

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0166

e ISSN: 2584-2854

Volume: 02

Issue: 04 April 2024

Page No: 1232-1239

 IRJAEM 1232

Anti-Virus Tempering Methodologies
Dharati Dholariya1, Dixit Panchal2, Dr.Pallavi Singhal3

1Research Scholar - Maulana Azad University, Jodhpur, Rajasthan, India.

2Security Researcher, Quick Heal Technologies Pvt.Ltd, India.

3 Professor, Maulana Azad University, Jodhpur, Rajasthan, India.

Emails: dharati111@gmail.com1, panchaldixit877@gmail.com2, pratap. pallavigmail.com3

Abstract

In this paper, we will discuss antivirus tampering methodologies and various techniques to bypass them,

focusing specifically on static and dynamic engine bypasses and their respective methods. The study is

centered around antivirus and malware tampering methodologies, with the main objective being to research

various aspects of antivirus evasion and bypassing methods. The emphasis lies in understanding how antivirus

software operates, exploiting its limitations, and overcoming these restrictions.

Keywords: Antivirus tempering, Antivirus bypassing, Antivirus evasion methods and techniques.

1. Introduction

The fundamentals Antivirus software is designed to

find and stop the spread of harmful operating system

files and processes, protecting the endpoint from

running them. Antivirus engines have evolved over

time, becoming more intelligent and sophisticated,

but most products still use the same basic

technology. Some of the still following same

methods to detect threat and malware like one-to-

one detection method which is totally based on hash

value of file. In defence in depth, antivirus software

is working on different techniques to identify

potential threat and viruses [1-4]. Upon more

investigation, we have found out some techniques

that antivirus uses to detect malware.

 Static engine (one to one detection)

 Dynamic engine (includes the sandbox

engine)

 Heuristic engine

 Unpacking engine

1.1 Methods to Detect Threat / Malware

Using Av

One to One Detection (Static Engine Detection):

During a scan to identify malware, the antivirus

program's static engine compares the current files in

the operating system to a database of signatures.

Because every change to a malware file might make

it reject a particular static signature or even the static

engine entirely, static signatures can't truly identify

every piece of malware that exists. Figure 1 shown

in Static Engine detection

Figure 1 Static Engine detection

Antivirus deals with different file format and with

the help of those format it will able to detect it based

on static signatures.

 Executable files like .exe, .dll, .msi,.com,

.pif, .cpl, .elf , .ocx, .sys, .scr.

 Documents files like .doc, .xls, .ppt, .pdf,.rtf,

.chm, .hlp.

These systems look for character strings, file

extensions, hash value, some keyword related to

viruses that are known to appear in particular

malware components in executables and other

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0166

e ISSN: 2584-2854

Volume: 02

Issue: 04 April 2024

Page No: 1232-1239

 IRJAEM 1233

documents [5]. A file will be identified as harmful

if it includes the exact same string as one in the

antivirus database; otherwise, it won't. from detailed

study we have identified that every day more than

20K+ new malwares are appearing. A static engine

detection antivirus needs to have knowledge of

every single strain released in order to correctly

detect all of these strains, which is a nearly

impossible undertaking. Of course, some viruses

will slip through.

2. Dynamic Engine Base Detection (Generic

detection)

Utilizing a dynamic engine raises the level of

sophistication of antivirus software. When malware

is actively being used by the system, this type of

engine can identify it. The dynamic engine is a little

more advanced than the static engine and checks the

file in real time using a number of methods. The first

method is API monitoring, which seeks to intercept

harmful operating system API requests. APIs are

tracked by system hooks. A sandbox is a virtual

environment that is separate from the memory of the

actual host machine. This enables the identification

and analysis of malicious software by running

malicious software in a virtual environment rather

than directly on the memory of the actual machine.

Sandboxed malware will be successful against it,

especially if it is unsigned and is not recognized by

the static engine of the antivirus Programme. One of

the big drawbacks of such a sandbox engine is that

malware is executed only for a limited time.

