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Abstract

The goal of this study is to provide a new contraction mapping in b-metric space. We build a fixed point
result for this new contraction mapping; we also provide applications related to authenticity concerns in
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1. Introduction

One of the most important theorems and helpful
tools in the investigation of metric spaces is
Banach’s contraction principle. Different fixed-point
theorems have been established in these spaces and
several generalizations of the idea of metric space
have been built, (see [4], [8], [12], [13]). In
particular, the b-metric spaces were introduced by
Bakhtin [2] and Czerwik [6] so that the triangle
inequality was replaced by the b-triangle inequality.
A b-metric space is not always a metric space, but
any metric space is also a b-metric space. Numerous
fixed-point results have been found on these spaces
(see [7], [14], [15]). In a novel class of contraction
mappings called @—contraction (or JS-contraction)
introduced by Jleli and Samet [7] in 2014, they
showed a fixed point result in generalized metric
spaces. In this direction, several fixed point
theorems have been created, investigated, and
generalised in a variety of conditions (see [9]-[11]).
Most recently, Rossafi et al. [5] developed a new
concept of “6@—g@—contraction” and some fixed
point discovering for these mappings in metric space
and generalized the conclusions obtained by Zheng
et al [16]. In this paper, we demonstrate the fixed-
point theorem in b-metric space and introduce a
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novel concept known as generalized 6—¢—
contraction. The results of this study develop the
corresponding findings in b—metric space from
Kannan [8], Reich [13], and Rossafi [15]. As an
application, we discuss the existence and
uniqueness of a solution to the nonlinear
Fredholm integral equations [1-3].

2. Preliminaries
In this section, we recall some definitions and
Lemmas associated with our work.
Definition 2.1. [6]. Let S be a non-empty set. A
mapping d, :SxS —[0, +0) is said to be a b-
metric, if there exists b > 1 such that db satisfies
the following conditions:

1. d,(s,t)=0, ifand onlyif s=t,

2. dy(s,t) =dt, s),
3. dy(s, t) <b[d,(s, r)+d,(r, )],

For all s,t,reS. The pair is called a b-metric
space.

The following Lemmas will be used to establish
our result.

Lemma 2.2. [1] Let (S, d) be b- metric space and
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suppose that r, —>r and s, —S as n—oo with

r<s,r=r and S,#S,vn, then we have

)<Ilimsupd(r,s,)

b—lzd(r, s)sr!ianinf d(r,, s,
<b%d(r, s).
In particular, if r=s, then we have

lim d(r,, s,) =0. Moreover for each t € S we have

%d(r, t) <lim inf d(r,,t) <limsupd(r,,t) <bd(r,t)

Forall r eS.

Lemma 2.3. [14] Let (S, d) be b-metric space and
let {r} be a sequence in S such that
limd(r,,r.)=0.

If {r.} is not a b-Cauchy sequence, then there exist

e>0 and two sequences {m,} and {n,} of positive
integers such that
e< !lm II’lf d (rm(k)’ rn(k)) < Ilm Sup d (rm(k)! r-n(k))
o k—o0
<be,
ShS I!iinw inf d (rn(k)’ rm(k)+l) < l!i[)nwsuP d (rn(k)’ rm(k)+1)
<be,
e< |!|an |nf d (rm(k)' rn(k)+1) < L!EanUp d (rm(k)’ rn(k)+l)

<be,
S . . .
B < 'llinw inf d (rm(k)+11 r-n(k)+1) < l!'inw Sup d (rm(k)+17 r-n(k)+1)

<b®e.

Definition 2.4. [7] Let ® be the family of all
functions @:(0,0) — (1, ©) such that (&)6 is
increasing, (6,) for each sequence {r,}c (0, );
!mrn=0 if and only if Limoe(rn):l; @,) 8 is
continuous.

Definition 2.5. [7] Let ® be the family of all

functions ¢@:[1, ) —>[100) such that (4)¢ is
nondecreasing, (¢,) for each te(l )

!‘L‘l"’n“):x (@,) ¢ is continuous.
Lemma 26. [7] If ¢ed, then ¢(Q)=1 and

#(t) <tvt e (1, ).
Definition 2.7. [15] Let (S,d) be a b-metric
space with parameter b>1 and T:S—S be a
mapping then
1. T is said to be a €—contraction if there
exist 0e® and te(0,1) and a<|0,1]

such that
d(Tr,Ts) > 0= g[b%d(Tr, Ts)] < G[M(r, s)]',

where
M(r, s) =max{d(r, s), d(r, Tr), d(s, Ts),
d(r,Ts)+d(Tr, s)}
2b? '
2. Tissaid to be a & —¢@— contraction if there exist

