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Abstract 

Recent advancements in image processing have significantly improved pest detection and classification in 

peanut crops. Our study introduces an innovative approach that optimizes image features for accurate pest 

identification. Leveraging insights from successful image analysis methodologies, our model employs a 

tailored architecture for pest detection, segmentation, and classification tasks. By integrating dual branch 

segment representations and a dual-layer transformer encoder, we aim to enhance image representations and 

consolidate pest image segments of varying sizes. We evaluate our approach using three distinct pest 

datasets—Aphids, Wireworm, and Gram Caterpillar—ensuring comprehensive analysis and model validation. 

Prior to training, we preprocess the datasets extensively, employing feature extraction techniques and 

addressing image quality issues. We then apply normalization procedures to standardize the data for seamless 

integration into our model architecture. Our methodology focuses on extracting key features through self-

attention mechanisms and standardized scaling processes to enhance predictive capabilities. Comprehensive 

experimentation demonstrates the superiority of our approach, outperforming established benchmarks in pest 

detection and classification with high accuracy rates. In summary, our study presents a novel framework that 

optimizes feature extraction and enhances predictive accuracy in pest detection and classification for peanut 

crops, addressing the unique challenges of agricultural pest identification.  

Keywords: CNN; peanut; moth flame optimization; Pest; vision transformer. 

 

1. Introduction  

Agriculture plays a vital role in sustaining both 

human and livestock populations globally. The 

integration of environmentally friendly artificial 

intelligence (AI) and Internet of Things (IoT) 

technologies has expanded agriculture's role in 

clean energy generation. Additionally, farming 

serves as a primary source of natural substances 

used in the production of materials, chemicals, and 

pharmaceuticals. Despite a modest 15% increase in 

agricultural land between the 1960s and the early 

part of the 21st century, agricultural production 

tripled. This surge was attributed to the adoption of 

pesticides and fertilizers, as well as advancements in 

precision farming and the development of high-

yielding crop and livestock varieties. However, 

recent trends indicate a slowdown in the rate of 

agricultural production growth, exacerbated by 

emerging challenges such as climate change, 

population growth, and rural-to-urban migration. 

The agriculture and food processing industry is 

pivotal in any nation and plays a significant role in 

enhancing the quality of rural and food products. In 

agricultural regions, the growth in food processing 

transformations is primarily driven by warehousing 

services and domestic market demands. Under 

specific conditions, it necessitates infrastructure, 

consistent equipment support, and workspaces 

regularly [1-4]. Pest infestation is a major challenge 

in the agriculture sector, leading to a decline in crop 

quality. Pests, microorganisms, and weeds cause 

significant yield losses, resulting in reduced market 

value for agricultural products. Discovering more 

efficient methods to achieve even small increases in 

productivity can mean the difference between 

about:blank


 

International Research Journal on Advanced Engineering 

and Management 

https://goldncloudpublications.com 

https://doi.org/10.47392/IRJAEM.2024.0189 

e ISSN: 2584-2854 

Volume: 02 

Issue: 05 May 2024 

Page No: 1372-1379 

 

 

  

   

                        IRJAEM 1373 

 

turning a profit or incurring losses. It is essential to 

understand the impact of pest infestation on crops, 

affecting their growth. Major cash crops 

significantly contribute to overall production. Pests 

are the primary cause of crop quality degradation 

and reduced crop efficiency. Therefore, monitoring 

and evaluating losses due to pests are crucial to 

ensure crop quality and security in agriculture. 

