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Abstract 

Traffic congestion is a critical issue in urban transportation systems, leading to increased travel times, fuel 

consumption, and air pollution. Furthermore, accurate prediction of traffic conditions is essential for effective 

traffic management and route planning. However, traditional approaches often fail to capture the complex 

spatiotemporal dependencies inherent in road networks. This study compares the performance of Graph 

Convolutional Networks (GCNs) for traffic congestion prediction using Amsterdam sensor location datasets 

from 13 locations (01-10-2023 to 31-10-2023) and 18 locations (01-01-2024 to 26-01-2024). The GCN model 

achieves an accuracy above 0.5, with a peak accuracy of 0.6 for the 18-location dataset and 0.55 for the 13-

location dataset. Precision ranges from 0.5 to 0.8, while recall oscillates between 0.5 and 0.6. Also, the F1-

score reaches 0.6 for the 18-location dataset and remains above 0.4 for the 13-location dataset. The results 

demonstrate the GCN's effectiveness in capturing spatial dependencies and achieving high-performance 

metrics, with better performance observed for larger datasets. Moreover, the findings contribute to the 

development of intelligent schemes for GCNs and the Internet of Vehicles in Intelligent Transportation Systems 

(ITS), advancing traffic congestion prediction capabilities. 

Keywords: Graph Convolutional Networks (GCNs), Intelligent Transportation Systems (ITS). 

 

1. Introduction 

Traffic congestion is a critical issue that plagues 

urban transportation systems worldwide. In addition 

to that the rapid growth of vehicles on the road, 

coupled with limited infrastructure, has led to 

increased travel times, fuel consumption, and air 

pollution (Ullah et al., 2020). Moreover, accurate 

prediction of traffic conditions is essential for 

effective traffic management and route planning 

(Boukerche & Wang, 2020). However, traditional 

approaches often fail to capture the complex 

spatiotemporal dependencies inherent in road 

networks (Yuan et al., 2021). while, recent 

advancements in machine learning, particularly 

Graph Convolutional Networks (GCNs), have shown 

promise in modeling such dependencies (Yan et al., 

2022). Furthermore, GPS data plays a crucial role in 

traffic congestion prediction. Also, by collecting real-

time location information from vehicles, GPS data 

provides valuable insights into traffic flow patterns, 

travel times, and congestion hotspots (Sahil & Sood, 

2024). Also, this data, when combined with historical 

traffic records, can be used to train machine learning 

models for accurate traffic prediction. This paper 

presents a novel approach that leverages GCNs for 

traffic congestion prediction. Importantly by 

representing the road network as a graph and utilizing 

the adjacency matrix to capture spatial relationships, 

the proposed method effectively learns the patterns 

and dynamics of traffic flow. Moreover, the GCN 

model is trained on historical traffic data, including 

traffic flow and speed measurements obtained from 

GPS locations, to predict peak hours, non-peak hours, 

and normal traffic conditions. 

1.1.  Contributions 

The main contributions of this paper are as follows: 

1. A GCN-based approach for traffic congestion 
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prediction that captures spatial dependencies 

in road networks. 

2. Utilization of Sensor GPS data to enhance the 

accuracy and reliability of traffic prediction. 

3. Experiments demonstrating the effectiveness 

of the proposed method in terms of accuracy, 

precision, recall, and F1-score. 

4. Insights into the potential of GCNs for 

intelligent transportation systems and urban 

traffic management. 

1.2.  Paper Organization 

The remainder of this paper is organized as follows. 

Section 2 presents a literature review on traffic 

congestion prediction and highlights the need for 

GCNs. Section 3 describes the methodology, 

including data preprocessing, GCN architecture, and 

training procedure. Section 4 presents the 

experimental results and discusses the performance 

of the proposed approach. Finally, Section 5 

concludes the paper and outlines open challenges and 

future research directions.  