0 €O and ¢ € D such that

d(Tr, Ts) > 0= 6[b%d (Tr, Ts)] < g[O(M(r, s))],
where

M(r, s) =amax{d(r, s), d(r, Tr), d(s, Ts),
d(r,Ts)+d(Tr,s)
2b? ¥

3. Main Results

In this section we introduce Gregus type
contraction in b-metric space and establish fixed
point result for such contraction. Now, we present
our result for an Gregus type contraction in a
complete b-metric space endowed with an
example:

Definition 3.1. Let (S,d) be a b-metric space

with parameter b>1 and T:S—>S be a
mapping. T is said to be a Gregus type 6—¢—
contraction if there exist 6 €® and g ® and
a €0, 1] such that

d(Tr, Ts) > 0 = G[b%d (Tr, Ts)] < g[O(M(r, 9))],

(3.1)
where
M(r, s) =amax{d(r, s), d(r, Tr), d(s, Ts),
d(r, TS)Z'gzd (9, a—a)d(r, s).
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Example 1. Let S =[1, ). Define
d:SxS—[0,00) by d(r,s)=|r-sf?. Then
(S,d) is a b-metric space with coefficient b=2.

Define a mapping T:S—S by T(r)= r%.
Evidently, T(r) €S. Let 0(r)=e"", ¢(r) :e%l. Itis
obvious that & € ® and ¢ € @.
Theorem 3.2. Let (S,d) be a complete b-metric
space with b>1 and T:S—S be a Gregus type
6 — ¢ —contraction then T has a unique fixed point.
Proof. Take an arbitrary point r, € S and define a
sequence {r.} by

r,=Tr =T""r,
for all neN. If there exist n,eN such that
d(r,, r, ) =0 then the proof is completed. Suppose

that d(r,,r, )>0 for all neN. Letting r=r,
and s=r, in(3.1), we have

e[d (rn7 r-n-+—l)] < g[bsd (rn’ r-n+1)] < ¢[9(M (rn—l’ rn ))]1
VneN, (3.2)
Where
M (rn—ll rn) = a'max{d(rn—l’ rn)’ d(rn—l’ rn)! d(rm rn+:|_)!
d (rn’ rn) +d(rn—1’ rn+l)}+ (1_a) d(l’n,l, rn)

2b*
= amaX{d(rn_la rn)v d(rn1 rn+1), %}

+ (1_ a) d (rn—l’ rn)'

Since

1 1
2_b2d (rn—l’ rn+1) < 2_b2[b(d (rn—ll rn) +d (rn ) rn+1))]

1
= Z_b(d (rn—l’ rn) + d (rn’ rn+1))

< %(d(rn_l, r)+d(r, r.,))

<max{d(r, ,,r),d(r,r.)}h
We obtain
M(r, ., 1) =amax{d(r,, r,), d(r,, r,..)}
+@-a)d(r,,,r,).

If M(r,,r)=ad(r,r.)+@-a)d(,r),

then by (3.2), we have

o@d(r,, r..,)) < glfa(d(r,, r,.,)) + 1-a)d(r,;, 1)}
<0(ad(r,, 1,.,)),

which is a contradiction. Hence
M(r, ., r,)=d(r_.,r). Thus
e(d (rn' rn+:L)) S ¢[9(d (rn—ll rn))]' (33)

Repeating this step, we conclude that
od(r,, 1,.0)) < Al (r, 1, <P [O(A(F, 5, 1,))]
<. <g"[6(d(ry, R))]
From (3.3) and using (&) we get
d(r,r.,)<d(r,,r).
Therefore, d(r,,r,.,)..y iS @ monotone strictly

decreasing sequence of nonnegative real numbers.
Consequently, there exists « >0 such that
limd(r,.r,)=a.
n—oo

Now, we claim that « =0. Assume that « > 0.
Since d(r,,r, ), iS a nonnegative decreasing
sequence, we have
d(r,r.)=>a,VneN.
By the property of 4, we get
1<6(a)<0(d(r,_y, 1)) <4"0(d(r,, 1))

<..<¢"0(d(ry, 1)) (3.4)

Letting N — oo, we obtain
1<0(a) <lim ¢"0(d(r,, 1)) =1.
This is contradiction. Therefore,
limd(r,r.)=0. (3.5)
Next, we shall prove that {r,},. is a Cauchy
sequence, i.e., lim d(r,,r,)=0. By Lemma 2.3,
there is an >0 such that for an integer k there
exist two sequences {n,} and {m,} such that
1. e< l!im inf d (1,0, M)

< ;!iinwd (Mg Tgy) Sbe

€ ..
2. b < ;!'anmf d(r0 Taa)
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. 2
< I!'[QOSUP d (s Fagoea) <B° €

S ..
3. b < '!ILT]OO inf d (F110 Tay)

H 2
< I!ILTJO SUP d (10 Toy) SB° €

[= . -
4. F < l!lLTIOO inf d (rm(k)+1’ I’n(k)+1)

- 3
< Illmosup d(Fnggens Tgye) <07 €.

