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Abstract 

Human society is witnessing a revolutionary growth of digital twin (DT) and artificial intelligence (AI) 

technologies, which has greater impact on Industry 4.0 revolution specially in academia and industry. DT is 

a digital representation of a physical entity, with data and infrastructure serving as its foundation, algorithms, 

and models as its core, and software and services as its application. The methodical and thorough integration 

of domain-specific expertise is even more essential to the foundations of DT and AI in industrial sectors. This 

paper provides a thorough analysis of more than 30 articles on AI-driven DT technologies employed in 

Industry 4.0 over the previous five years. It also describes the general advances of these technologies and the 

current status of AI integration in the domains of advanced robotics and smart manufacturing which are 

affecting human society. These include established methods like industrial automation as well as complex 

mechanism like 3D printing and human-robot collaboration. Additionally, the benefits of AI-powered DTs are 

explained in relation to sustainable development. The development potential and practical difficulties of AI-

driven DTs are examined, with varying emphasis on various levels. 

Keywords: Artificial Intelligence; Digital Twin; Digital Shadow; Industry 4.0; Machine Learning; 

Sustainability; 

 

1. Introduction  

Smart manufacturing and Industry 4.0 are essential 

components of modern society and the national 

economy. By building an open, networked 

architecture, Industry 4.0 promises to improve the 

flexibility and agility of traditional production by 

addressing compatibility and interoperability 

problems both within and across automation 

systems and industries at all levels. Advanced 

robotics is also essential to smart manufacturing 

since it acts as an intelligent agent that is present 

across production lines. Digital twins (DT) are 

gaining more and more interest in research because 

of the extensive study and development of Industry 

4.0 and artificial intelligence (AI)[1]. Finding 

equilibrium among the FESG (financial, 

environmental, social, and governance) aspects is 

often necessary to achieve holistic sustainability. 

This drives up expenditures for production 

companies while also posing serious problems for 

their processes and organizational structure. In these 

circumstances, it is anticipated that AI-powered DT 

technology would modify conventional model-

based methods to fit changing boundary conditions 

and offer a demand-oriented, real-time evaluation 

foundation that effectively supports decision 

making in multi-objective challenges. Numerous 

studies have already been conducted on DT, 

discussing and characterizing it from the 

perspectives of broad concepts, specific fields, and 

technologies—all without specifically focusing on 

artificial intelligence (AI), this unique enabler—that 

is, product design, modeling and simulation, and 

fault diagnostics. The methodical and thorough 

integration of domain-specific knowledge is much 

more essential to the foundation of DT and AI. 

Currently, a thorough industry-focused analysis of 

"AI + DT" technologies in relation to sustainability 

and the circular economy is still lacking. The 
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following research questions (RQ) are put forward 

to further aid in the development and landing of 

these generalized technologies (GT) in advanced 

robotics and smart manufacturing:  

RQ1: What are the most recent studies on DTs and 

realistic case solutions?  

RQ2: What is the progress in the integration of the 

two categories mentioned above?  

RQ3: With respect to sustainability what are the 

benefits of AI- enabled DTs.?  

RQ4:  Practical problems in using AI-enabled DTs 

in the real world and in the future? 

By reviewing recent advancements in DTs from a 

domain-specific standpoint, investigating applied 

AI techniques in each subarea, classifying their role 

in sustainable development, and summarizing real-

world issues in a range of application domains, this 

paper aims to close this research gap [5]. The 

present study makes the following contributions:  

 The AI-driven DTs of Industry 4.0 have 

completed their general development and 

application   scenarios using standard AI 

techniques.  

 The benefits of AI-driven decision trees (DTs) 

for sustainable development are explained in 

detail with reference to the FESG criteria, which 

allow for a quantitative evaluation of 

sustainability.  

 With a focus on various levels, the difficulties 

and future potential of AI-driven DTs in 

advanced robotics and smart manufacturing are 

examined. 

1.1. Exploring the Definition of Some Major 

Technical Terms 

1.1.1. Digital Twins 

The National Aeronautics and Space Administration 

(NASA) defined DT as a Multiphysics, multiscale, 

probabilistic simulation that mimics the life of its 

twin through the use of physical models, sensor 

updates, fleet history, and other resources [2]. 

