International Research Journal on Advanced Engineering
and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 02

Issue: 04 April 2024
Page No: 1232-1239

\(\RJAEM }
A,

il S 1

https://doi.org/10.47392/IRJAEM.2024.0166

Anti-Virus Tempering Methodologies
Dharati Dholariya!, Dixit Panchal?, Dr.Pallavi Singhal®

Research Scholar - Maulana Azad University, Jodhpur, Rajasthan, India.
2Security Researcher, Quick Heal Technologies Pvt.Ltd, India.

3 Professor, Maulana Azad University, Jodhpur, Rajasthan, India.
Emails: dharatil11@gmail.com?, panchaldixit877 @gmail.com?, pratap. pallavigmail.com®

Abstract

In this paper, we will discuss antivirus tampering methodologies and various techniques to bypass them,
focusing specifically on static and dynamic engine bypasses and their respective methods. The study is
centered around antivirus and malware tampering methodologies, with the main objective being to research
various aspects of antivirus evasion and bypassing methods. The emphasis lies in understanding how antivirus
software operates, exploiting its limitations, and overcoming these restrictions.

Keywords: Antivirus tempering, Antivirus bypassing, Antivirus evasion methods and techniques.

1. Introduction
The fundamentals Antivirus software is designed to
find and stop the spread of harmful operating system
files and processes, protecting the endpoint from
running them. Antivirus engines have evolved over
time, becoming more intelligent and sophisticated,
but most products still use the same basic
technology. Some of the still following same
methods to detect threat and malware like one-to-
one detection method which is totally based on hash
value of file. In defence in depth, antivirus software
is working on different techniques to identify
potential threat and viruses [1-4]. Upon more
investigation, we have found out some techniques
that antivirus uses to detect malware.

e Static engine (one to one detection)

e Dynamic engine (includes the sandbox

engine)

e Heuristic engine

e Unpacking engine

1.1 Methods to Detect Threat / Malware

Using Av

One to One Detection (Static Engine Detection):
During a scan to identify malware, the antivirus
program'’s static engine compares the current files in
the operating system to a database of signatures.
Because every change to a malware file might make

it reject a particular static signature or even the static
engine entirely, static signatures can't truly identify
every piece of malware that exists. Figure 1 shown
in Static Engine detection

File Formats Static Engine Validation
EXE
.DLL
.DOCX > Compalnng with a static Malicious or Benign
signature file
.PDF
More files

’

Static signature
database file

Figure 1 Static Engine detection
Antivirus deals with different file format and with
the help of those format it will able to detect it based
on static signatures.

e Executable files like .exe, .dll, .msi,.com,
.pif, .cpl, .elf, .ocx, .sys, .scr.
e Documents files like .doc, .xls, .ppt, .pdf,.rtf,
.chm, .hlp.
These systems look for character strings, file
extensions, hash value, some keyword related to
viruses that are known to appear in particular
malware components in executables and other

OPEN aAccsss IRIAEM

1232

about:blank

International Research Journal on Advanced Engineering
and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 02

Issue: 04 April 2024
Page No: 1232-1239

—
{ RJAEM. }

e g https://doi.org/10.47392/IRJAEM.2024.0166

documents [5]. A file will be identified as harmful
if it includes the exact same string as one in the
antivirus database; otherwise, it won't. from detailed
study we have identified that every day more than
20K+ new malwares are appearing. A static engine
detection antivirus needs to have knowledge of
every single strain released in order to correctly
detect all of these strains, which is a nearly
impossible undertaking. Of course, some viruses
will slip through.