From (3.1) and by setting r=r, ,, and s=r,,,, we
have
M (N s Tagey) = Max{d (15 Fogiy)s
d (rm(k)’ rm(k)+1)! d (rn(k)' rn(k)+1)1

1
P (d (Mo Tagsn) T ATy Ty

Taking the limit as k —o and using (3.5) and
Lemma 2.3, we have
I!iinw M (rm(k)’ rn(k)) = I!iinw max{d (rm(k)’ rn(k))’
d Mgy s Tngyen)s A Mgy s Tagoya)s
1
2b?
< max{b 0,0, 2—:t|)'2(b2 e +b? e)}:b .

(d (e s M) T A (Taeys T )}

So, we have

Eﬂl M (N Tay) <D €. (3.6)
Now, letting r=r ,, and s=r,, in (3.1), we
obtain

H[bad (rm(k)+l’ rn(k)+1)] < ¢[9(M (rm(k)’ rn(k)))]'

Letting k — oo in the above inequality, applying the
continuity of ¢ and using (3.6), we obtain

G(b—ez ij =0be)< 0[b3 ﬁiin@d (A rn(k)+1)]

< ¢l‘9(!ian M (g Togo )
Therefore,
Obe)<dobe)]<b(be).
Since @ is increasing, we get be<be, which is a
contradiction. Thus

lim d(r,, ., ) =0.
n, m—

Hence {r.} is a Cauchy sequence in S. By
completeness of (S, d), there exists we S such
that

!igld(rn, w) = 0.
Now, we show that d(Tw,w)=0. Assume that
d(Tw,w)>0. Since r,>w as n-—oo, from
Lemma 2.3, we conclude that

b_12 d(w, Tw) < lim sup d (Tr,, Tw) < b?d (w, Tw).

Now, letting r =r, and s=w in (3.3), we have
O3 (Tr,, Tw)) <[O(M(r,, w))], Vn e N,
Where
M (r,,, w) =amax{d(r,, w), d(r,, Tr,), d(w, Tw),

b—lz(d (w, Tr,)+d(r,, Tw))}+ (1—a)d(r,, w).

Taking the limit as n — oo, we have
lim sup M (r,,, w) = lim sup max{d (r,,, w),

d(r,, Tr,), d(w, Tw), b—12 (d(w, Tr,)+d(r,, Tw))}

=d(w, Tw).
Therefore,
A(bd(Tr,, Tw)) < g[@(amax{d(r,, w),
d(r,, Tr,), d(w, Tw),

z—iz(d (w, Tr,)+d(r,, Tw)+ (1—a)d(r,, W))}ﬂ.

(3.7)
Taking n— oo in (3.7) and using the properties
of ¢ and 6, we obtain

9(b3 b—12 d(w, Tw)j — o(bd(w, Tw))

<0’ lim d(Tr,, )|
< e(d(w, Tw))] < 6(d (w, Tw)).
By (6,), we get
bd (w, Tw) < d(w, Tw).

This implies that
(b-Dd(w, Tw) <0

]
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which shows b <1, a contradiction. Hence Tw = w.
Now, suppose that u,we S are two fixed points of
T such that u = w. Then we have
d(w, u) =d(Tw, Tu) > 0.

Letting r=w and y=u in (3.1), we have

6(d(w, u)) = 0(d(Tu, Tw)) < 8(b*d (Tu, Tw))

< oM (w, u))],

Where

M (w, u) = amax{d(w, u), d(w, Tw), d(u, Tu),

b—lz(d (U, Tw) +d (w, Tu))}+ (L—a)d (w, u)

=d(w, u).
Therefore, we have
o(d(w, u)) < g[o(d(w, u))] < &(d (w, u)),
which implies that
d(w, u) <d(w, u),

a contradiction. Therefore u = w.

Corollary 3.1. In particular if a=1 we get
Theorem 3.5 of Rossafi et al.[15].

