

International Research Journal on Advanced Engineering and

Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0339

e ISSN: 2584-2854

Volume: 02

Issue: 07 July 2024

Page No: 2348-2353

 IRJAEM 2348

Apriori-Based Prefetching Files for Caching
Prajwal Said1, Ketaki Naik2, Nupur Agrawal3, Srushti Bhoite4, Sayali Shelar5
1,2,3,4UG – Information Technology Engineering, Bharati Vidyapeeth’s College of Engineering for Women,

Dhankawadi, Pune, Maharashtra, India
5Associate Professor – Information Technology Engineering, Bharati Vidyapeeth’s College of Engineering for

Women, Dhankawadi, Pune, Maharashtra, India

Emails: saidprajwal@gmail.com1, ketaki.naik@bharatividyapeeth.edu2, nupuragrawal810@gmail.com3,

srushti.bhoite12@gmail.com4, shelarsayali990@gmail.com5

Abstract

The project proposes an innovative solution aimed at optimizing file system performance through predictive

caching techniques integrated with a Graphical User Interface (GUI). The GUI facilitates user interaction by

offering functionalities such as browsing files and displaying performance metrics via graphical

representations of bandwidth and Input/Output Operations Per Second (IOPS). The functionality revolves

around dynamically determining file placement on Solid State Drives (SSDs) or Hard Disk Drives (HDDs).

The system employs predictive caching to identify frequently accessed files, ensuring faster retrieval by storing

them on SSDs. Conversely, less frequently accessed files are allocated to HDDs. The project utilizes the

Flexible I/O (fio) tool to measure the performance of files accessed on both SSDs and HDDs. Furthermore, to

obtain insights and relationships between different files within the dataset, the project incorporates the Apriori

algorithm. By analyzing structured relationships, the algorithm provides valuable intelligence for optimizing

file placement decisions, enhancing overall system efficiency and adjust caching strategies to adapt to

changing access patterns. By dynamically adapting file placement strategies based on access patterns and

leveraging advanced algorithms for intelligent decision-making, the system endeavors to enhance user

experience and system efficiency in managing file operations.

Keywords: Apriori; Caching; File access patterns; File system; Least recently used (LRU).

1. Introduction

In modern computing environments, the storage

subsystem plays a pivotal role in determining overall

system performance and user satisfaction.

Conventional storage technologies, such as hard disk

drives (HDDs), offer ample storage capacity but

suffer from inherent limitations in terms of read and

write speeds. On the other hand, solid-state drives

(SSDs) leverage advanced flash memory technology

to deliver significantly faster access times, making

them well-suited for applications demanding high I/O

performance. Caching serves as a foundational

technique aimed at bolstering storage system

efficiency by temporarily storing frequently accessed

data in faster storage media. By maintaining this

cached data close to the CPU, caching mechanisms

effectively mitigate latency issues and enhance the

overall responsiveness of the system. Predictive the

caching represents an evolutionary leap in caching

methodologies, leveraging the power of machine

learning (ML) algorithms to anticipate future data

access patterns. By analyzing historical access data

and discerning trends and patterns, predictive caching

systems intelligently predict which data is likely to be

accessed soon. Armed with these insights, the system

proactively caches relevant data pre-emptively,

optimizing storage resource utilization and further

reducing access latency. Predictive caching

represents a promising frontier in storage system

optimization, leveraging the capabilities of machine

learning to anticipate and proactively address future

data access needs. By harnessing the power of

predictive analytics, organizations can unlock

significant performance improvements, optimize

resource utilization, and deliver enhanced user

about:blank

International Research Journal on Advanced Engineering and

Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0339

e ISSN: 2584-2854

Volume: 02

Issue: 07 July 2024

Page No: 2348-2353

 IRJAEM 2349

experiences in today's data-driven computing

landscape.

2. Literature Survey

The paper [1] presents a systematic survey of

intelligent data caching approaches in wireless

networks, leveraging artificial intelligence (AI)

techniques to optimize caching strategies. It

highlights the escalating wireless data traffic and the

potential of AI-based caching to mitigate issues like

duplicate data transmission and access delays. The

survey starts with a review of conventional caching

methods and their drawbacks, then moves on to

explore various AI techniques. There are important

research works utilizing AI for effective data

placement and optimization of network performance

metrics like cache hit rate, offloading, and

throughput. The paper identifies existing challenges,

including limited cache resources, fluctuating data

popularity profiles, and patterns of user mobility, and

suggests future research directions. While AI-based

caching shows promise in enhancing network

performance and user experience, the paper

acknowledges the need for further research to address

practical implementation challenges and optimize

caching mechanisms for future wireless networks.