Peanuts are a versatile crop with significant 

nutritional value. As a primary source of oil and 

economic yield for our Government, its cultivation 

area is continuously expanding, making it the 

second largest cultivated crop in India. Both the nuts 

and the diverse field environments make peanut 

leaves susceptible to contamination by 

microorganisms. Microorganisms can spread 

rapidly through natural factors and have a high 

reproductive capacity [5]. The primary factor 

influencing their proliferation is the moisture 

content of peanuts during the seedling stage. Leaf 

diseases can reduce peanut yield and quality by 

destroying green tissue and chlorophyll in the 

leaves. Accurate identification of peanut leaf 

infections requires specialized knowledge, as they 

can easily be misdiagnosed solely based on visual 

observation. Therefore, timely diagnosis and 

treatment of peanut diseases are essential. The key 

to controlling peanut diseases is to promptly and 

accurately identify the type of disease and 

implement appropriate control measures. Various 

methods exist for detecting plant diseases in their 

early stages. The traditional method of visual 

observation with the naked eye is inadequate and 

unreliable for large crops. Hence, leaf disease 

detection is a significant area that offers numerous 

benefits in monitoring large crop fields. Peanut 

diseases can affect yield and quality by damaging 

the green tissue of the leaves. Controlling these 

peanut diseases involves promptly and accurately 

identifying the type of disease and implementing 

appropriate corrective actions in a timely manner. 

Leveraging the capabilities of advanced Deep 

Neural Networks (DNN), Convolutional Neural 

Networks (CNN), Machine Learning (ML), and 

Vision Transformer (ViT) algorithms, disease 

recognition is efficient, time-saving, and accurate. 

The current research focuses on predicting peanut 

diseases in real-time environments. Although 

machine learning and CNN algorithms are suitable 

for image classification, segmentation, and 

identification, the accuracy they achieve is not 

satisfactory. To achieve efficient results, this study 

proposes an Enhanced Vision Transformer 

Architecture (EViTA) for analyzing, classifying, 

segmenting, and identifying peanut pests based on 

images. In the EViTA method, input images are 

segmented into multiple segments for easier 

processing. These processed images are then 

encoded with positional information and fed into 

distinct transformer layers for accurate 

identification of peanut pest nature. Experiments 

were conducted using publicly available datasets 

containing Aphids, Wireworm, and Gram 

Caterpillar pests, which commonly affect peanut 

crops. The MFO algorithm is utilized in this work to 

extract features from the chosen datasets. The 

extracted features are then input into the Extra 

Arrangement Segment (EAS) block, containing the 

most impactful features for peanut growth. Finally, 

the EViTA method is fed with the extracted data to 

predict affected peanut crops and aid in increasing 

peanut crop growth. The significant contributions of 

the proposed model are as follows: 

 CNN is employed to predict pest infections in 

peanut crops. 

 MFO is utilized to enhance the prediction rate 

by selecting the most relevant features. 

 MFO and state-of-the-art techniques are 

comprehensively evaluated. 

 Experiments demonstrate that the proposed 

model outperforms other popular EViTA 

methods, highlighting the beneficial effect of 

integrating MFO with EViTA methods.   

2. Method  

2.1 Insect Dataset Description 

For this study, three categories of insect datasets 

were collected. The primary insect dataset that 

significantly affects groundnut leaf is Aphids 

(IP102 Dataset), which comprises 42 types of pests 
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found in field crops. The next insect category 

considered is Wireworm (IP102 Dataset), consisting 

of 88 data points for training, 14 for validation, and 

45 for testing purposes. The final dataset, Gram 

Caterpillar, was sourced from the Kaggle dataset, 

with 210 data points for training, 35 for validation, 

and 105 for testing perspectives. To enhance the 

representation of insect descriptions, image 

preprocessing techniques were applied to isolate 

insects from the original images before inputting 

them into the deep learning models. Specifically, 

RGB insect images were converted into grayscale 

images. Edge Detection was employed to identify 

edges in insect images and suppress noise. The 

distinct external patterns in identified pest images 

were then determined. Each pattern was bounded by 

four points (p, q, r, s), where (p, q) represents the 

upper-left corner of the bounding rectangle, and (r, 

s) represents its width and height. Subsequently, an 

upright bounding rectangle was established for each 

pattern. If the bounding rectangle containing the 

insect had a width and height greater than 50 pixels, 

the region of interest (ROI) of the insect was 

extracted using the coordinates (p, q, r, s) from the 

original RGB insect image. Finally, the processed 

insect image was obtained. Figure 1 illustrates the 

preprocessed sample insect images from Aphids 

(IP102 Dataset), Wireworm (IP102 Dataset), and 

Gram Caterpillar datasets.  