Grieves and Vickers subsequently described DT as 

a dynamic model that is based on enormous amounts 

of data and processing power that vary throughout 

the lifecycle, including creation, production, 

operations, and disposal [4]. Tao et al. suggested an 

extended five-dimension DT model [3], which 

includes a physical entity, a virtual entity, service, 

data, and connection, based on the architecture in 

[6]. 

1.1.2. Digital Shadow 

  The U.S. Air Force initially introduced the idea of 

"digital thread" as a framework for combining 

conceptual and top-level architectural models from 

model-based systems engineering (MBSE) with 

specific design models [7]. The National Institute of 

Standards and Technology (NIST) advanced this 

concept further with the aim of sharing data about 

equipment performance and health as well as 

product design and quality throughout the product 

lifecycle [8]. With the model-based ensemble of 

data in design, production, and inspection, a single 

digital thread is thus established, enabling full 

process tracking in a smooth, real-time, 

collaborative process of development across the 

project stakeholders [9]. 

1.2. Limitation of Exploratory Analysis  

This survey offers a basic understanding of the state-

of-play for AI-driven DT technologies in Industry 

4.0, including the three previously mentioned topics 

(Digital Twin, Digital Thread, AI). Although the 

meanings and applications of the Digital 

Transformation (DT) are interpreted differently, 

they all adhere to the same philosophy: using digital 

replicas with near real-time capabilities to improve 

traditional organizations and processes throughout 

the product lifecycle in an efficient manner will 

increase industry competitiveness and optimize 

resource allocation. Thus, the focus here is not on 

standalone machine learning (ML) technologies, 5G 

communication, or Internet of Things (IoT) 

technologies without digital duplicates. Based on 

this, more than 30 manuscripts are covered, who 

deals with manufacturing, smart city and robotics in 

industries. 

1.3. Paper Organization 

The paper is organized as follows. Section 2 

examines digital production twins at three distinct 

levels in the context of sustainable, resilient 

manufacturing; Section 3 covers the applications of 

DT in robotics and human–robot 
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interaction/collaboration, Section 4 compares AI 

techniques horizontally; Section 5 wraps up the 

paper's contributions and discusses future research. 

2. Flexible and Environmentally Friendly 

Manufacturing 

To address the volatile, uncertain, complex, 

ambiguous market environment, extensive research 

has been performed recently in the fields of Industry 

4.0, cyber–physical production systems and 

integrative production approaches. A strong 

foundation for creating digital production twins 

throughout the product lifecycle is provided by the 

pervasive use of simulation models and ubiquitous 

networking, which is seen as a crucial enabler for 

upcoming manufacturing transformation and 

upgrading in the big data era [18-19]. A future 

vision of a more ecologically conscious society, 

known as "sustainable productivity," is replacing 

the conventional resource-intensive productivity 

thinking in the context of the circular economy and 

sustainability promises (such as the European Green 

Deal). With the integration of FESG factors as a 

novel indicator for quantitatively evaluating 

sustainable production, this understanding of 

productivity pushes manufacturing companies to 

adopt the necessary sustainability transformation by 

measuring their performance with respect to 

tangible and intangible services, business models, 

and value creation systems made up of resources, 

processes, and organizational structures. There are 

three levels of discussion for various research on 

digital technologies (DTs), including general 

advancements and AI-integrated cases, in terms of 

improving the financial trilemma of productivity, 

availability, and quality toward environmentally, 

socially, and governance-sustainable resilient 

manufacturing: For smart manufacturing we cover 

the factory and shop floor, as well as machinery and 

equipment, process and material. 

2.1. Production House and Production 

Environment 

2.1.1. General Developments 

Due to dynamic market environment and individual 

customer demand, Production systems and 

management in industrial firms face new problems.  

These challenges can have a substantial impact on 

manufacturing productivity and profitability. 

Automated production systems, including mixed 

reality assistance systems [11], could be quickly 

modularized [12] and reconfigured [13], improved 

with artificial intelligence [14] and sensors, and 

combined with cloud and edge computing [17] to 

become distributed control systems. Detailed 

production environments could also be created and 

updated in the form of 3D point clouds [18]. All of 

these possibilities are possible within the various 

concepts and frameworks that have been presented 

thus far.  

