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Abstract 

Coffee is a perennial crop that harbors infections throughout the plant, which may worsen illness under 

favorable circumstances. Coffee leaf rust, a widespread coffee disease and Arabica is susceptible to leaf rust. 

Disease incidence and severity depend on abiotic variables. Cloudy and constant South-West monsoon 

weather (June–September) promotes coffee leaf rust growth. In this five-model study, an Extra Tree and 

Gradient Boosting regression model predicted coffee crop output in Chikamagaluru, Karnataka, with the least 

error utilizing biotic and abiotic factors. We investigated additional tree, gradient boosting, RF, Decision 

Tree, and KNN models using biotic and abiotic predictors. Used the independent testing dataset's MSE, MAE, 

RMSE Root mean square errors, and R-squared errors to compare model performance. The extra tree 

(R²=0.98 kg/ha ˉ¹ and RMSE = 7.96 kg/ha ˉ¹) and gradient boosting (R²=0.96 kg/ha ˉ¹ and RMSE = 10.96 

kg/ha ̄ ¹) regression models used Group 1 and 2 characteristics as predictor variables and different parameter 

fine tuning functions to estimate coffee yield most accurately. Compared to the less precise probabilistic 

models utilized in this work, such as Random Forest, decision tree, and KNN models, shown in the results 

section. The optimum weather parameter for coffee production forecasts and biotic-CLR incidence data 

outperformed random forest, decision tree, and K-Nearest Neighbor models.  

Keywords: Abiotic Variables; Coffee; Coffee Leaf Rust (CLR); Stochastic Regression Models, Yield                     

Prediction. 

 

1. Introduction  

The taste of coffee stimulates millions worldwide. 

Coffee is second for world commerce after 

petroleum. Over 80 countries grow the energizing 

beverage, some of which are its main producers. 

These 24 countries generate over 50,000 MT of 

coffee, including India. Coffee is cultivated largely 

in hilly regions of Karnataka, Kerala, Tamil Nadu, 

and the southern states, and to a lesser extent in non-

traditional locations like Andhra Pradesh, Orissa, 

West Bengal, Maharashtra, and the north and east 

[1]. Arabica and Robust are two of the most 

prominent coffee varietals farmed in India, out of 

103 marketed worldwide [2]. Most coffee growers 

in Karnataka cultivate C.Arabica in Chikamagaluru 

and C.Robusta in Coorg. Productivity might fall by 

10-20% by 2050 owing to agro-ecological 

conditions in these places [3].  Juliana Jaramillo et. 

al., (2009) have assessed the heat tolerance of 

Hypoth-enemus hamper, the most destructive coffee 

pest, and examined data from Ethiopia, Kenya, 

Tanzania, and Colombia to determine the 

consequences of climate change. This research 

looked at the bionomics of Helicobacter hampei 

under eight different temperature regimes: 15, 20, 

23, 25, 27, 30, 33, and 35. We look at how different 

adaption strategies have fared in the face of climate 

change and how it has affected the spread of H. 

hampei [4]. M. de C. Alves et. al., (2011) Using 

climate and crop distribution, geoinformation-based 

prediction models identified soybean rust, coffee 
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leaf rust, and black Sigatoka risk zones in Brazil. 

They classified three plant diseases by temperature 

and leaf wetness using a meteoro-logical model [5]. 

Jaramillo, J et. al., (2011) produced maps of 

expected H. ham-pei distributions in East African 

coffee-producing areas to estimate hazards and 

prioritize management operations. For HADCM3, 

the CLIMEX model links insect distributions to 

present climate and estimates future climatic 

envelopes under scenarios A2A and B2B [6]. Cora 

B. P´erez-Arizac et. al., (2012) an agricultural case 

study using Bayesian networks (BNs) for coffee rust 

prediction is presented. An 8-year Brazilian 

experimental farm dataset was utilized. Pre-

processing of the original dataset was influenced by 

preliminary data analysis [7]. Kutywayo, D et. al., 

(2013) this study studies agricultural pest 

distribution under anticipated climatic scenarios, 

concentrating on Zimbabwe's African coffee white 

stem borer (CWB) [8]. Classen, A et. al., (2014) the 

authors conducted an experiment to ex-amine how 

land-use intensification affects Mount Kilimanjaro 

coffee production pollination and pest control. The 

study tested ordinary home gardens, shady coffee 

plantations, and sun coffee plantations (total sample 

size ¼ 180 coffee bushes) for pollinators and 

vertebrates across a land-use gradient. Researchers 

found no significant ecological service decrease 

across land-use gradients [9]. Wang, N et. al., 

(2014) this research examined yields and Central, 

North, East, Southwest, and Northwest coffee-

growing regions' 254 plots' production metrics. 

They employed boundary line analysis to quantify 

regional yield disparities and determine how 

production characteristics affect coffee output. They 

also examined how rainfall fluctuation affects 

coffee output using regression analysis [10]. 

Corrales et. al., (2015) this research forecasts 

disease and pest crops using super-vised learning. 