Security researchers and threat actors can learn what

period of time the malware is executing in a sandbox

for, suspend the malicious activity for this limited

period of time, and only then run its designated

malicious functionality. Figure 2 represent Dynamic

Engine Detection flow.

Figure 2 Dynamic Engine Detection

3. Heuristic Engine Detection Method

Using a Heuristic Engine, antivirus software

becomes even more advanced. With the help of this

engine AV can able to detect advance threat using

cloud base detection and monitoring the behaviour

of source code. This type of engine determines a

score for each file by conducting a statistical

analysis that combines the static and dynamic

engine methodologies. Figure 3 shown in Heuristic

Engine Detection Method Formats. Heuristic-based

detection is a method, that based on pre-defined

behavioural rules, can detect potentially malicious

behaviour of running processes. Examples of such

rules can be the following:

 If a process tries to interact with the

LSASS.exe process that contains users'

NTLM hashes, Kerberos tickets, and more.

 If a process that is not signed by a reputable

vendor tries to write itself into a persistent

location.

 If a process opens a listening port and waits to

receive commands from a Command and

Control (C2) server.

Figure 3 Heuristic Engine Detection Method

In order to prevent alerting on the existence of code

that, although being often utilized by malware, is

also present in valid software, this sort of method is

particularly reliant on having in-depth knowledge of

both the contents of genuine programmes as well as

the contents of historical malware [6-9]. Because it

examines all of the program's contents rather than

just the code that would be executed during a single

programme invocation, static heuristics, in contrast

to dynamic heuristics, have the ability to examine

multiple potential programme execution paths.

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0166

e ISSN: 2584-2854

Volume: 02

Issue: 04 April 2024

Page No: 1232-1239

 IRJAEM 1234

3.1 Antivirus Bypassing Techniques

You have a greater possibility of re-encoding

malware to avoid detection by antivirus

programmes if you have more possibilities for doing

so. Since we want to evade antivirus detection, we

must stay away from anything that antivirus

software would deem suspect, such as packaged

programmes applications with many sections

containing executable code.

3.2 Antivirus Bypass Using Obfuscation

Obfuscation is a straightforward method for altering

a type of code, including source code and byte code,

to make it less understandable. An app developer

will employ an obfuscation approach to secure the

code and render it unreadable since they do not want

unauthorized people to access their code.

Rename obfuscation: With this method, the

variable names within the code are primarily

obscured. It is challenging to read and comprehend

the code using this method, as well as to

comprehend variable names and their context inside

the code. The variable name after obfuscation might

consist of letters like "A," "B," "C," and "D,"

numerals like 0,1,2 , unprintable characters, and

may be it will be converted like 0 - o. Figure 4

Shown as Rename Obfuscation

Figure 4 Rename Obfuscation

As you can see we have written simple code like

creating function and we have converted it in to 0

and o’s formate using rename obfscution technique.

Control Flow Obfuscation: Control-flow

obfuscation converts original source code to

complicated, unreadable, and unclear code. In other

words, control-flow obfuscation turns simple code

into spaghetti code!

3.3 AV Bypassing using

Table 1 Program for ("Hello, World!)

#include <stdio.h>

int main() {

 printf("Hello,

World!\n");

 return 0;