2.1.2. AI-Integration in Production House 

and Environment 

In this context, the accessibility of industrial 

production data within a networked system 

landscape serves as a technological enabler to raise 

the relevance of subjects like artificial intelligence 

and data-driven methodologies. This creates even 

more opportunities for the optimization of (novel) 

production systems, such as the line-less mobile 

assembly systems that allow big components to be 

assembled quickly by utilizing scheduling and 

modeling tools [20]. Enhancing DTs' ability to adapt 

to constantly changing boundary conditions at the 

factory and shop floor level is the main goal of using 

AI at this level. Production planning, production 

control and quality control are typical application 

subfields with AI-integrated DTs. While studying 

the papers, we found following AI Enabled 

Technologies that are being used in Production 

House and its Environment. 

Production Planning: Production planners can use 

artificial intelligence (AI) to help them identify 

plans with improved key performance indicators 

(KPI), derive optimization measures, and 

autonomously implement the strategies to achieve 

better sequencing and reallocation of resources (E-

factor). This satisfies the maturity model of 

production planning and control (PPC) proposed by 

Busch et al.  toward digitally connected, intelligent, 

and adaptive PPC systems. Decision trees might be 

utilized in DT to develop traditional rules for smart 

systems during the green design and production 
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planning stages, which would help with 

multidimensional process decision-making and 

strategic planning [21]. Hu and colleagues presented 

a Petri-net-based method for dynamic scheduling 

that utilizes a deep Q-network (DQN) in 

conjunction with a graph convolution network 

(GCN) to address dynamic scheduling issues related 

to shared resources and route flexibility. Similarly, 

metaheuristic techniques like the genetic algorithm 

(GA) and other optimization techniques [23] were 

frequently used to address scheduling issues in 

production lines in Table 1. 

 

 

Table 1 AI-Integration in Production House and Environment

Sub System AI-Category Key Methods Application-Case 

Production 

Planning 

Supervised 

Learning 

 

Decision tree 

Material Selection; Tool Holder 

Selection; 

 

Reinforcement 

Learning 

 

DQN 
Dynamic Scheduling Of Flexible 

Manufacturing Systems 

Computational 

Intelligence 

DES, multi-objective 

optimization 

Production Scheduling Optimization, 

Automatic Flow-Shop Manufacturing 

System 

Production 

Control 

Supervised 

Learning 
PGN, DNN 

Resource allocation for sequential 

manufacturing 

Operations, 

Process Optimization 

Reinforcement 

Learning 

 

DQN, TRPO 

Optimization of conveyor systems and 

Order Dispatching, 

Human Behavior Forecasting 

Quality 

Control Supervised 

Learning 

CNN Feature recognition of parts 

 Rest Net 
Use of CAD in surface detection of 

Production 

Logistics 
Computational 

Intelligence 

Self-learning generic 

positioning 

Defect detection and location 

information preservation 

Production Control: To enhance resource 

allocation and manufacturing metrics for 

performance in a timely way DNN, decision trees 

[23], and tree-based ensemble models were 

incorporated in various digital production twins 

during the production control stage. However, 

because of the complexity and dynamics of 

production environments, multi-objective problems 

at the factory level are typically understood as non-

deterministic, polynomial-time hard. With the aim 

of autonomously achieving the global optimal 

economic and logistic KPIs in the logistic 

simulation environment factor, the major task is 

typically mathematically formalized as a Markov 

decision process (MDP). Reinforcement learning 

(RL), such as DQN and deep RL, were used as a 

substitute for heuristic optimization and supervised 

approaches in various investigations to address this 

challenge. May et al. proposed a paradigm for the 

contextual decision-making process for production 

control agents by anticipating human behavior 

modeled by a reinforcement learner in order to 

include humans as a crucial component of smart 

manufacturing. 
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Quality Control: Conventional supervised 