This study reviews supervised learning methods for 

maize, rice, coffee, mango, peanut, and tomato pesto 

and disease detection. Finding the best agricultural 

algorithms is the objective here [11]. Hameed et. al., 

(2020) the study examined the correlation between 

agricultural and environmental parameters and final 

cup quality features. A study found that agricultural 

and environmental variables significantly affect the 

physical and biochemical qualities of coffee [12]. 

Sudha, Met. al., (2020) this research examined the 

impact of meteorological factors on CLR incidence 

at the Central Coffee Research Institute (CCRI) in 

Chikkamagaluru District, Karnataka, India. To 

control for interspecific hybrid Sln.5B and Robusta 

cultivar C×R and used the leaf rust-resistant Arabica 

coffee selection Sln.3. CLR observed at CCRI farm 

in 2015-16, 2016-17, 2017-18, and 2018-19 seasons 

in Coffee Arabica L cultivars Sln.3 & Sln.5B and C. 

canephora C×R. CCRI's meteorological observatory 

recorded maximum and minimum temperature, 

relative humidity, and rainfall [13]. Yáñez-López 

et.al, (2012) this re-view provides a summary of 

current climate change studies. This study analyzed 

climate change studies on plant diseases due to its 

possible influence on agricultural disorders. This 

review examines how climate change affects plant 

diseases, agricultural growth, development, and 

productivity [14]. Suresh, N et. al., (2012) this 

research examines the interaction between the host, 

environment, and pathogen in the coffee-leaf rust 

disease complex. Climate change affects variables 

affecting climate, but not disease development, 

since spore germination needs lower temperatures 

(15-20oC) and dim light. To ensure sustainable 

coffee production, breeding should prioritize the 

host plant's capacity to withstand pathogen attacks 

[15]. Cerda et. al., (2017) aimed to assess coffee 

pests and diseases' main and secondary yield losses 

and their drivers. We created a full-sun coffee 

package with six treatments, each including a 

distinct pesticide application sequence. The three-

year study (2013-2015) evaluated yield 

components, dead productive branches, and foliar 

pests and diseases as yield predictors [16]. Abreu 

Junior et. al., (2022This study used multispectral 

images and machine learning to predict coffee crop 

productivity. Sentinel 2 images, Random Forest 

(RF), Support Vector Ma-chine (SVM), Neural 

Network (NN), and Linear Regression (LR) 

provided data from the same study location in 2017, 

2018, and 2019.Using 85% training and 15% 
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validation data, the NN algorithm calculated yield 

best with 23% RMSE, 20% MAPE, and R2 0.82. 

NN predicted yields better (27% RMSE) [17]. De 

Leijst-er et. al., (2021) this research explores the 

relationships between ecosystem services in coffee 

systems in Colombia, examining their trajectories 

after agroforestry transition and the underlying 

variables. Research was conducted to examine the 

chronology of agro-forestry coffee plantations from 

1-40 years after installing shade trees. This study 

found that agroforestry restores ecosystem services 

[18]. Bebber et. al., (2016) Using climatic 

reanalyzes, researchers examined the idea that 

climate change caused Coffee Leaf Rust in 

Colombia from 2008 to 2011. Experiments have 

shown that germination and infection are Weibull 

functions with different temperature optimums [19]. 

Berihun, G et. al., (2022) this review discusses 

Ethiopian CLR disease. The paper studies climate 

change and CLR out-breaks and suggests disease 

control strategies [20]. Fanelli Carvalho et. al., 

(2020) the goal was to evaluate Arabica coffee 

genome selection by accounting for biennially 

impacts on yield prediction accuracy. Low (2005 

and 2007) and high (2006 and 2008) yield years 

assessed the GBS high-density genotyped 

population (n = 586). Genotypic selection 

outperformed prediction methods due to shorter 

breeding cycles [21]. Santana et. al., (2022) 

systematically studying soil variability and plant 

effects improves the field. Scientists at the PC 

provide improved coffee manufacturing 

management and security. Designed to reduce 

pesticide use and soil nutrients for sustainable 

coffee production [22]. Tadesse et. al., (2021) re-

searchers have sited that main meteorological 

factors affecting CLR are temperature, moisture, 

and wind. Understanding climatic and 

meteorological links to CLR outbreaks may help 

farmers anticipate and control the disease, reducing 

crop losses. Future study aims to identify realistic 

climate change adaption solutions for smallholder 

growers [23]. Avelino et. al., (2015) to better 

understand the 2008–2013 outbreaks, experts 

examined Mesoamerica's most severe epidemics 

from 1987 to 2003, particularly in Central America 

and Colombia. Following these recent outbreaks 

and the projected climate change that would impact 

Mesoamerica in the near future, they have proposed 

various strategies for enhanced disease management 

[24]. Tadesse et. al., (2020This study examined 

coffee production constraints and possibilities in 

significant coffee-growing districts (Wereda) in 

four South Nation Nationalities and Peoples Region 

zones (Sidama, Gedeo, Gamo Goffa, and Wolayta). 

They interviewed 161 houses for qualitative and 

quantitative data and analyses it using SPSS and 

descriptive statistics. Diseases, insect pests, weeds, 

and vertebrates are the biggest biotic factors. 