2.  Literature Review 

Several studies have explored various approaches for 

traffic congestion prediction. Traditional methods, 

such as time series analysis and statistical models, 

have been widely used (Asencio-Cortes et al., 2016). 

However, these methods often fail to capture the 

complex spatiotemporal dependencies in road 

networks (Chen et al., 2019). Machine learning 

techniques, including support vector machines, 

decision trees, and artificial neural networks, have 

shown promising results in traffic prediction (R & 

Narayanan, 2020; Mahmoud et al., 2021; Navarro-

Espinoza et al., 2022). These methods can learn 

patterns and relationships from historical traffic data 

and make accurate predictions.Recent advancements 

in deep learning have led to the development of more 

sophisticated models for traffic prediction. 

Convolutional Neural Networks (CNNs) have been 

employed to capture spatial dependencies in traffic 

data. Long Short-Term Memory (LSTM) networks 

have been used to model temporal dependencies and 

predict traffic flow (Liu et al., 2022). However, these 

methods often treat the road network as a grid or a 

sequence, failing to fully capture the intricate spatial 

relationships.Graph Convolutional Networks 

(GCNs) have emerged as a powerful tool for 

modelling structured data, such as road networks 

(Yuan et al., 2022). GCNs can learn the spatial 

dependencies by leveraging the adjacency matrix of 

the graph, enabling them to capture the complex 

interactions between road segments. Several studies 

have applied GCNs to various transportation 

problems, including traffic speed forecasting (Lu et 

al., 2022), traffic flow prediction (Mi et al., 2022), 

and congestion prediction (Kianifar et al., 2022) [1-

6]. These studies have demonstrated the superiority 

of GCNs over traditional methods in terms of 

accuracy and robustness. Despite the promising 

results, there is still a need for further research on 

GCN-based traffic congestion prediction. The 

integration of sensor GPS data into GCN models 

remains an unexplored area. Sensor GPS data 

provides valuable information on real-time traffic 

conditions and can enhance the accuracy and 

reliability of traffic prediction. Moreover, the 

interpretability and scalability of GCN models for 

large-scale road networks require further 

investigation. 

3. Method 

3.1.  Data Preprocessing 

The dataset considered is Amsterdam Highway 

dataset The locations cover different segments of the 

A4 highway, including Dataset 1 with, De Nieuwe 

Meer- Junction, A4 northbound towards Amsterdam, 

A4 southbound towards Den Haag, A10 

anticlockwise towards Amstel and De Nieuwe Meer, 

A10 clockwise towards Coenplein and De Nieuwe 

Meer,A4 from Den Haag to A10 towards Zaanstad. 

Also Dataset 2 De Nieuwe Meer-Junction, A4 

northbound towards Amsterdam, A4 from Den Haag 

to A10 towards Zaanstad. The dataset used in this 

study consists of traffic flow and speed 

measurements collected from various road segments 

using sensor GPS locations. The sensor GPS 

coordinates of the road segments are as follows: 

The data is pre-processed to calculate the average 

traffic flow and average speed for each hour. Based 
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on these averages, each data point is assigned a label: 

"peak_hour," "non_peak_hour," or "normal." The 

labels are then encoded into integers using a label 

encoder. 

 

Table 1 Adjacency Matrix (200m) 
 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1 0 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 0 1 1 1 1 1 1 1 1 1 1 1 

3 1 1 0 1 1 1 1 1 1 1 1 1 1 

4 1 1 1 0 1 1 1 1 1 1 1 1 1 

5 1 1 1 1 0 1 1 1 1 1 1 1 1 

6 1 1 1 1 1 0 1 1 1 1 1 1 1 

7 1 1 1 1 1 1 0 1 1 1 1 1 1 

8 1 1 1 1 1 1 1 0 1 1 1 1 1 

9 1 1 1 1 1 1 1 1 0 1 1 1 1 

1

0 

1 1 1 1 1 1 1 1 1 0 1 1 1 

1

1 

1 1 1 1 1 1 1 1 1 1 0 1 1 

1

2 

1 1 1 1 1 1 1 1 1 1 1 0 1 

1

3 

1 1 1 1 1 1 1 1 1 1 1 1 0 

3.2. GCN Architecture 

The proposed GCN model consists of two graph 

convolutional layers. The first layer takes the node 

features (traffic flow, speed, and hour) as input and 

applies a graph convolution operation using the 

adjacency matrix as in Table 1. The output is passed 

through a ReLU activation function and dropout 

regularization. The second layer performs another 

graph convolution, followed by a log-softmax 

activation to obtain the predicted class probabilities. 