machine learning models, like artificial neural 

networks (ANN), decision trees, and support vector 

machines (SVM), were supposed to identify or 

forecast possible surface irregularities and 

deformations during the quality control phase. The 

use of deep learning (DL) computer vision models, 

such as residual and convolutional neural networks, 

was implemented to identify potential quality 

problems during the automated production and 

machining of parts. These models could then be 

applied to improve the efficiency and quality of 

assembly processes (E-factor), or they could be 

traced back to the production planning stage to 

support decision-making as a “smart expert” in a 

cooperative setting. DTs of production systems in 

conjunction with MBSE can be modeled and 

modified modularly as a virtual testbed, which in 

turn might provide a runtime environment for 

simulation-based optimization. This approach is in 

line with the broader idea of incorporating ML 

approaches into the digital production twins. Hence, 

maintaining a profitable business is still necessary 

for long-term operations. At this level, DTs improve 

manufacturing processes' resilience, productivity, 

and transparency. This allows end-to-end data 

availability throughout the value chain and, 

consequently, a comprehensive sustainability 

assessment. AI-enabled DT can also be viewed as a 

service agent from the standpoint of business 

development [24], offering cutting-edge smart 

services through DT network platforms [25] and 

subscription business models. This helps 

manufacturers achieve a paradigm shift from the 

one-time provision of production hardware to the 

continuous delivery of manufacturing solutions 

(SG-factor) while also making a sustainable 

contribution to long-term innovation. 

3. Advanced Robotics 

3.1. Overview 

A digital twin of a robot is becoming increasingly 

important in real-world scenarios, such as multi-

robot coordination and collaboration, safe human-

robot interaction (HRI), and complex human-robot 

collaboration (HRC).  

 

Table 2 AI-Equipped DTS and Groups 

Subsystem of 

Robotics 
AI Technology Used Key Methods Application-cases 

Control 

Computational 

Intelligence 

Vision-based 

Markovian chain, QP 

Automate fan-blade reconditioning, 

maintenance, repair and overhaul 

Supervised Learning GD 

Recognizing integrated models' enhanced 

value for through-life engineering services 

 

Reinforcement Learning Trial-and-error search Weightlifting robot control 

Planning 
Computation Intelligence 

Proximal policy 

optimization 

Pick-and-place tasks for an industrial 

robotic 

Arm 

Reinforcement Learning DQN Automate smart manufacturing systems 

HRI/HRC 

Supervised Learning CNN, DN, ANN 

Standing-posture recognition in HRC, 

enabling industrial robots to bypass 

obstacles 

Reinforcement Learning DDPG 
improve efficiency in assembling medical 

equipment, e.g. COVID Case 

Predictive 

Maintenance 

 

Supervised 

Learning 
DNN 

Maximizing the overall plant availability of 

modern manufacturing systems 

Workspace 

Modeling 
Supervised Learning MonteCarlo method 

Simulating the workspace of the 

mechanisms 
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Additional instances can be discovered in industrial 

robot energy modeling, kinematics, communication, 

control, planning, and manufacturing use cases like 

welding, cleaning, pick-and-place, assembly, 

manufacturing, warehouse, maintenance, and 

construction. A few popular robotics simulation 

programs are CoppeliaSim (also known as V-REP) 

[23], MuJoCo [28], and Gazebo [29]. New ideas and 

examples of applying artificial intelligence to 

partially and completely autonomous robotic 

systems have recently been published. Examples 

include imitation learning, often referred to as 

apprenticeship learning or learning from 

demonstration, and transfer learning [30]. While 

data-driven and AI-equipped DTs assist with 

complicated robotic systems for which it is not 

practical to generate high-fidelity dynamics models, 

classic DTs have been developed for systems that 

we have a firm grasp of (i.e., model-based) (model-

free).  The latter is increasingly being used, even in 

the construction of biomimetic robotic systems 

(robotic fish). Table 2 lists AI-equipped DTs and 

groups them according to the subfields—such as 

control, planning, and HRI/HRC—and learning 

algorithms that are employed. These scenarios 

prioritize human safety and contribute to the 

creation of a sustainable working environment (SG-

factor). This development is accompanied by the 

widespread deployment of robotic systems in 

industry and daily life. Many have attempted to 

build robot DT using typical simulation/cloud 

frameworks. 

3.2. Control Segments of Robotics 

Modern robotic control relies heavily on feedback, 

which provides commands for the subsequent 

execution loop based on precise data gathered from 

external sensors and physical sensors mounted on 

robots. On these robotic systems, there are situations 

when safety controllers must be enabled in real time. 