The paper [2] investigates how the Apriori algorithm

can be used to analyze web log data to find frequently

accessed links. Web usage mining, a subset of web

mining, focuses on understanding user behavior

through data from web log files. The process includes

three main phases: data preprocessing (cleaning data,

identifying users, and defining sessions), pattern

discovery (using the Apriori algorithm to find

navigational patterns), and pattern analysis

(analyzing and visualizing the discovered patterns).

The Apriori algorithm, known for mining frequent

item sets and generating association rules, is applied

to web log data from an educational institute. After

data cleaning and session identification, the

algorithm calculates support and confidence levels

for link combinations to identify the most frequently

accessed links. Implemented in R, the study shows

that this approach can effectively reveal user

behavior patterns, providing insights to enhance

website structure and content delivery based on user

interactions. The paper concludes that the Apriori

algorithm is a powerful tool for web usage

mining.The paper [3] evaluates the performance of

various cache replacement algorithms (CRAs),

specifically First In First Out (FIFO), Least Recently

Used (LRU), Least Frequently Used (LFU), and The

File Length Algorithm (LEN), in a distributed

filesystem scenario. The study involves simulations

of these algorithms under a setup with six

interconnected cluster servers and 100 active files.

The results show that LRU generally provides stable

and predictable performance. The primary drawback

of LFU and LEN is their tendency to cache large files

for too long, which can lead to inefficient use of cache

space and decreased performance in some scenarios.

FIFO, on the other hand, demonstrates the worst

performance due to its susceptibility to Belady's

anomaly. LRU's simplicity and consistency make it a

preferable choice for flexible filesystems. The paper

[4] introduces the Automatic Prefetching and

Caching System (APACS), designed to address

limitations in existing prefetching solutions for

improving I/O performance in computer systems.

APACS utilizes dynamic adjustment of cache

partitions, pipelining multiple stages of the prefetch

process hence overlapping them, and strategically

managing the prefetch buffer to optimize cache hit

ratios and accelerate application execution speeds.

Experimental results demonstrate that APACS

surpasses the other prefetching algorithms which also

includes the LRU cache management policy by over

50% on mean in trace-driven simulations. The study

highlights the effectiveness of predictive prefetching

in reducing the delays in disk I/O and dynamically

allocating buffer/cache sizes based on global system

performance. However, challenges remain in

dynamically optimizing lookahead windows and

integrating the algorithms of machine learning

domain with proactive prefetching. Overall, APACS

presents a promising solution to the performance

challenge in the I/O subunit of modern computers,

but more research is needed to be undertaken to

provide a solution to these challenges, further

validating its effectiveness in existent storage

systems. This paper [5] introduces AutoCache, a

novel schema for automated management of cache

resource in Distributed File Systems (DFS) like

about:blank

International Research Journal on Advanced Engineering and

Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0339

e ISSN: 2584-2854

Volume: 02

Issue: 07 July 2024

Page No: 2348-2353

 IRJAEM 2350

Hadoop and Spark. AutoCache employs ML models,

specifically gradient boosted trees, to predict

insightful patterns in file I/O activity and dynamically

decide the files to cache to memory and evict from

memory. The assessment using existent workload

records demonstrates significant improvements in

workload performance and cluster efficiency

compared to existing cache management policies.

However, this approach has some limitations. Firstly,

this evaluation aims at a specific batch of workloads

and may not generalize well to all scenarios.

Additionally, the effectiveness of AutoCache may

depend on the characteristics of the workload and the

underlying system configuration. Future research

could explore the scalability and robustness of

AutoCache across various DFS environments and

workload types, as well as investigate potential

extensions to handle dynamic changes in system

resources and workload patterns. The paper [6]

introduces a predictive file caching approach aimed

at reducing file system latency by transforming the

file cache into a staging area for data about to be

accessed, rather than merely storing recently

accessed data. The system employs heuristic-based

algorithms to predict and prefetch data without user

intervention, thereby improving cache utilization and

reducing read times. The approach is evaluated

through simulations and a prototype implementation

on SunOS, demonstrating significant improvements

in cache miss rates and read times. However,

limitations include the reliance on heuristic-based

predictions, which may not always accurately

anticipate future file access patterns, and the need for

further research to optimize prefetching strategies for

different system configurations and workloads.