2. Dynamic Engine Base Detection (Generic

detection)

Utilizing a dynamic engine raises the level of
sophistication of antivirus software. When malware
is actively being used by the system, this type of
engine can identify it. The dynamic engine is a little
more advanced than the static engine and checks the
file in real time using a number of methods. The first
method is API monitoring, which seeks to intercept
harmful operating system API requests. APIs are
tracked by system hooks. A sandbox is a virtual
environment that is separate from the memory of the
actual host machine. This enables the identification
and analysis of malicious software by running
malicious software in a virtual environment rather
than directly on the memory of the actual machine.
Sandboxed malware will be successful against it,
especially if it is unsigned and is not recognized by
the static engine of the antivirus Programme. One of
the big drawbacks of such a sandbox engine is that
malware is executed only for a limited time.
Security researchers and threat actors can learn what
period of time the malware is executing in a sandbox
for, suspend the malicious activity for this limited
period of time, and only then run its designated
malicious functionality. Figure 2 represent Dynamic
Engine Detection flow.

File Formats Dynamic Engine Validation

BXE
DL

.Dacx -
POF Sandboxing

API Monitaring
% Malicious or Benign

More files

Figure 2 Dynamic Engine Detection

3. Heuristic Engine Detection Method

Using a Heuristic Engine, antivirus software
becomes even more advanced. With the help of this
engine AV can able to detect advance threat using
cloud base detection and monitoring the behaviour
of source code. This type of engine determines a
score for each file by conducting a statistical
analysis that combines the static and dynamic
engine methodologies. Figure 3 shown in Heuristic
Engine Detection Method Formats. Heuristic-based
detection is a method, that based on pre-defined
behavioural rules, can detect potentially malicious
behaviour of running processes. Examples of such
rules can be the following:

e |If a process tries to interact with the
LSASS.exe process that contains users'
NTLM hashes, Kerberos tickets, and more.

e If a process that is not signed by a reputable
vendor tries to write itself into a persistent
location.

e If a process opens a listening port and waits to
receive commands from a Command and
Control (C2) server.

File Formats Heuristc Engine Valdation

BE

Ol
0 Pre-tefined behavira

—* —+ Malcious or Benign
MUs

FOF

Mare files

Figure 3 Heuristic Engine Detection Method
In order to prevent alerting on the existence of code
that, although being often utilized by malware, is
also present in valid software, this sort of method is
particularly reliant on having in-depth knowledge of
both the contents of genuine programmes as well as
the contents of historical malware [6-9]. Because it
examines all of the program's contents rather than
just the code that would be executed during a single
programme invocation, static heuristics, in contrast
to dynamic heuristics, have the ability to examine
multiple potential programme execution paths.

OPEN aAccsss IRIAEM

1233

about:blank

International Research Journal on Advanced Engineering
and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 02

Issue: 04 April 2024
Page No: 1232-1239

— AER.
{ TRJAEM. }

17N T

= https://doi.org/10.47392/IRJAEM.2024.0166

3.1 Antivirus Bypassing Techniques
You have a greater possibility of re-encoding
malware to avoid detection by antivirus
programmes if you have more possibilities for doing
so. Since we want to evade antivirus detection, we
must stay away from anything that antivirus
software would deem suspect, such as packaged
programmes applications with many sections
containing executable code.

3.2 Antivirus Bypass Using Obfuscation
Obfuscation is a straightforward method for altering
a type of code, including source code and byte code,
to make it less understandable. An app developer
will employ an obfuscation approach to secure the
def func(angl, argl, argd="arg3', ¥, argd, *Hangs):

print "argl", argl)
print('arg?’, argl)
print(‘argd', argd)
print('argd’, argd)
orint "kuargs', kiargs)

"
J
J
J

{unc(la\’ \b\, ar\gB:\[\J argll:wdv)

code and render it unreadable since they do not want
unauthorized people to access their code.