In this subfield, numerous attempts have been made 

to use AI + DT. When paired with data, artificial 

intelligence (AI)-driven deep learning models (DTs) 

can achieve nontrivial sensing and manipulation 

tasks and become more adaptable and generalizable 

in a changing environment. A smart soft-robotic 

gripper system based on triboelectric nanogenerator 

sensors was described by Jin et al. at the sensing 

stage in order to record continuous motion and 

tactile data for soft gripper control. To improve task 

performance and system understanding, data- or AI-

driven methods are also included in various touch, 

haptic, and force sensing [28]. A humanoid robot 

was able to lift a weight of unknown mass through 

autonomous trial-and-error search thanks to Verner 

et al.'s implementation of online reinforcement 

learning via a fake digital twin at the controller 

stage, one level higher [27]. Grinshpun et al. also 

reported on the creation and application of control 

algorithms for soft robotics in, specifically 

mentioning industrial peg-in-hole insertion jobs. As 

an example of an application, Oyekan et al. used a 

robotic arm and vision-based Markovian chain to 

automate fan-blade reconditioning for aerospace 

maintenance, repair, and overhaul (E-factor). 

Another instance is the development of a DT by 

Klamt et al. for the well-known CENTAURO 

robotic system, which aids rescuers during disaster 

response operations. 

3.3. Planning 

High-level robotic planning is another essential 

component in the realization of autonomous robotic 

systems, and it comes into play once the low-level 

robotic control is functioning well. In contrast to the 

low-level control subfield, which places greater 

emphasis on the robustness and reaction of the 

system, high level planning is more concerned with 

strategically identifying a nearly optimal solution 

among all viable possibilities, given particular 

limitations. Reinforcement learning has shown 

enormous promise in adding intelligence to 

complex systems planning, such as a humanoid 

robot with many degrees of freedom (DOFs), when 

compared to conventional search-based motion 

planning algorithms [26]. However, because it takes 

money and time to get the data from the actual 

physical system, training reinforcement learning is 

typically challenging. Additionally, the system may 

not be able to learn anything beneficial due to the 

constraint of dimensionality [27]. In [28], Matulis et 

al. integrated digital twin and reinforcement 
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learning for a robotic manipulator to plan pick-and-

place motions; in [25], Liu et al. proposed a 

multitasking oriented robot arm motion planning 

scheme based on deep reinforcement learning and 

twin synchro-control. These examples suggest that 

the combination of "DT + RL" is a promising 

approach (SG-factor) when a robotic system's 

digital twin matures and provides reliable data. 

3.4. HRI and HRC 

One of the most significant advantages that DT 

could have for robot-involved scenarios in the 

context of Industry 4.0 is safer human-robot 

interaction and collaboration [28] (SG-factor). It 

seems sense that HRI and HRC situations would be 

more complicated and difficult than robot-only 

applications because of the variety and randomness 

of human behavior in addition to the uncertainties in 

the environment and sensors. AI-enabled DTs have 

an advantage over traditional ones in that they can 

adapt more effectively to these (sometimes implicit, 

like [29]) variables, which are difficult to fully 

characterize and analyze. Wang et al., for instance, 

suggested a real-time process-level digital twin in 

for cooperative human-robot construction work. To 

enable both planning and improvisation, the 

suggested DT coupled the as-designed BIM model 

with the changing as-built workspace geometry 

collected from on-site sensors. It did this by utilizing 

immersive virtual reality (VR). Li et al. presented 

DL-based human standing-posture recognition in 

HRC in [27]. 

3.5. Maintenance Through ROBOT and Other 

Applications 

Robotic machinery require maintenance and have 

downtime much like any other equipment that has a 

physical component (E-factor). In [29] Khalastchi et 

al. and Vallachira et al. reported examples of using 

data-driven approaches in robot anomaly/failure 

detection without specifically discussing the notion 

of DT. In [15], Anton et al. employed DT equipped 

with deep learning for predictive, personalized 

maintenance in addition to monitoring the overall 

health of the system. Similar to this, Aivaliotis et al. 

integrated deterioration curves in the industrial 

robot predictive maintenance [26]. Table 4 has some 

more applications, such as estimating the length of 

lawn grass for a robotic lawn mower using a random 

forest approach and computing the workspace of a 

serial robot manipulator using the Monte Carlo 

learning method [30]. 

3.6. Challenges and Future work 

In the field of robotics, creating and deploying 

digital twins presents a number of significant 

obstacles. First, because of the intricate interaction 

characteristics at the interfaces between robots and 

their environments, humans, and other robots, 

multibody physical simulation is inherently 

challenging. Furthermore, because robot movement 

can frequently occur at a very high speed (such as 

on an assembly line), real-time sensor feedback is 

essential to the digital twin's ability to make quick 

judgments. Many academic researchers opt to 

employ simulation environments, like Gazebo (e.g., 

[29]), to create robots. However, despite years of 

development, these robotic simulators still have 

many unresolved limits and may need high-

performance computing (HPC) systems. Second, 

human user inputs and disruptions introduce an 

additional degree of unpredictability and 

uncertainty to the entire collaborative 

system/workspace, jeopardizing HRI/HRC safety. 