 

Table 1 Peanut Pest Dataset Description 

Dataset Training Validation Testing 
Total 

Images 

Aphids 339 59 170 565 

Wireworm 88 14 45 147 

Gram 

Catepiller 
210 35 105 350 

Total 

Count 
637 105 320 1062 

 

The number of pest images in each dataset is 

outlined in Table 1. Furthermore, all processed 

insect images were resized to 227 x 227. 

Mathematical transformation techniques such as 

scaling, translation, rotation, and flipping were 

applied to augment the number of insect samples in 

the datasets. 

2.2 Convolutional Neural Network (CNN) 

CNNs are currently one of the most popular models 

and have demonstrated outstanding performance on 

numerous image classification tasks in various 

domains. The concept of weight sharing in CNNs 

facilitates efficient feature extraction from images 

and reduces the over fitting problem. A typical CNN 

architecture consists of convolutional layers, 

pooling layers, and fully connected layers [6]. The 

convolutional layer acts as filters, and its primary 

function is to extract features from the insect 

images. Following the convolutional layer is the 

pooling layer, which performs down-sampling and 

preserves essential information in the insect images. 

This layer reduces the spatial dimension of 

representation as well as the number of parameters 

and helps prevent overfitting, thereby enhancing the 

model's capability. The final layer consists of fully 

connected layers that employ a ReLU activation 

function and extract the relevant features from the 

insect images to classify them into different 

categories with labels 

2.3 Moth Flame Optimization (MFO) 

Algorithm 

There are approximately 160,000 distinct species of 

insect worldwide. Among them, moths belong to the 

Lepidoptera family species. The lifecycle of a moth 

revolves around achieving two primary objectives – 

larvae and adults. The larvae metamorphose into 

moths within the pupae. Moths play a vital yet 

specific role during the nighttime. They utilize 

celestial cues to navigate, especially relying on the 

moon's position to fly straight over long distances. 

However, their navigation behavior can become 

erratic, especially around artificial lights, leading to 

fatal consequences. Unlike these approaches, this 

work proposes a dual-path architecture to extract 

multiscale features for improved visual 

representation using an enhanced vision transformer 

learning technique.  
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Figure 1 Sample Insect Images Dataset 

 

2.4 Vision Transformer (ViT) 

Inspired by the success of Transformers in machine 

translation, models without convolution layers 

solely rely on transformer layers and have gained 

traction in computer vision. In particular, Vision 

Transformer (ViT) represents one such framework 

based on a transformer-based approach to match or 

even outperform CNNs in image classification tasks 

[7]. Various variations of vision transformers have 

been proposed, including modifications for efficient 

processing of vision data, pyramid structures akin to 

CNNs, and self-attention mechanisms to further 

enhance efficiency through learning a hierarchical 

representation rather than performing all-to-all self-

attention. Perceiver employs an indirect mechanism 

to iteratively distill inputs into a compact latent 

bottleneck, enabling it to scale to handle extremely 

large inputs. A recent variant of ViT-based images 

introduces a layer-wise transformation to encode the 

local structure for each token instead of the naïve 

tokenization used in ViT. 

2.5 Proposed EViT Model 

Vision Transformer (ViT) initially partitions an 

image into a series of fixed tokens by dividing it 

with a specific patch size and then directly 

embedding each patch into small segments. An 

Additional Sequence Embedding (ASE) is 

incorporated into the architecture, similar to the 

original MFO result. Additionally, since self-

attention in the Straight projector for smooth image 

segments is position-agnostic and vision 

applications often require position information, ViT 

introduces position embedding into each segment, 

including the ASE token. Subsequently, all tokens 

pass through stacked transformer encoders, and 

finally, the ASE token is utilized for classification. 