Rename obfuscation: With this method, the
variable names within the code are primarily
obscured. It is challenging to read and comprehend
the code using this method, as well as to
comprehend variable names and their context inside
the code. The variable name after obfuscation might
consist of letters like "A,” "B,” "C,” and "D,"
numerals like 0,1,2 , unprintable characters, and
may be it will be converted like 0 - o. Figure 4
Shown as Rename Obfuscation

def func (0BA0AO0AR0R0R0R0 ,00A0AROAARRA0A ,00A0R00AAR0AR0 ='argd',* angd , *0A0BAI00R0
print ("argl",008080060A0808080)#1ine: 2:print("argl, argl)
print ("argd",00800600008086008)¢line:3:print('argl’, argd)
print ("arg3",00808006080800080)#1ine:d:print(‘argd, argd)
print ("angd' angd JLine:5:print('argt’, argd)
print ("kuargs" ,00808600080800000)#1ine:6:print ('kuargs', kiargs)
func ("a",'b"angd ="c',argd ='d'Jiline::func('a', 'b', argd="c', angd:'d')

Figure 4 Rename Obfuscation

As you can see we have written simple code like
creating function and we have converted it in to 0
and o’s formate using rename obfscution technique.
Control Flow Obfuscation: Control-flow
obfuscation converts original source code to
complicated, unreadable, and unclear code. In other
words, control-flow obfuscation turns simple code
into spaghetti code!
3.3 AV Bypassing using
Table 1 Program for (*"Hello, World!)

#include <stdio.h> 5+tPBV+IF6boJTbKVFP
hAHRILxw5DyBv6C
int main() { g98cYRg9S4bV2Mdlc
printf(""Hello, m33ArGyiheJWv9qD
World!\n™); 6RjUtVRjdBOV8lexJw0
return 0; keoy9WOKZ3udJr1zGV
Zvo=

Figure 5 AV Bypassing using
Figure 5 represent the code of AV Bypassing using
The encryption of the code, which is one of the most
effective methods to hide the source code (Table 1),
is one of the simplest ways to employ a bypass. The
harmful functionality of the malware might appear
to be an innocent piece of code or even completely
irrelevant by utilizing encryption, which allows

OPEN aAccsss IRIAEM

1234

about:blank

International Research Journal on Advanced Engineering
and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 02

Issue: 04 April 2024
Page No: 1232-1239

o

https://doi.org/10.47392/IRJAEM.2024.0166

antivirus software to ignore it and allow the malware
to successfully infect the system. Malware must first
decode its code in runtime memory before it can
begin to carry out its harmful behavior. The virus
won't be ready to start performing its harmful deeds
until it has finished decrypting itself. Figure 6
Shown as Encryption Mechanism

Non-Encrypted Malware Encrypted Malware

Malware Body Encrypted

Malware Body

Figure 6 Encryption Mechanism

3.4 Antivirus Evasion using Morphism
Oligomorphic Code: Oligomorphic malware code
keeps its basic functionality while exhibiting little
change or mutation. Malware writers typically

decrypror 1 [———

employ this technique to avoid being detected by
antivirus software. Traditional antivirus software
often uses signature-based detection, which
contrasts known malware signatures or patterns
against files or processes, to identify harmful
software. Malware writers often change their code
to produce variations that can evade detection and
these signatures. The Oligomorphic Code Source
code in below Figure 7 & Flow in Figure 8.

Original Code: Oligomorphic code:

function maliciousFunction() function legitFunction() {
{ // Llegitimate actions
// Malicious actiocns
}
i
function legitimateFunction() function maliciousCode() {
{ // Malicious actions
// Legitimate actions
}
b

maliciousFunction(); legitFunction();

Figure 7 Oligomorphic Code

Main Function

decryptor 4

L=

Encrypied Bytes = Decrypted Bytes

N
\kﬁ B /

T ———»| decryptor 7

Figure 8 Oligomorphic flow

OPEN anccsss IRIAEM

1235

about:blank

International Research Journal on Advanced Engineering
and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 02

Issue: 04 April 2024
Page No: 1232-1239

{ TIRIAEM }

https://doi.org/10.47392/IRJAEM.2024.0166

Poliymorphic Code: Malware that is polymorphic
typically has a code generator or mutation engine
that can produce various iterations of itself. The
code is changed in a variety of ways by the generator
or engine, including variable names being changed,
the sequence of instructions being executed
changed, meaningless or junk code being inserted,
and portions of the code being encrypted. These
modifications result in new malware variants with
distinct byte-level signatures from earlier iterations.