The adjacency matrix used in the GCN model 

represents the spatial dependencies between road 

segments. Table 1 shows the adjacency matrix for a 

distance threshold of 200 meters [7-12]. 

3.3.  Training Procedure 

The dataset is split into training and testing sets using 

an 80-20 ratio. The GCN model is trained using the 

negative log-likelihood loss function and the Adam 

optimizer. The training is performed for 200 epochs, 

and the model's performance is evaluated on the test 

set at each epoch. Accuracy, precision, recall, and F1-

score are calculated to assess the model's 

effectiveness. The formulas for accuracy, precision, 

recall, and F1-score are as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                   (2) 

𝑅𝑒𝑐𝑎𝑙𝑙     
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                          (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                      (4) 

 

Where, 

TP (True Positive): The number of instances 

correctly predicted as positive. 

TN (True Negative): The number of instances 

correctly predicted as negative. 

FP (False Positive): The number of instances 

incorrectly predicted as positive. 

FN (False Negative): The number of instances 

incorrectly predicted as negative. 

4. Results and Discussion 

The experimental results demonstrate the strong 

performance of the proposed GCN approach for 

traffic congestion prediction.by using the above 

Figure 1 presents the accuracy, precision, recall, and 

F1-score achieved by the GCN model across all 

epochs for two different datasets: one consisting of 

18 locations from 01-01-2024 to 26-01-2024, and 

another consisting of 13 locations from 01-10-2023 

to 31-10-2023 [13-16]. 

4.1. Quantitative Analysis 

Comparing the trends in the accuracy plots between 

the two datasets utilizing the metrics as in we observe 

in Figure 1 and Figure 2 a consistent pattern. In both 

cases, the GCN model quickly learns the underlying 

patterns and spatial dependencies in the road 

network, maintaining an accuracy above 0.5 
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throughout the training process. However, the dataset 

with 18 locations (01-01-2024 to 26-01-2024) shows 

a slightly higher peak accuracy of around 0.6, 

compared to the peak accuracy of approximately 0.55 

for the dataset with 13 locations (01-10-2023 to 31-

10-2023). This difference in accuracy suggests that 

the GCN model may perform better when trained on 

a larger dataset with more locations and a longer time. 

The precision plots in Figure 1 and Figure 2 exhibit 

similar trends for both datasets, with values ranging 

from 0.5 to 0.8. The high precision indicates that the 

GCN model has a low false positive rate and 

accurately identifies the correct class for most of the 

predictions, regardless of the number of locations or 

the time of the data. The consistency in precision 

across both datasets demonstrates the robustness of 

the GCN approach in accurately predicting traffic 

congestion. 

 