Drought, frost, fluctuating rainfall, high humidity, 

temperature, low moisture, hail, storm, wind, and 

soil fertility may reduce coffee yield by 70% [25].  

To estimate crop yields at the Coffee Research 

Station (CCRI) in Chikamgaluru, Karnataka, India, 

we analyzed several machine learning algorithms 

and included biotic and abiotic data. Many experts’ 

claim data mining and AI are ready to construct 

effective forecasting models. Machine learning 

methods were explored to forecast coffee output 

from biotic and abiotic characteristics. We 

extensively discussed data sets and techniques here. 

Detailed findings explanation provided. Detailed 

analysis of five probabilistic regression models for 

predicting coffee production using various 

parameter fine tuning strategies. 

2. Dataset And Methods  

2.1. Study Area and Dataset 

Located in the Balehonnur district of the Karnataka 

State of India, the Central Coffee Research Institute 

(CCRI) was the source of the data gathered from 

2015 to 2022. Seven input characteristics derived 

from one thousand samples make up the dataset for 

the model used in this study, which includes both 

biotic and abiotic components. Table 1 shows the 

datasets and describes the biotic (Coffee Leaf Rust 

incidence, or CLR) and abiotic (parameters 

affecting yield) variables in detail. We performed 

research at Central Coffee Research Institute 

(CCRI), Coffee Research Station, Chikkamagaluru 

District, Karnataka, India, to examine how 
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meteorological factors affect CLR occurrence. 

Recorded CLR incidence at fortnightly intervals 

from Coffee Arabica L cultivar Sln.3 at CCRI farm 

during 2015-2022.The meteorological observatory 

at CCRI collected weather data, including 

maximum and lowest temperatures, relative 

humidity, and rainfall amounts.  

 

Table 1 Biotic and Abiotic Parameters 

Parameters Name Description 

Year 2015-2022 

Temperature – 

Minimum in Degree’s 
12.4 to 22.8 

Temperature – 

Maximum in Degree’s 
20.6 to 29.08 

Coffee Leaf Rust (CLR) 

Incidence 

Two Fort-Night’s in Each 

month – incidence data 

- Day-1 to Day-15: 

First Fort Night. 

- Day-16 to Last day 

of respective month: 

Second Fort Night. 

were recorded in 

Percentage. 

(0% to 79.69%) 

Relative Humidity – in 

Percentage 
32% to 100% 

Rainfall in Centimeters 186.1 cm to 329.5 cm 

Coffee Type SLN3 (Arabica) 

Yield in Kg/Acre 210 to 400 

 

2.2. Proposed Methodology 

To make and predict coffee production according to 

biotic and abiotic criteria, we provide probabilistic 

machine learning methods in this section. Figure 1 

depicts the recommended technique in square form. 

 

 
Figure 1 Proposed Methodology Block Diagram for Coffee Yield Prediction System Based on Biotic – 

CLR Incidence and Abiotic Factors 

 

The pre-processing part of our suggested method 

just required a few steps. The datasets didn't seem to 

have many gaps at first look. Mathematical means, 

medians, and binning algorithms are among the 

statistical methods used to fill in the gaps in the data. 

Next, we may use the climate-related component 

standard critical values that the CCRI has set forth 

[26]. By applying a boxplot to the biotic and abiotic 

factors, we were able to eliminate any outliers [27]. 

By eliminating outliers, we may decrease the initial 

1000 data points to 794. Then, we used skewness to 

check whether the data are regularly distributed 

[28]. 

2.3. Methods 

We discussed probabilistic machine learning 

methods in this section that are being investigated 

for the purpose of coffee yield prediction using 

biotic (CLR Incidence) and abiotic factors. 

2.3.1. Extra Tree Regression  

The "Extra Tree Regression" RF model is a novel 
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method. Unedited judgments or regression trees 

result from top-down ETR. Random Forest 

regression bags and bootstraps. Starting with 

random training datasets, bootstrapping creates 

decision trees. After ensemble creation, two-step 

bagging separates decision tree nodes. Bagging 

begins with random selection of training data 

groupings. Deciding on the top subgroup and its 

value completes decision-making [29].  

Instructions for using the Extra Tree Regression 

Algorithm for numerical attributes are provided 

below [30]: 

Step-1: Dividing a node (A) 

The learning subset A for the neighboring node that 

has to be divided is the input. 

A node split [x xy] or a zero split is the output. 

Return 0 if Stop split (A) equals. 

Anyhow, from all non-Consistent (in A) Applicant 

characteristics, choose  

B attributes (c1... cb); 

Describe the locations of the B divides e1... eb. ei = 

choose a random number  

Splice (A, xi), v j = 1, and then B; 

To ensure that Count (d*, A) = maxi=1... B Count 

(ei, A), return a split e *. 

Step-2: Take a haphazard split. (A,x) 

Inputs include an attribute x and x subclass A. 

Results: x split 

Let xAmax and xAmin denote the maximum and 

insignificant estimates of m in A, respectively.  

Illustrate any boundary ac in accordance with 

[xAmin, xAmax]. 