Polymorphic Variant 1: Palymorphic Variant 2:

Original Code:

maliciousFunction():

Figure 9 Poliymorphic Code

In this Figure 9 simplified example, the original
code contains a malicious Function that performs
malicious actions and a legitimate Function that
performs legitimate actions. In the first polymorphic
variant, the function names are transformed into
obfuscated names, such as _O0xE7425C04 and
_Ox4FD3A1B8. The same applies to the function
names in the second polymorphic variant, which
become 0x982DE24C and _OxF8130D91.
Polymorphic Code Flow shown in Figure 10.

allallelle
21222
S

[s}

~[Soures Goue 32}

-‘ wwwwww s | -|suuc Code 18 ’7”/
Flgure 10 Polymorphic Code Flow

4. Antivirus Tempering Using Packing

To explain how packers work, we will run a simple
"Hello World.exe" file through one packer, Ultimate
Packer for executables (UPX). general, packers
work by taking an EXE file and obfuscating and
compressing the code section (".text" section) using
a predefined algorithm [10]. The OEP is the entry
point that was originally defined as the start of
program execution before packing took place. The
main goal of antivirus software is to detect which
type of packer has been used, unpack the sample
using the appropriate techniques for each packer
using its unpacking engine, and then classify the
unpacked file as either "malicious” or "benign.".
UPX — Ultimate Packer for Executables: This
packer is widely used by legitimate software and
malware authors alike. First, we will pack our
sample Hello World.exe file, and then we will
unpack it using the -d argument built into UPX.
Finally, we will conduct the unpacking process
manually to understand some of the inner workings
of this packer. Before we pack the sample, we first
put the Hello World.exe executable into a tool called
DiE (short for Detect It Easy). The following Figure
11 tells us that the executable has been compiled
with C/C++ and that there is no sign of any
"protection” mechanism:

File name: C:/Users/Terminator/Desktop/Hello World.exe
>can Scripts Plugins Log
. Type: PE Size: Entropy HAC S H

Import PE
EntryPoint: 000012d0 > ImageBase: 00400000
NumberOfSections: | 0008 > SizeOfImage: 0000b000

linker unknawn(2.32)[EXE32, console] S

Options
Detect It Easy * Signatures Info About

> 78 ms
Exit
Figure 11 UPX Packer with “Hello World!”
We then check the entropy of the file. Entropy is a
measurement of randomness in a given set of values
or, in this case, when we check whether the file is
packed or not. If the entropy of the any file which is

OPEN aAccsss IRIAEM

1236

about:blank

International Research Journal on Advanced Engineering
and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 02

Issue: 04 April 2024
Page No: 1232-1239

{ TIRIAEM }

https://doi.org/10.47392/IRJAEM.2024.0166

greater than 7 then most probably file is packed. In
the following Figure 12 screenshot, we can see that
the entropy value is not high (less than 7.0), which
tells us that the executable is not packed yet:

Offset: (1] Size: 20480 > Reload

Entropy(bits/byte): = 5.58464 69% not packed Save dizgram

PE Header("1.95639")
Section0(".text")("6.08727")
Section1(".data")("0.225207",
Section2(".rdata")("3.81069")
Section3(".el

Sal:tmm('

2.000 10.000 15,000 20,000 25.000

Figure 12 Entropy Without Packing File

Another great indicator of a packed file is the
function imports that the file includes, which are
small compared to a non-packed executable. The
following Figure 13 screenshot shows a normal
number of imported DLLs and API functions used
by the executable using the PE-bear tool.