5+tPBV+lF6boJTbKvFP

hAHR9Lxw5DyBv6C

g98cYRg9S4bV2Md1c

m33ArGyiheJWv9qD

6RjUtVRjdB0V8IexJw0

keoy9W0KZ3udJr1ZGV

zvo=

Figure 5 AV Bypassing using

Figure 5 represent the code of AV Bypassing using

The encryption of the code, which is one of the most

effective methods to hide the source code (Table 1),

is one of the simplest ways to employ a bypass. The

harmful functionality of the malware might appear

to be an innocent piece of code or even completely

irrelevant by utilizing encryption, which allows

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0166

e ISSN: 2584-2854

Volume: 02

Issue: 04 April 2024

Page No: 1232-1239

 IRJAEM 1235

antivirus software to ignore it and allow the malware

to successfully infect the system. Malware must first

decode its code in runtime memory before it can

begin to carry out its harmful behavior. The virus

won't be ready to start performing its harmful deeds

until it has finished decrypting itself. Figure 6

Shown as Encryption Mechanism

Figure 6 Encryption Mechanism

3.4 Antivirus Evasion using Morphism

Oligomorphic Code: Oligomorphic malware code

keeps its basic functionality while exhibiting little

change or mutation. Malware writers typically

employ this technique to avoid being detected by

antivirus software. Traditional antivirus software

often uses signature-based detection, which

contrasts known malware signatures or patterns

against files or processes, to identify harmful

software. Malware writers often change their code

to produce variations that can evade detection and

these signatures. The Oligomorphic Code Source

code in below Figure 7 & Flow in Figure 8.

 Figure 7 Oligomorphic Code

Figure 8 Oligomorphic flow

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0166

e ISSN: 2584-2854

Volume: 02

Issue: 04 April 2024

Page No: 1232-1239

 IRJAEM 1236

Poliymorphic Code: Malware that is polymorphic

typically has a code generator or mutation engine

that can produce various iterations of itself. The

code is changed in a variety of ways by the generator

or engine, including variable names being changed,

the sequence of instructions being executed

changed, meaningless or junk code being inserted,

and portions of the code being encrypted. These

modifications result in new malware variants with

distinct byte-level signatures from earlier iterations.

Figure 9 Poliymorphic Code

In this Figure 9 simplified example, the original

code contains a malicious Function that performs

malicious actions and a legitimate Function that

performs legitimate actions. In the first polymorphic

variant, the function names are transformed into

obfuscated names, such as _0xE7425C04 and

_0x4FD3A1B8. The same applies to the function

names in the second polymorphic variant, which

become _0x982DE24C and _0xF8130D91.

Polymorphic Code Flow shown in Figure 10.

Figure 10 Polymorphic Code Flow

4. Antivirus Tempering Using Packing

To explain how packers work, we will run a simple

"Hello World.exe" file through one packer, Ultimate

Packer for executables (UPX). general, packers

work by taking an EXE file and obfuscating and

compressing the code section (".text" section) using

a predefined algorithm [10]. The OEP is the entry

point that was originally defined as the start of

program execution before packing took place. The

main goal of antivirus software is to detect which

type of packer has been used, unpack the sample

using the appropriate techniques for each packer

using its unpacking engine, and then classify the

unpacked file as either "malicious" or "benign.".

UPX – Ultimate Packer for Executables: This

packer is widely used by legitimate software and

malware authors alike. First, we will pack our

sample Hello World.exe file, and then we will

unpack it using the -d argument built into UPX.

Finally, we will conduct the unpacking process

manually to understand some of the inner workings

of this packer. Before we pack the sample, we first

put the Hello World.exe executable into a tool called

DiE (short for Detect It Easy). The following Figure

11 tells us that the executable has been compiled

with C/C++ and that there is no sign of any

"protection" mechanism:

Figure 11 UPX Packer with “Hello World!”

We then check the entropy of the file. Entropy is a

measurement of randomness in a given set of values

or, in this case, when we check whether the file is

packed or not. If the entropy of the any file which is

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0166

e ISSN: 2584-2854

Volume: 02

Issue: 04 April 2024

Page No: 1232-1239

 IRJAEM 1237

greater than 7 then most probably file is packed. In

the following Figure 12 screenshot, we can see that

the entropy value is not high (less than 7.0), which

tells us that the executable is not packed yet:

Figure 12 Entropy Without Packing File

Another great indicator of a packed file is the

function imports that the file includes, which are

small compared to a non-packed executable. The

following Figure 13 screenshot shows a normal

number of imported DLLs and API functions used

by the executable using the PE-bear tool.

Figure 13 Imported API’s

In addition, in the following Figure 14 screenshot,

we can see that the entry point (EP) of this program

is 0x12D0, which is the address where this

executable needs to begin its execution:

Figure 14 Entry Point for Execution

Now that we understand what a regular file looks

like before packing takes place, we can pack the

Hello World.exe executable using UPX, with the

following command shown in Figure 15.