Send the split ([x xy]) back. 

Step-3: Reverse split (A) 

Enter: x subclass A binary output for x return TRUE 

if |A| xmin; Return TRUE if A's properties are all 

consistent. 

Return TRUE if the result is in accordance with A; 

FALSE otherwise. 

The steps above describe the Extra-Trees splitting 

approach for numerical features. It contains two 

parameters: ymin, the lowest sample size for 

splitting a node, and B, the number of characteristics 

randomly picked at each node. It is combined with 

the (whole) original multiple times. Creating an 

ensemble model by learning a sample. The final 

forecast is produced by combining the tree 

predictions. In classification issues, use the majority 

vote, while in regression issues, and use the 

arithmetic average [30]. 

2.3.2. Gradient Boosting Regression 

In ensemble learning, gradient boosting regression 

tree approaches employ weak learner regression 

trees (decision trees) to create reliable forecasting 

models. Poorly trained models (repressors or 

classifiers) experience fewer errors. Poorly learned 

models show a bias toward the training dataset, little 

volatility, and minimal regularization compared to 

random guesses [31]. Boosting uses additive 

models, weak learners, and loss functions. Gradient 

boosting machines establish weak model constraints 

using gradients. Iteratively connecting decision 

trees using an additive model and decreasing the 

loss function with gradient descent reduces 

prediction errors by linking base learners.  

The gradient boosting tree, also known as the Fn(xt) 

algorithm, is the accumulation of n regression trees.:   

Fn (xt) = ∑ n i=1 fi (xt) -------- (i) 

Every fi(xt) is a decision tree or regression. The 

equation estimates the new decision tree fn+1(xt) to 

form the ensemble of trees:   

       argmin∑_t▒〖L (yt. Fn(xt) + fn+1(xt)) 〗--- 

(ii) Where the loss function L (.) is differentiable. 

This study employed 0.2 learning rate and 100 

estimator value. When learning rate is smaller, 

stopping before over fitting is easier. 

2.3.3. Random Forest Regression 

Random Forest (RF) ensemble-based data mining 

makes accurate predictions without over fitting. 

They use model aggregation-based learning [32]. 

Random forests use bootstrapped learning samples, 

Binary decision trees, and a random selection of 

explanatory factors. Validation or "out-of-bag" 

predictions create up to 2000 random trees using 

data for a third of samples in the RF technique. Each 

tree is bootstrapped. Random predictors branch the 

tree at each node, and the result is the average of all 

trees. Out-of-bag samples are used by Random 

Forest to test independent tree data model error. 

Need no cross-validation [32]. Sequentially, the 
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Random Forest algorithm: 

Step-1: Select and replace N training set data cases 

randomly. Growing original trees is training. 

Step-2: At each node, Random Forest randomly 

picks m variables from M inputs (or predictors). The 

best split on these m variables separates the node 

while keeping m's value as the forest Grows. 

Step-3: The Random Forest method maximizes tree 

size without cutting its structure. 

Step-4: If regression is a problem, pooling n trees' 

predictions gives a mean value for predicting 

Incoming data. 

The out-of-bag error rate estimate may be accurate 

if enough Random Forest trees duplicate particular 

data. The out-of-bag error rate estimate may be 

accurate if enough Random Forest trees duplicate 

particular data. 

2.3.4. Decision Tree Regression 

Machine learning and data mining employ 

classification and regression decision trees. Are the 

anticipated outcomes the observed or given 

variable's class. Classification tree analysis. If the 

predicted value is actual, use regression tree 

analysis. Regression decision trees include non-leaf 

nodes for binary attribute tests, branches for test 

results, and leaf nodes for projected values or labels. 

The highest tree node is the root. Recursive 

partitioning or sub-division develops tree branches 

and predicts using binary questions for each feature 

value. Classification or regression trees need feature 

vectors or observed and known values [33]. To 

create a tree, hierarchically subdividing the space 

takes three steps: splitting nodes, identifying 

terminal nodes, and adding labels or anticipated 

values to terminal nodes. The majority or weighted 

votes determine class labels or projected values, 

with some being more probable or costlier than 

others [34]. 

2.3.5. K-Nearest Neighbour Regression 

The k-Nearest Neighbor (kNN) approach classifies 

a new item based on the k nearest training dataset 

points, allocating it to the class with the most points. 

Regression calculations use a weighted sum of 

answers from k neighbors, with weight inversely 

proportional to the distance (normalized Euclidean) 

from the input record. The simplest variant uses k = 

1. This creates an unstable prediction model with 

high volatility and data sensitivity. Increasing k 

decreases variance but may increase bias. The 

method is sensitive to selecting k properly. There is 

no need for optimization or training beyond 

selecting k and the distance measure. Additionally, 

the technique utilizes local information to create 

nonlinear, adaptive decision limits. However, the 

approach is popular for its simplicity and the 

specified features [35]. 

2.4. Model Performance Evaluation Metrics 

This research evaluated five stochastic regression 

models for coffee yield prediction by comparing 

measured yield data with test phase yield data. 