A further way to make the human-robot interaction 

intuitive is to incorporate virtual reality or 

augmented reality (AR) technology alongside 

standard-compliant (e.g., ISO 13482) safety 

procedures that must be enabled on both the 

physical and digital fronts [30]. Additionally, 

Rückert et al. proposed combining product life cycle 

data into activities involving human-robot 

collaboration during assembly. 

4. Use of AI Driven Digital Twins in Industry 4.0  

While continuously improving sustainable aspects, 

such as the E-factor (e.g., reduced carbon emission 

and resource consumption through CM, PdM, 3D 

printing and lightweight production of metals and 

polymers) and SG-factor (e.g., enhanced working 

conditions, collaboration and innovation through 

HRI/HRC), DTs have demonstrated remarkable 

potentials to contribute to industrial economic 

growth, or the F-factor (i.e., the productivity, 
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availability, and quality of manufacturing). With the 

use of artificial intelligence (AI) techniques, digital 

twins can build models based on observed behavior 

and historical data, increasing prediction accuracy 

and streamlining data analysis from a variety of 

inconsistent and diverse sources. Four general 

categories can be used to group the AI approaches 

used in digital twins: reinforcement learning, 

supervised learning, unsupervised learning, and 

other intelligent computational techniques. 

Algorithms for supervised learning are machine 

learning techniques where models are trained with 

labels. SVM, decision trees [21], k-nearest 

neighbors, convolutional neural networks (CNN), 

and recurrent neural networks (RNN) [22] are 

examples of common supervised learning 

techniques used in digital twins. In actuality, data 

labeling can be a costly undertaking. To produce a 

model with a high prediction accuracy at the training 

stage, the majority of supervised learning 

algorithms need a substantial amount of labeled 

data. Generally speaking, more data are required to 

get workable findings the more sophisticated the 

design. Unsupervised learning techniques don't 

need data labeling; instead, the model is meant to 

identify patterns in the unlabeled input data. 

Unsupervised learning refers to clustering 

algorithms that use unlabeled data during the 

training phase, such as principal component analysis 

(PCA) [26] and k-means methods [20], as well as 

generative models that use generative adversarial 

networks (GAN) and variational autoencoders 

(VAE). Applying unsupervised learning techniques 

is a hurdle since it is typically unknown how many 

clusters there will be beforehand. Algorithms for 

reinforcement learning are focused on how 

intelligent agents should behave in a given 

environment to maximize the concept of cumulative 

reward. Q-learning [16], deep reinforcement 

learning, and deep deterministic policy gradient are 

a few examples of reinforcement learning 

algorithms that researchers have used to maximize 

decision-making in DT settings such as box sorting 

and conveyor systems. A reinforcement learning 

system's effectiveness is typically highly dependent 

on the accuracy of the data logging and the selection 

of incentive structures. During training, logging to 

the wrong references could contaminate the data and 

cause the system to crash. 

Conclusion 

We have observed that the current infrastructure still 

places constraints on the development and use of 

AI-enabled models and algorithms, the DT's core, 

and that building it will require interdisciplinary 

cooperation and the integration of domain-specific 

expertise (basic level). In the near future, new 

developments in innovative sensors as well as 

advantages from 5G communications are 

anticipated. From an application perspective, 

manufacturers can transform their paradigm through 

smart services and new business models, but first 

they must be prepared to share a reasonable amount 

of their data and knowledge with partners. This 

needs to be built on standardized notions of data 

ownership and security. Future work will 

encompass a deeper survey on AI-driven DT 

technologies in the application sectors of mobility 

and smart cities, renewable energy, and healthcare. 

We think that by rearranging and combining a 

number of extremely pertinent topics in both 

horizontal and vertical directions, a synergistic 

effect will occur that will enable the work in this 

study to contribute to additional AI-driven, DT-

related research and assist different branches in 

creating new innovations in their corresponding 

smart and sustainable fields. 
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