UPX.exe <File Name> -o <Output file name>

Figure 15 Packing Hello World Exe File Using

UPX

Now, testing the packed Hello World.exe

executable in the DiE tool reveals very different

results, as shown Figure 16.

Figure 16 Detected Packer UPX

And as you can see, the executable is successfully

detected as a UPX-packed binary. The entropy and

the section names support this conclusion, as seen in

the following Figure 17 screenshot.

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0166

e ISSN: 2584-2854

Volume: 02

Issue: 04 April 2024

Page No: 1232-1239

 IRJAEM 1238

Figure 17 Entropy of Packed File

In addition, using the PE-bear tool again, we can see

here that the entry point of this packed version of

Hello World.exe has also been changed to 0xC230:

Figure 18 Entry Point Changed After Packing

As Conclusion you can see that after Packing the file

using UPX packer we get some of the indicators that

file is packed using entry point and some tools like

PE-Detective, PE-Bear, EXEinfo etc using these

tools you can easily identified packed files. Figure

18 shown as Entry Point Changed After Packing

4.1 Some Defences Against Potential Threats

Run never in administrator mode. It is a golden rule

that may prevent 99% of viruses without an AV.

Utilise the very robust security capabilities in

Windows 10 to harden your computers. Spend

money on network intrusion detection systems and

keep an eye on it. Malware infestations are

frequently not found on the victim's PC, although

odd NIDS or firewall logs might help. Utilise a

number of AV equipment from various suppliers.

One product can make up for another's flaws.

Conclusion

In this paper I have Determined the different AV

Evasion techniques to evade any antivirus software

and how to prevent this evading throughout the

paper. the techniques of finding loop wholes in

antivirus software. [11] Bypassing antivirus is

simple when you exploit their weakness .it requires

some knowledge of windows system internals and

required deep understanding of how AV software

can detect threat. Antivirus is useful in detecting

millions of wild Threats which are already in

database, also they are useful for system recovery.

References

[1]. Samociuk, D. (2023). Antivirus Evasion

Methods in Modern Operating Systems.

Applied Sciences, 13(8), 5083.

https://doi.org/10.3390/app13085083

[2]. 91-95. (n.d.). Scribd.

https://www.scribd.com/document/6295

97533/91-95#

[3]. Devglan.

https://www.devglan.com/online-

tools/text-encryption-decryption

[4]. C/C++ Obfuscator - Obfuscate your

C/C++ source code for free and online.

(n.d.). https://picheta.me/obfuscator

[5]. What is a “control-flow flattening”

obfuscation technique? (n.d.). Reverse

Engineering Stack Exchange.

https://reverseengineering.stackexchange

.com/questions/2221/what-is-a-control-

flow-flattening-obfuscation-technique.

[6]. Citu, A. (2023, January 23). Book

Review: Antivirus Bypass Techniques.

Adventures in the Programming Jungle.

https://adriancitu.com/2023/01/18/book-

review-antivirus-bypass-techniques/

[7]. JoelGMSec. (n.d.). GitHub -

JoelGMSec/Invoke-Stealth: Simple &

Powerful PowerShell Script Obfuscator.

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0166

e ISSN: 2584-2854

Volume: 02

Issue: 04 April 2024

Page No: 1232-1239

 IRJAEM 1239

GitHub.

https://github.com/JoelGMSec/Invoke-

Stealth

[8]. Pérez-Sánchez, A. M., & Palacios, R.

(2022). Evaluation of Local Security

Event Management System vs. Standard

Antivirus Software. Applied Sciences,

12(3), 1076.

https://doi.org/10.3390/app12031076

[9]. DevGlan. (n.d.-b). Encrypt and Decrypt

Text Online. Devglan.

https://www.devglan.com/online-

tools/text-encryption-decryption

[10]. Dan.com. (n.d.). antivirusware.com -

Domain Name For Sale | Dan.com.

https://antivirusware.com/

[11]. Grant, A. (2023, June 14). Help Net

Security - Cybersecurity News. Help Net

Security.

https://www.helpnetsecurity.com/

about:blank