Analysis of R2, MAE, MSE, and root MSE. Table 2 

basic performance metrics predict production: 

 

Table 2 Standard Performance Metrics 

    S.No     Performance Metrics Formula 

1 R-Squared (R2) 

R² Squared = 1 – 
𝑆𝑆𝑟

𝑆𝑆𝑚
 

SSr – Squared regression line sum error 

SSm - Squared mean line sum error. 

2 Mean Absolute Error (MAE) 

MAE =
1

𝑁
∑(|𝑦𝑖 − 𝑦

^

𝑖|)

𝑖=𝑁

𝑖=1

 

There are N anticipated values.. 

𝑇he ith data′s real true value is represented by yi. 

y
^

i is the i-th data's anticipated value. 
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3 MSE, or Mean Squared Error MSE = 1/𝑁 ∑(𝑦𝑖 − 𝑦
^

𝑖 )² 

4 RMSE, or Root Mean Square Error RMSE = √
1

𝑁
∑ (𝑦𝑖 − 𝑦

^

𝑖) ²𝑖=𝑁
𝑖=1  

3. Results And Discussion  

3.1. Results  

Scatterplots (fig. 2) shown the degree of agreement 

between actual yield and expected yield data during 

testing to condense all characteristics to a single 

scale without modifying the probabilistic models' 

range of values. This research analyzed probabilistic 

model outcomes using normal parameter, ordinary 

scalar, and principal component analysis fine tuning 

functions. Additionally, we have developed our 

proposed models in three groups like: Group-1: All 

Input Parameters vs. Yield Using Normal Parameter 

Fine-tuning function, Group-2: All Input 

Parameters vs. Yield Using Ordinary Scalar Fine-

tuning function and Group-3: All Input parameters 

vs. Yield using Principal Component Analysis 

Functions respectively. Figure-2 shows 

performance metrics using scatterplots, including 

R-Square (R²), RMS Error (RMSE), actual and 

predicted yield, and model error rate. 

3.1.1. Extra Tree Regression 

Extremely Randomized Trees (Extra Trees) is a 

regression like Random Forest. Nodes are built 

using all preparation set data. Mold the root or any 

other node before checking a sqrt subset of 

randomly produced characteristics for the 

appropriate split. Feature divides randomly. An 

Extra tree regression model was developed utilizing 

100 DTs from various relevant categories from the 

test and train datasets show in Table 3. 

 

Table 3 Extra Tree Regression Model Was Used to Forecast Coffee Yield with Variable Biotic and 

Abiotic Factors for Three Groups. We Looked at R2, Mae, Mses, And Rmse Ratios for Different Split 

Ratios in The Testing Phase. The Best Bargains Are Boldfaced 

Group-1 Extra Tree Model: All Parameters vs. Yield Using Normal Fine-tuning function. 

Quantity 

Shared 
R-Square kg/ha 

Mean Absolute 

Error kg per ha 

Mean Square Error kg 

per ha 

Root Mean 

Square Error kg 

per ha 

90:10 0.98 5.58 68.91 8.30 

80:20 0.98 5.87 63.58 7.97 

70:30 0.98 6.01 63.42 7.96 

60:40 0.97 6.81 89.23 9.45 

50:50 0.94 8.85 148.04 12.17 

Group-2 Extra Tree Model: All Parameters vs. Yield Using Ordinary Scalar Fine-tuning function. 

90:10 0.98 5.38 70.56 8.40 

80:20 0.98 6.01 64.77 8.05 

70:30 0.98 6.25 64.81 8.05 

60:40 0.97 6.33 79.93 8.94 

50:50 0.95 8.60 145.34 12.06 

Group-3 Extra Tree Model: All Parameters vs. Yield Using Principal Component Analysis function. 

90:10 0.53 30.03 1596.61 39.96 

80:20 0.54 29.32 1498.90 38.72 

70:30 0.50 28.40 1519.10 38.98 

60:40 0.50 25.80 1333.85 36.52 

50:50 0.49 27.61 1380.61 37.16 
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Considering all input parameters vs. yield, Group-1 

fine tuning function model yields the most 

promising results. The additional tree regression 

model had the best coefficient of determination (R-

square = 0.98 kg per ha and Root Mean Square Error 

= 7.96 kg per ha) (figure-2). Comparing measured 

yield to expected yield for 70:30 split ratio showed 

this. Performance indicators showed the extra tree 

regression model performed less error rate for 

groups 2 and 3. Gradient boosting regression, 

random forest regression, KNN regression, and 

Decision Tree regression models fail to extract 

predictive features from multi-parameter data, as 

does the Extra Tree regression model using the same 

inputs and group-1 parameters. Table-3 displays R², 

MAE, MSE, and RMSE performance for several 

splitting models during testing. 

3.1.2. Gradient Boosting Regression 

Boosting uses 100 weak learners and a random 

forest base_estimator. Every stage adds weak 

learners to make up for existing weak learners. 

Gradients show the merged model's weaknesses is 

show in Table 4. 