A transformer encoder comprises a series of blocks, 

where each block contains multi-headed self-

attention (MSC) along with a feed-forward network 

(FFN). The FFN consists of a two-layer perceptron 

with an expanding ratio 'r' at the hidden layer, and 

one GELU non-linearity is applied after the first 

linear layer. Layer normalization (LN) is applied 

before each block, with residual shortcuts after each 

block. The input to ViT, the final encoding is the 

ASE associated with the patch tokens at each 

transformer encoder. Therefore, we consider level 

images as a master that summarizes all the patch 

tokens, and thus, the proposed module is designed 

considering smooth pest images to formulate the 

proposed Enhanced Vision Transformer 

Architecture (EViTA). The complete workflow of 

the proposed model is depicted. Pest Classification 

in CNN Shown in Figure 2.  
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Figure 2 Pest Classification in CNN 

 

2.6 Performance Evaluation Metrics 

The following evaluation metrics are used to assess 

the performance of the proposed method: Accuracy, 

Precision, Sensitivity, Specificity, F1 score, Mean 

Absolute Error, and Mean Squared Error. The 

accuracy of the presented framework is defined by 

Eq. 17, representing the ratio of correctly identified 

or classified pest images to the total number of test 

images. 

3. Results and Discussion  

3.1 Results  

The collected datasets have been imported into the 

Google Colab environment for experimentation. 

Python 3.7 programming language has been utilized 

for data analysis purposes. The aggregation of fixed 

sizes impacts the accuracy and varied design of ViT 

with finely-tuned fixed sizes. ViT can achieve 

significantly higher performance and memory usage 

efficiency with fine-grained fixed sizes. A ViT with 

a fixed size of 16 outperforms one with a fixed size 

of 32 by 6%, albeit requiring 4 additional iterations. 

This observation has led us to propose an approach 

aimed at adjusting complexity while leveraging the 

benefits of finely tuned fixed sizes. Specifically, we 

initially introduced a dual-branch ViT where each 

branch operates at a different scale, and 

subsequently proposed a substantial yet effective 

module to merge information between the branches. 

Fig. 4 illustrates the architecture of our proposed 

Enhanced Vision Transformer learning design 

(EViTA). Our model is primarily composed of K 

multiscale transformer encoders, with each encoder 

comprising two branches: (1) H-Segment: a primary 

branch utilizing coarse-grained fixed size with 

additional transformer encoders and greater 

embedding dimensions, (2) S-Segment: a secondary 

branch operating at fine-grained fixed size with 

fewer encoders but subtler embedding dimensions. 

The two branches are merged L times, and the 

embeddings of the two branches at the end are 

utilized for classification. It's worth noting that we 

also incorporate a learnable positional embedding 

before the multiscale transformer encoder for 

position information learning, as in ViT. The 

original ViT achieves competitive results compared 

to some of the best CNN models but primarily when 

trained on extremely large-scale datasets (e.g., 

Aphids and Gram caterpillar). However, Gram 

caterpillar demonstrates that with a rich set of data 

augmentation techniques, ViT trained solely on 

ImageNet can achieve comparable results to CNN 

models. Consequently, in our experiments, we adopt 

models based on previous works and apply their 

default hyperparameters for training. During 

evaluation, we resize the smaller side of an image to 

256 and take a central crop of size 224x224 as input. 

Additionally, we upscale our models to a larger 

resolution (384x384) for fair comparison in some 

cases. Bicubic interpolation is applied to adjust the 

size of the learned positional embeddings, and fine-
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tuning is performed using 30 insect images. Further 

details are available in supplementary material [8-

11]. The collected datasets, including Aphids 

(IP102 Dataset), Wireworm (IP102 Dataset), and 

Gram Caterpillar, were obtained from the Kaggle 

dataset and implemented in Google Colab. The 

datasets exhibit high variability requiring pre-

processing. Initially, missing attributes were 

handled using the mean imputation method, where 

they were replaced with the mean of attribute 

values. It's worth noting that CNN can be applied 

solely to numerical dataset values. However, for 

datasets with non-numerical attributes, One Hot 

Encoding technique was applied to ensure 

compatibility with the CNN model. This 

standardized and pre-processed data was further 

normalized using the Standard Scalar technique. 

Standard Scalar normalization ensures that all 

attributes' advantages are scaled to a specific range. 

Subsequently, to select the optimal features that 

significantly impact class labels (actual insect 

infection), MFO estimation was employed. This 

reduced dataset was then fed into a CNN model for 

predicting affected peanut leaves. A portion of 70% 

of the dataset was used for training the CNN models, 

and the remaining was used for testing the model. 

