modulation. International Journal of

Advanced Research in Computer and

Communication Engineering, 8(4), 38–43.

doi: 10.17148/IJARCCE.2019.8406

[35]. Pogorelov, K., Randel, K. R., Griwodz, C.,

Eskeland, S. L., de Lange, T., Johansen, D.,

& Halvorsen, P. (2017). Kvasir: A multi-

class image dataset for computer aided

gastrointestinal disease detection. In

Proceedings of ACM Multimedia Systems

Conference (MMSys’17). ACM.

doi: 10.1145/3083187.3083212. Kvasir

Dataset (Kaggle).

https://www.kaggle.com/datasets/yasserhess

ein/the-kvasir-dataset

about:blank
https://www.kaggle.com/datasets/yasserhessein/the-kvasir-dataset
https://www.kaggle.com/datasets/yasserhessein/the-kvasir-dataset