 

Table 4 Gradient Boosting Regression Model Was Used to Forecast Coffee Yield with Variable Biotic 

and Abiotic Factors for Three Groups. We Looked at R2, Mae, Mse, And Rmse Ratios for Different 

Split Ratios in The Testing Phase. The Best Bargains Are Boldfaced 

Group-1 Gradient Boosting Model: All Parameters vs. Yield Using Normal Fine-tuning 

function. 

Quantity 

Shared 
R-Square kg/ha 

Mean Absolute 

Error kg per ha 

Mean Square Error 

kg per ha 

Root Mean 

Square Error 

kg per ha 

90:10 0.98 6.29 79.68 8.93 

80:20 0.97 6.68 91.94 9.59 

70:30 0.96 8.20 121.90 11.04 

60:40 0.97 6.80 87.61 9.36 

50:50 0.93 9.35 186.44 13.65 

Group-2 Gradient Boosting Model: All Parameters vs. Yield Using Ordinary Scalar Fine-

tuning function. 

90:10 0.98 6.07 77.77 8.82 

80:20 0.97 6.58 91.26 9.55 

70:30 0.96 8.14 120.18 10.96 

60:40 0.97 6.86 89.95 9.48 

50:50 0.93 9.21 183.79 13.56 

Group-3 Gradient Boosting Model: All Parameters vs. Yield Using Principal Component 

Analysis function. 

90:10 0.17 36.13 2821.00 53.11 

80:20 0.72 21.01 914.35 30.24 

70:30 0.48 25.95 1577.82 39.72 

60:40 0.49 24.25 1379.67 37.14 

50:50 0.09 34.01 2434.70 49.34 
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Considering all input parameters vs. yield, Group-2 

fine tuning function model yields the most 

promising results. The gradient boosting regression 

model had the best coefficient of determination (R-

square = 0.96 kg per ha and Root Mean Square Error 

= 10.96 kg per ha) (figure-2). Comparing measured 

yield to expected yield for 70:30 split ratio showed 

this. Performance indicators showed the gradient 

boosting regression model performed less error rate 

for groups 1 and 3. Extra Tree regression, random 

forest regression, KNN regression, and Decision 

Tree regression models fail to extract predictive 

features from multi-parameter data, as does the 

gradient boosting regression model using the same 

inputs and group-2 parameters. Table-4 displays R², 

MAE, MSE, and RMSE performance for several 

splitting models during testing. 

3.1.3. Random Forest Regression 

We tested the random forest model with tens of 

thousands of samples to deter-mine whether it 

improved reliability over regression models. Table 

5 indicates significant parameter group differences 

in splitting. 

 

Table 5 Random Forest Regression Model Was Used to Forecast Coffee Yield with Variable Biotic 

and Abiotic Factors for Three Groups. We Looked at R2, Mae, Mse, And Rmse Ratios for Different 

Split Ratios in The Testing Phase. The Best Bargains Are Boldfaced 

Group-1 Random Forest Regression Model: All Parameters vs. Yield Using Normal Fine-

tuning function. 

Quantity 

Shared 
R-Square kg/ha 

Mean Absolute 

Error kg per ha 

Mean Square Error 

kg per ha 

Root Mean 

Square Error 

kg per ha 

90:10 0.97 5.79 107.46 10.37 

80:20 0.97 6.65 104.90 10.24 

70:30 0.96 7.93 114.65 10.71 

60:40 0.96 6.69 99.02 9.95 

50:50 0.92 9.24 206.53 14.37 

Group-2 Random Forest Regression Model: All Parameters vs. Yield Using Ordinary Scalar 

Fine-tuning function. 

90:10 0.97 5.99 107.68 10.38 

80:20 0.97 6.84 109.44 10.46 

70:30 0.96 7.92 115.77 10.76 

60:40 0.96 6.85 97.62 9.88 

50:50 0.92 9.38 208.79 14.45 

Group-3 Random Forest Regression Model: All Parameters vs. Yield Using Principal 

Component Analysis function. 

90:10 0.55 27.90 1541.31 39.26 

80:20 0.53 28.28 1522.03 39.01 

70:30 0.57 26.12 1313.37 36.24 

60:40 0.57 24.62 1162.09 34.09 

50:50 0.47 28.02 1433.07 37.86 
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Considering all input parameters vs. yield, Group-1 

fine tuning function model yields the most 

promising results. The random forest regression 

model had the best coefficient of determination (R-

square = 0.96 kg per ha and Root Mean Square Error 

= 10.71 kg per ha) (Figure-2). Comparing measured 

yield to expected yield for 70:30 split ratio showed 

this. Performance indicators showed the random 

forest regression model performed less error rate for 

groups 2 and 3. Gradient boosting regression, extra 

tree regression, KNN regression, and Decision Tree 

regression models fail to extract predictive features 

from multi-parameter data, as does the random 

forest regression model using the same inputs and 

group-1 parameters. Table 5 displays R², MAE, 

MSE, and RMSE performance for several splitting 

models during testing. 

3.1.4. Decision Tree Regression 

The decision tree regression model took into 

account 100 DTs from different subgroups by 

combining the test and train datasets. In splitting, 

Table 6 shows substantial parameter group 

disparities. 