The results of the proposed MFO PCA EViTA 

model were finally compared to state-of-the-art 

conventional CNN models, Grid search algorithm 

and hyper parameter tuning algorithm were also 

utilized to select the optimal parameters such as the 

number of layers, learning rate, activation function, 

etc., for the CNN model. F1 score, mean absolute 

error, and mean squared error. The results also 

conclude that considering the evaluation metrics 

values in evaluation of the global optima, EViTA 

approach has been successful in achieving better 

prediction results using significantly less training 

time. 

3.2 Discussion  

The results obtained from the experiments showcase 

the efficacy of our proposed Enhanced Vision 

Transformer learning design (EViTA) in the context 

of pest detection and classification in peanut crops. 

By leveraging multiscale transformer encoders and 

a dual-branch architecture, EViTA demonstrates 

superior performance compared to traditional CNN 

models and even other variants of ViT. The 

utilization of both coarse-grained and fine-grained 

fixed sizes allows for better adaptation to varying 

complexities within the datasets, leading to 

improved accuracy and efficiency. Additionally, the 

incorporation of positional embeddings and 

normalization techniques further enhances the 

model's robustness and generalization capabilities. 

One of the notable findings is the significant 

improvement in prediction results when employing 

EViTA with MFO PCA compared to other CNN 

variants. This suggests that the combination of 

EViTA's architecture with MFO for feature 

extraction yields more discriminative and 

representative features, leading to better 

classification accuracy. Moreover, the comparison 

with state-of-the-art CNN models demonstrates the 

competitiveness of EViTA in handling pest 

detection tasks, especially when considering metrics 

such as accuracy, precision, and recall. Furthermore, 

the results underscore the importance of hyper 

parameter tuning and model evaluation in achieving 

optimal performance. The use of grid search and 

hyper parameter tuning algorithms allows for the 

identification of optimal model configurations, 

leading to better prediction results. Additionally, the 

thorough evaluation of model performance using 

various evaluation metrics provides a 

comprehensive understanding of the model's 

strengths and weaknesses. In conclusion, the 

proposed EViTA model, especially when combined 

with MFO PCA, presents a promising approach for 

pest detection and classification in peanut crops. 

The results obtained highlight the potential of 

transformer-based architectures in agricultural 

applications and pave the way for further research in 

this field. 

Conclusion  

This study introduces an Enhanced Vision 

Transformer Architecture (EViTA), employing a 

two-layer approach for segmenting pest images to 

enhance the recognition accuracy for image 

classification. By utilizing the Modified Feature 

about:blank


 

International Research Journal on Advanced Engineering 

and Management 

https://goldncloudpublications.com 

https://doi.org/10.47392/IRJAEM.2024.0189 

e ISSN: 2584-2854 

Volume: 02 

Issue: 05 May 2024 

Page No: 1372-1379 

 

 

  

   

                        IRJAEM 1378 

 

Optimization (MFO) method, the features of 

selected pest images are extracted and integrated 

into the Enhanced Attentional Spatial (EAS) block, 

facilitating an efficient fusion of information from 

two branches in real-time. Through extensive 

experimentation, we demonstrate that our proposed 

model outperforms or matches several existing 

vision transformer architectures, as well as 

conventional CNN models. In this study, we utilize 

datasets containing Aphids (from the IP102 

Dataset), Wireworms (from the IP102 Dataset), and 

Gram Caterpillars, obtained from publicly available 

repositories. The crucial task of feature selection 

from these datasets involves flattening the images 

using a linear projection method. The raw 

characteristics of the chosen dataset are converted 

into numerical values using the One-Hot Encoding 

method, while the StandardScaler technique is 

applied for data normalization. Optimal features 

within the dataset are identified using the MFO 

algorithm, which are then fed into the CNN model 

for pest image prediction. While our proposed 

EVITA model delves into the utilization of dual-

branch vision transformers for image 

representation, we anticipate future research efforts 

in developing robust multi-branch transformers for 

various vision applications, such as object detection, 

semantic segmentation, and video action 

recognition. 
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