Disgam: tet Genéral DOSHOF FdeMdr Opuonalbdr SectonHdrs M Impots WIS

L |

Offset Name Fune. Count Bound? OriginalFirstT TimeDateSta Forwarder NameRVA FirstThunk
MO0 KERNEL32dII 18 FALSE 8078 0 0 8678 0]

414 movartdll 2 FALSE Boc4 0 0 8690 B18C

48 mevertdll 30 FALSE 8000 0 0 a4 BIce

430 libgecs dwz1dl 2 FALSE §14C 0 0 9728 B

430 libstde++-6dll 5 FALSE B1s8 0 0 4730 8230
KERNELIZAI [16 entries]

Callvia Name Ordinal Original Thun Thunk Forwarder Hint A
8170 DeleteCiiticalSection - 268 4268 - Do

8174 EnterCriticalSection g 8280 280 5]

§178 BxitProcess 6298 8298 118

8110 FindClase = 82h6 B2A6 = 120

8180 FindFirstfileA 8282 282 13

8184 FindNextFileA : g4 8204 - 4

8188 Freelibrary - 8204 4204 - 161 "

Figure 13 Imported API’s

In addition, in the following Figure 14 screenshot,
we can see that the entry point (EP) of this program
is 0x12D0, which is the address where this
executable needs to begin its execution:

Disasm: text General DOS Hdr File Hdr Optional Hdr Section Hdrs B Imports - TS

Offset Name Value Value
A8 Entry Point 12D0

AC Base of Code 1000

BO Base of Data 4000

B4 Image Base 400000

B8 Section Alignment 1000

BC File Alignment 200

co 105 Ver. (Major) 4 Windows 95 / NT 4.0
2 05 Ver. (Minor) 0

c4 Image Ver. (Major) 1

c6 Image Ver. (Minor) 0

c8 Subsystem Ver. (Major) 4

CA Subsystem Ver. Minor) o

cc ‘Win32 Version Value 0

Do Size of Image B00O

D4 Size of Headers 400

D8 Checksum 7088

DC Subsystem 3 Windows console
DE DLL Characteristics 0

EQ Size of Stack Reserve 200000

Figure 14 Entry Point for Execution

Now that we understand what a regular file looks
like before packing takes place, we can pack the
Hello World.exe executable using UPX, with the
following command shown in Figure 15.

UPX.exe <File Name> -0 <Output file name>

[&5] Command Prompt

rminator\Desktop>upx.exe "Hel

Figure 15 Packing Hello World Exe File Using
UPX

Now, testing the packed Hello World.exe
executable in the DIE tool reveals very different
results, as shown Figure 16.

File name: C:/Users/Terminator/Desktop/Packed.exe

. Type: PE ize: Entropy FLC S H
Import PE
EntryPoint: 0000c230 > ImageBase: 00400000
NumberOfSections: 0003 > SizeOfImage: 0000000

packer UPX(3.96)[NRV,best] S 2
linker unknown(2.32)[EXE32,console] s ?

Options

Detect It Easy ~ Signatures Info About

94 ms

Figure 16 Detected Packer UPX

Exit

And as you can see, the executable is successfully
detected as a UPX-packed binary. The entropy and
the section names support this conclusion, as seen in
the following Figure 17 screenshot.

OPEN aAccsss IRIAEM

1237

about:blank

International Research Journal on Advanced Engineering
and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 02

Issue: 04 April 2024
Page No: 1232-1239

T AT T T e
\RJAEM

T Ay

Mo =

https://doi.org/10.47392/IRJAEM.2024.0166

Offset: 0 Size: | 10752 > Reload

Entropy(bits/byte): = 7.40219 92% Save diagram

PE Header("2.62837)
Sectiond{"UPX0")("0")
Sectiont{"UPX1")("7.67966")
Section2("UPX2")("2.64845")

Offset:

0 2000 4,000 6000 8000 10,000 IZ,GOO

0%
Figure 17 Entropy of Packed File
In addition, using the PE-bear tool again, we can see

here that the entry point of this packed version of
Hello World.exe has also been changed to 0xC230:

Disasm: UPX1 ~ General ~ DOSHdr FileHdr ~ Optional Hdr Section Hdrs B8 Imports B TLS

Offset Name Value Value
A8 Entry Point €230
AC Base of Code A000
B0 Base of Data D000
B4 Image Base 400000
B8 Section Alignment 1000
BC File Alignment 200
0 05 Ver. (Major) 4 Windows 95 /NT 40