 

Table 6 Dec Ision Tree Regression Model Was Used to Forecast Coffee Yield with Variable Biotic and 

Abiotic Factors for Three Groups. We Looked at R2, Mae, Mse, And Rmse Ratios for Different Split 

Ratios in The Testing Phase. The Best Bargains Are Boldfaced 

Group-1 Decision Tree Regression Model: All Parameters vs. Yield Using Normal Fine-tuning 

function. 

Quantity 

Shared 

R-Square 

kg/ha 

Mean Absolute Error 

kg per ha 

Mean Square Error 

kg per ha 

Root Mean Square 

Error kg per ha 

90:10 0.97 4.55 90.65 9.52 

80:20 0.93 8.59 233.77 15.29 

70:30 0.92 7.43 253.91 15.93 

60:40 0.94 7.34 162.01 12.73 

50:50 0.93 8.58 191.50 13.84 

Group-2 Decision Tree Regression Model: All Parameters vs. Yield Using Ordinary Scalar Fine-

tuning function. 

90:10 0.97 4.55 90.65 9.52 

80:20 0.93 8.59 233.77 15.29 

70:30 0.92 7.43 253.91 15.93 

60:40 0.94 7.34 162.01 12.73 

50:50 0.93 8.58 191.50 13.84 

Group-3 Decision Tree Regression Model: All Parameters vs. Yield Using Principal Component 

Analysis function. 

90:10 0.28 26.10 2467.20 49.67 

80:20 0.33 23.62 2165.77 46.54 

70:30 0.25 26.79 2276.69 47.71 

60:40 0.17 24.79 2222.32 47.14 

50:50 -0.03 30.06 2777.50 52.70 
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Considering all input parameters vs. yield, Group-1 

and 2 fine tuning function model yields the most 

promising results. The Decision tree regression 

model had the best coefficient of determination (R-

square = 0.92 kg per ha and Root Mean Square Error 

= 15.93 kg per ha) (figure-2). Comparing measured 

yield to expected yield for 70:30 split ratio showed 

this. Performance indicators showed the decision 

tree regression model performed less error rate for 

group-3. Gradient boosting regression, extra tree 

regression, KNN regression, and random forest 

regression models fail to extract predictive features 

from multi-parameter data, as does the random 

forest regression model using the same inputs and 

group-1and 2 parameters. Table-6 displays R², 

MAE, MSE, and RMSE performance for several 

splitting models during testing. 

3.1.5. K-Nearest Neighbour Regression 

With a weight that is inversely proportionate to the 

distance (normalized Euclidean) from the input 

record, regression computations employ a weighted 

sum of replies from k neighbours. The most basic 

version used here is k = 1. 

 

 

Table 7 K-Nearest Neighbour Regression Model Was Used to Forecast Coffee Yield with Variable 

Biotic and Abiotic Factors for Three Groups. We Looked at R2, Mae, Mse, And Rmse Ratios for 

Different Split Ratios in The Testing Phase. The Best Bargains Are Boldfaced 

Group-1 K-Nearest Neighbour Regression Model: All Parameters vs. Yield Using Normal 

Fine-tuning function. 

Quantity 

Shared 
R-Square kg/ha 

Mean Absolute 

Error kg per ha 

Mean Square Error 

kg per ha 

Root Mean 

Square Error 

kg per ha 

90:10 0.52 26.40 1636.70 40.46 

80:20 0.58 24.05 1370.51 37.02 

70:30 0.46 28.05 1647.94 40.59 

60:40 0.51 24.23 1329.98 36.47 

50:50 0.23 30.13 2060.15 45.39 

Group-2 K-Nearest Neighbour Regression Model: All Parameters vs. Yield Using Ordinary 

Scalar Fine-tuning function. 

90:10 0.05 41.25 3250.15 57.01 

80:20 0.23 37.63 2495.51 49.96 

70:30 0.06 41.31 2853.76 53.42 

60:40 0.10 36.86 2421.78 49.21 

50:50 -0.07 41.35 2864.95 53.53 

Group-3 K-Nearest Neighbour Regression Model: All Parameters vs. Yield Using Principal 

Component Analysis function. 

90:10 0.28 34.38 2449.49 49.49 

80:20 0.45 28.19 1799.20 42.42 

70:30 0.35 31.96 1966.56 44.35 

60:40 0.41 27.58 1582.38 39.78 

50:50 0.17 31.95 2241.58 47.35 
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Considering all input parameters vs. yield, Group-1   

fine tuning function model yields the most 

promising results. The K-Nearest Neighbour 

regression model had the best coefficient of 

determination (R-square = 0.46 kg per ha and Root 

Mean Square Error = 40.59 kg per ha) (Figure-2). 

Comparing measured yield to expected yield for 

70:30 split ratio showed this. Performance 

indicators showed the K-Nearest Neighbour 

regression model performed less error rate for 

groups-2 and 3. Gradient boosting regression, extra 

tree regression, decision tree regression, and 

random forest regression models fail to extract 

predictive features from multi-parameter data, as 

does the random forest regression model using the 

same inputs and group-1 parameters. Table-7 

displays R², MAE, MSE, and RMSE performance 

for several splitting models during testing.