Example 2. Let S= AUB, where A= {p"‘1 |[neN

and pe (0, %)} and B ={0}. Define
d:SxS —>[0,0) by d(r,s)sr-s|*. Then
(S, d) is a b—metric space with coefficient b = 2.
Define a mapping T :S — S by

r",if reA
T(r):{l, i r:O.}
Then T(r)eS. Let 9(t)=\/f+1, ¢(t)=%. It is

obvious that 8 € ® and ¢ € @ is Gregus type 6 —¢
contraction. Consider the following possibilities:
Case: 1Let r=p"*, s=p™" for m>n=>1. Then
d(Tr, Ts) = (p""™? = p"™)%.
So
O[b°d (Tr, Ts)] =8(p""? — p"™ ) +1
and
Ao (r, sN1=¢lo(p"" — p" )]
_(P-p")
2p

OPEN aACCESS IRIAEM

On the other hand
Olb%d (Tr, Ts)] - #{O(d(r, 5))] = VB(p"™ — p"™ V)

n(n-1) _ ~n(m-1)
+1—{(p P )+1}
2p

:(\/__LJ(pn(n—l) _ pmuy

2p
<0.
Thus
O[b%d (Tr, Ts)] < g[O(d(r, )]
<glf(amax{d(r,s), d(r,Tr), d(s, Ts),.

d(r. T8) +d{T, S)y . 1 _ayd(r, )]

2b?
Case: 2 Let r=p"*, s=0. Then
T(r)=p""?,T(s)=0, then d(Tr,Ts)=(p")>
So we have @[b%d (Tr, Ts)]=+/8p" " +1. Thus
M(r, s) =g @(@amax{d(r,s),d(r, Tr), d(s, Ts),
ACTAAL Sy a-ayder, o
>d(r,s)=(p"")?

n-1

and 4O@A(r, 3))] = P— +1

2

On the other hand
O[b*d (Tr, Ts)] - ¢[O(d(r, 5))]
= \/gp” +1—( p;_l +1j
1.
(85
<0.
Then

O[b%d (Tr, Ts)] < g[6(d(r, 9))]
<P O@amax{d(r,s),d(r,Tr),d(s, Ts),
d(r,Ts)+d(Tr,s
( )2b2 U )}+(1—a)d(r, s))].
As a result, condition (3.1) is achieved. Hence T
has an unique fixed point at z =1.
The following Figure(1) is graph of T(r) for

different values of pe(o, %) We see that in
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these graph unique fixed point at r =1.
1 T T T T T T T T

08F

08

071

e 1 1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 08 1
reA—

Figure 1 Graphical representation of the function
T(r)

4. Application

In this section, as an application of Theorem 3.2, we
present the following result which provides a unique
solution to nonlinear integral equations of Fredholm

type:
r(y) = ﬂ_[jK(y, X, r(x)) dx, (4.2)

Where p,qe R, reC([p, q], R) and a continuous
function K :[p, q]* xR — R is given.

Theorem 4.1. Assume that the kernel function K
satisfies the condition:

| K(y’ X, r(X)) - K(y’ X, S(X))l
< bi(l r(x)—s(x)|)vx,ye[p,q] and r,seR

and consider the nonlinear integral equation problem
(4.1). Then for some constant 4 based on the
constant b, the equation (4.1) has a unique solution

reC([p, al).
Proof. Let T : X — X be defined by

Tr(y) :AJ':K(y, X, r(x))dx, vr e X, where

X =C([p, q]). Let d: X x X —[0, ) be given by
d(r, s) = (max,q, o [ F(Y) |~ s(Y) )*vr, s € X.
It is evident that (X, d) forms a complete b-metric

space. To solve the integral equation (4.1), we need
to find the condition on A under which the operator
has a unique fixed point. Assume that r,se X and

X, Y €[p, q]. Then we have

ITr(y) =TSP AP ([ K(y, % r(0) dx
- 'Ky, %, s00) dx)?
=2 1| (K (%, 100) = Ky, %, 5(0)) dx
<211 [J(K (v, %, 100) = K (s X, 5(0)) dx
2[00 -5t 8
2 |91 - 500D 6

42 |00 1= 150D
This shows that
max ., (I Tr(y) =Ts(y) ")

=m0 |21 1K (Y, T00) = K (Y, X, 5(030)) 0
1
<ma, g, | 4 [ (700 =51 o)’

A [, (1) -5(3) D dn)®

Since, d(Tr,Ts)>0 and d(r,s)>0Vr=s, we
can take natural Log both sides and obtain
log[ b3d (Tr, Ts)]

=log[b® [ A" max ., I:I (K(y, x, r(x)) = K(y, x, s(x))) dx/|’]

<togl( 21y ', o (r(9)=5() D en’]

q Ay
= [log{ ' (max ., (| (V) S D A H '

assuming that | A |<b, this shows that
log[ b*d (Tr, Ts)]

< [log [ (e, | ()~ S(y) ) Ar)*H°.

Hence
F(03d(Tr, Ts)) + ¢(d(r, s)) < F(d(r, s)),
vr,se X with 4(x)=log(x), #(x)=x* and
|4]

az(T)z. Thus T holds the condition (3.1).

Therefore, the nonlinear Fredholm integral (4.1)
has a unique solution.
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