 
Figure 1 Metrics for 18 Locations 

The recall plots in Figure 1 and Figure 2follow a 

similar pattern for both datasets, with values 

oscillating between 0.5 and 0.6. This suggests that the 

GCN model can correctly identify a significant 

portion of the actual instances of each class, 

regardless of the number of locations or the time of 

the data. The similarity in recall values across both 

datasets indicates that the model's ability to identify 

congested and non-congested instances remains 

consistent. The F1-score, which combines precision 

and recall, shows a slightly higher range of values for 

the dataset with 18 locations (01-01-2024 to 26-01-

2024) compared to the dataset with 13 locations (01-

10-2023 to 31-10-2023). The F1-score for the 18-

location dataset reaches a peak of around 0.6, while 

for the 13-location dataset, it remains above 0.4. This 

difference in F1-score suggests that the GCN model 

achieves a better balance between precision and 

recall when trained on a larger dataset with more 

locations and a longer time. The higher accuracy and 

F1-score for the dataset with 18 locations (01-01-

2024 to 26-01-2024) can be attributed to several 

factors. One possible explanation is that a larger 

dataset with more locations provides a more 

comprehensive representation of the spatial 

dependencies and traffic patterns, enabling the GCN 

model to learn and generalize better. It is important to 

consider potential biases in the results. The accuracy 

and performance of the GCN model may be 

influenced by factors such as the specific geographic 

locations of the road network, the time periods of the 

data collection, and the distribution of congestion 

levels in each dataset. These biases can impact the 

generalizability of the model to other road networks 

or traffic conditions. 

4.2.  Qualitative Analysis 

The qualitative implications of the results suggest 

that the GCN approach is a promising tool for traffic 

congestion prediction, regardless of the number of 

locations or the time of the data. The high accuracy 

and precision indicate that the model can effectively 

identify congested and non-congested periods, 

enabling proactive decision-making and resource 

allocation in traffic management. The improved 

performance for the dataset with 18 locations (01-01-

2024 to 26-01-2024) further strengthens the potential 

of GCNs in capturing spatial dependencies and 

predicting traffic conditions accurately when trained 

on larger datasets with longer time periods. From a 

practical perspective, the results highlight the 

benefits of incorporating GCN models into intelligent 

transportation systems. Accurate traffic congestion 

predictions can assist traffic authorities in optimizing 

traffic signal timings, implementing congestion 

mitigation strategies, and providing real-time route 

guidance to drivers. This can lead to reduced travel 
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times, improved traffic flow, and enhanced overall 

efficiency of the transportation network, regardless of 

the number of locations or the time of the data. 

However, it is crucial to consider the limitations and 

potential challenges associated with the GCN 

approach.  

 

 
Figure 2 Metrics for 13 Locations 

 

The model's performance may be influenced by the 

quality and availability of real-time traffic data, as 

well as the computational resources required for 

training and inference. Ensuring the scalability and 

adaptability of the model to handle dynamic traffic 

conditions and evolving road networks is another 

important consideration, particularly when dealing 

with larger datasets and longer time periods. 

Conclusion 

In this paper, we proposed a Graph Convolutional 

Network (GCN) approach for traffic congestion 

prediction. Furthermore, by modelling the road 

network as a graph and utilizing the spatial 

dependencies captured by the adjacency matrix, the 

GCN model effectively learns the patterns and 

dynamics of traffic flow. Moreover, experimental 

results demonstrated the model's strong performance 

in terms of accuracy, precision, recall, and F1-score. 

The findings of this study highlight the potential of 

GCNs for intelligent transportation systems and 

urban traffic management. Also. accurate traffic 

congestion prediction enables proactive decision-

making, optimized resource allocation, and improved 

traffic flow. Additionally, the quantitative and 

qualitative implications of the results suggest that 

GCNs can serve as a powerful tool for addressing the 

challenges of traffic congestion in urban areas. 

However, there are open challenges that require 

further research. The scalability of the GCN model to 

larger road networks needs to be addressed through 

techniques such as graph partitioning and distributed 

computing. Nevertheless, enhancing the 

interpretability of the model is crucial for trust and 

transparency. Future research directions include 

exploring advanced GCN architectures, 

incorporating additional data sources such as weather 

and event information, and integrating the model with 

real-time traffic management systems. In conclusion, 

the proposed GCN approach for traffic congestion 

prediction demonstrates the effectiveness of 

leveraging spatial dependencies and GPS data for 

accurate and reliable predictions. Finnlay, the results 

encourage further exploration and application of 

GCNs in the field of intelligent transportation 

systems, paving the way for more efficient and 

sustainable urban mobility. 
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