 

Extra Tree Regression Model Gradient Boosting Regression 

model 

Random Forest Regression 

Model 

   

  
Decision Tree Regression Model K- Nearest Neighbour Regression Model 

Figure 2 Group 1 & 2 Served as Input Parameters for The Proposed Models Shown in Above 

Scatterplots Based on Probabilistic Models Based on the Extra Tree, Gradient Boosting, Random 

Forest, Decision Tree And K-Nearest Neighbor Regressions. Above Are Scatterplots Depicting the 

Highest Expected and Actual Coffee Yields During the Experimentation Period (70:30 Splits) 

 

3.2. Discussion 

There are a lot of factors that affect coffee crop 

productivity, including the amount of rainfall, 

temperature, daylight hours, vapour, dew points, 

and relative humidity, as well as the area produced 

in. Changes in these factors affect the monthly 

coffee harvest yield. Prediction is necessary for 

accurate production estimation and meeting 

customer demand. In the past, neither farmers nor 

entrepreneurs had a good grasp of the monthly 

coffee crop production potential nor the factors that 

may impact it. This research used five different 

probabilistic models to assess and predict the coffee 

crop output based on data on biotic and abiotic 

parameters, such as coffee leaf rust incidence, from 

2015 to 2022. Using data intelligence and statistical 

analytics, we may try to predict which abiotic and 

biotic components, when combined, would lead to 

the greatest yield in crop development simulation 

models, which is no easy feat. Despite various 
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challenges, Indian coffee producers must increase 

crop nutrition and resource use efficiency to 

maintain output. Our technique identified yield-

estimating biotic and abiotic variables. Even if non-

selected abiotic factors continue to impact coffee 

growth, our findings may guide future research to 

enhance decision-making on smallholder coffee 

farms. We did not take into account any other 

variables that can affect the stated yields in coffee 

production. Our research found that biotic and 

abiotic data-based models may predict coffee output 

and its key components. Other studies indicated that 

soil parameters were the biggest yield confounders. 

So far, Tables 3, 4, 5, 6, and 7 under the model 

generated for group 1, 2, and 3 parameters utilizing 

fine tuning functions are correct. (Fig. 2) R-squared 

compares model fit to horizontal straight Line. 

Throughout our analysis, we found no instances 

where the selected model fit the data worse than a 

horizontal line. Although the extra tree and gradient 

boosting regression models improved, they could do 

better. Biophysical modelling of coffee production 

at larger regional scales (such as Karnataka's Coorg 

area) requires additional empirical correlations 

using data from several coffee-producing provinces. 

Comparing and comparing smallholder and big 

farm practices is important. We performed research 

at Central Coffee Research Institute (CCRI), Coffee 

Research Station, Chikkamagaluru District, 

Karnataka, India, to examine how meteorological 

factors affect CLR occurrence. Recorded CLR 

incidence at fortnightly intervals from Coffee 

Arabica L cultivar Sln.3 at CCRI farm during 2015-

2022.The meteorological observatory at CCRI 

collected weather data, including maximum and 

lowest temperatures, relative humidity, and rainfall 

amounts. The study found that rainfall distribution 

over the period September to November differed 

from monthly rainfall amounts. Coffee leaf rust 

disease depends on time and temperature. This 

research found that linkages matter more than 

individual meanings for biotic and abiotic 

components. Now that land management, soil, and 

environmental conditions need various chemical, 

biological, and physical indicators, studies must 

concentrate on more than one or two environmental 

parameters. We divided each parameter's relevance 

by its greatest value to get its index weight. 

Therefore, the model with the highest R2 and lowest 

RMSE is best. 

Conclusion  

Using biotic – CLR incidence data and abiotic 

variables measured at the Central Coffee Research 

Institute Station in Karnataka's Chikamagaluru 

coffee-growing area, this study compares actual and 

expected coffee yield. The coffee research station in 

the Chikamagaluru area aimed to improve coffee 

crop yield, therefore they evaluated the usefulness 

of probabilistic models, a data-driven approach for 

examining biotic and abiotic variable data for 

predictive traits. In order to create the probabilistic 

models under consideration, a unique machine 

learning technique for handling complicated and ill-

defined situations was used. The goal variable was 

the coffee yield (Y), and the seven biotic and abiotic 

characteristics were divided into three groups using 

different parameter fine tuning functions. The 

predictor variables included year, temperatures 

(both minimum and maximum), rainfall, relative 

humidity (both minimum and maximum), and CLR 

incidence, month). Our results showed that 

compared to Gradient Boost, Decision Tree, KNN, 

Random Forest, and Gradient Boost, Extra Tree was 

the most successful regression model. Using a 

variety of variables, regression models are able to 

more accurately predict coffee yields by extracting 

characteristics from interactions between biotic and 

abiotic factors. This study shown the possible 

benefits of combining biophysical crop models with 

AI algorithms in precision agriculture decision-

support systems by using a set of properly screened 

data for biotic and abiotic traits to intentionally 

increase productivity in smallholder farms. 

Analysing these machine learning methods may 

help us build better models for analysis and 

predictions. 
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