€2 05 Ver. (Minor) 0
C4 Image Ver.(Major) 1
6 Image Ver. (Minor) 0
8 Subsystem Ver. (Major) 4
CA Subsystem Ver. Minor) 0
cC Win32 Version Value 0
D0 Sizeof Image E000
D4 Size of Headers 1000

Figure 18 Entry Point Changed After Packing

As Conclusion you can see that after Packing the file
using UPX packer we get some of the indicators that
file is packed using entry point and some tools like
PE-Detective, PE-Bear, EXEinfo etc using these
tools you can easily identified packed files. Figure
18 shown as Entry Point Changed After Packing
4.1 Some Defences Against Potential Threats
Run never in administrator mode. It is a golden rule
that may prevent 99% of viruses without an AV.
Utilise the very robust security capabilities in
Windows 10 to harden your computers. Spend

money on network intrusion detection systems and
keep an eye on it. Malware infestations are
frequently not found on the victim's PC, although
odd NIDS or firewall logs might help. Utilise a
number of AV equipment from various suppliers.
One product can make up for another's flaws.
Conclusion
In this paper | have Determined the different AV
Evasion techniques to evade any antivirus software
and how to prevent this evading throughout the
paper. the techniques of finding loop wholes in
antivirus software. [11] Bypassing antivirus is
simple when you exploit their weakness .it requires
some knowledge of windows system internals and
required deep understanding of how AV software
can detect threat. Antivirus is useful in detecting
millions of wild Threats which are already in
database, also they are useful for system recovery.
References

[1]. Samociuk, D. (2023). Antivirus Evasion

Methods in Modern Operating Systems.

Applied Sciences, 13(8), 5083.
https://doi.org/10.3390/app13085083
[2]. 91-95. (n.d.). Scribd.

https://www.scribd.com/document/6295
97533/91-95#

[3]. Devglan.
https://www.devglan.com/online-
tools/text-encryption-decryption

[4]. C/C++ Obfuscator - Obfuscate your
C/C++ source code for free and online.
(n.d.). https://picheta.me/obfuscator

[5]. What is a “control-flow flattening”
obfuscation technique? (n.d.). Reverse
Engineering Stack Exchange.
https://reverseengineering.stackexchange
.com/questions/2221/what-is-a-control-
flow-flattening-obfuscation-technique.

[6]. Citu, A. (2023, January 23). Book
Review: Antivirus Bypass Techniques.
Adventures in the Programming Jungle.
https://adriancitu.com/2023/01/18/book-
review-antivirus-bypass-techniques/

[7]. JoelGMSec. (n.d.). GitHub -
JoelGMSec/Invoke-Stealth: Simple &
Powerful PowerShell Script Obfuscator.

OPEN aAccsss IRIAEM

1238

about:blank

International Research Journal on Advanced Engineering € ISSN: 2584-2854

Volume: 02
and Management Issue: 04 April 2024

https://goldncloudpublications.com Page No: 1232-1239
https://doi.org/10.47392/IRJAEM.2024.0166

GitHub.
https://github.com/JoelGMSec/Invoke-
Stealth

[8]. Pérez-Sanchez, A. M., & Palacios, R.
(2022). Evaluation of Local Security
Event Management System vs. Standard
Antivirus Software. Applied Sciences,
12(3), 1076.
https://doi.org/10.3390/app12031076

[9]. DevGlan. (n.d.-b). Encrypt and Decrypt
Text Online. Devglan.
https://www.devglan.com/online-
tools/text-encryption-decryption

[10]. Dan.com. (n.d.). antivirusware.com -
Domain Name For Sale | Dan.com.
https://antivirusware.com/

[11]. Grant, A. (2023, June 14). Help Net
Security - Cybersecurity News. Help Net
Security.
https://www.helpnetsecurity.com/

OPEN anccsss IRIAEM 1239

about:blank