Future work could explore more sophisticated

prediction algorithms and adaptive prefetching

techniques to enhance performance across diverse

computing environments and usage scenarios.

3. Method

3.1 Apriori Algorithm

The process begins by converting categorical data to

numerical using one-hot encoding and then

standardizes the data using StandardScaler. Apriori

Algorithm [2] is used to obtain insight between

different files and their relationships involved in the

dataset. It begins by identifying all single-item

itemsets that meet a specified minimum support

threshold. Next, it methodically generates candidate

itemsets of increasing lengths by combining the

frequent itemsets identified in the preceding step.

These candidate itemsets are pruned by removing

those that contain infrequent subsets. The process

continues iteratively, calculating support for the

remaining candidates. Once no more frequent

itemsets can be generated, association rules are

derived from these frequent itemsets based on a

minimum confidence threshold.

3.2 Symbolic Links

The symlink function is used to create a special file

that acts as a pointer to another file in the file system.

In this proposed work, symbolic links are shown in

HDD that point to files in SSD. The frequently

accessed files are moved to SSD along with creating

symbolic links for HDD files. Symbolic links are

removed when files are moved back to HDD from

SSD.

3.3 LRU

LRU algorithm [3] is a cache replacement strategy

that evicts the least recently accessed item from the

cache when space is needed for a new item. Files that

are identified as infrequent using LRU policy, are

removed from the SSD. This process helps optimize

storage space on the SSD by keeping only frequently

accessed files. This approach is implemented by

calculating the total cache size and maximum

allowable cache size. Then while iterating through

sorted files located in SSD, it is checked if removing

the file keeps cache size within the limit. The file is

removed if necessary and unlinked from the HDD.

4. Results And Discussion

4.1 Results

Figure 1 User Interface Home Page

about:blank

International Research Journal on Advanced Engineering and

Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0339

e ISSN: 2584-2854

Volume: 02

Issue: 07 July 2024

Page No: 2348-2353

 IRJAEM 2351

Figure 2 User Interface Browse Files

The Figure 1 and Figure 2 shows User Interface

Home Page and User Interface Browse Files

respectively. This is where users interact with the

system. It includes the browse button for selecting

files and directories. It consists of button to see the

performance for the files accessed through HDD and

SSD.

Figure 3 HDD and SSD folder

The symlink function is used to create a special file

that acts as a pointer to another file in the file system.

In Figure 3, symbolic links are shown in HDD that

point to files in SSD. Symbolic links are removed

when files are moved back to HDD from SSD.

5. Discussion

Figure 4 System Architecture

The Figure 4 denotes the system architecture. The

GUI is the home page through which the user

interacts with the system. The user browses the file

through GUI by clicking on the browse file button.

The dataset is updated by updating the recent

access of the browsed file. This triggers the apriori

algorithm which identifies the frequently accessed

files and generates association rules based on

predefined threshold values for support,

confidence and lift. The frequently accessed files

are moved to SSD creating symbolic links for

HDD files. To optimize the storage space on SSD,

LRU approach is used that monitors the available

space on the SSD. It removes infrequently

accessed files from SSD and unlinks it, to make

space for moving frequently accessed files from

HDD to SSD. Performance metrics using IOPS and

Bandwidth of file is stored in CSV for further

analysis and visualized through graphs getting

higher performance of files in SSD than HDD. This

is done by monitoring and comparing the IOPS and

BW parameters of the files when it is present in

HDD and after copying them to SSD, using FIO

tool. The graphs can be visualized through the

GUI.

Figure 5 Performance Graph

The Figure 5 depicts performance of the file access

through HDD and SSD. The experimental results are

graphically represented to visualize the performance

metrics, including I/O operations per second (IOPS)

and bandwidth (BW) performance for file access

through HDD and SSD. These graphs illustrate the

about:blank

International Research Journal on Advanced Engineering and

Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0339

e ISSN: 2584-2854

Volume: 02

Issue: 07 July 2024

Page No: 2348-2353

 IRJAEM 2352

impact of our proposed predictive caching system on

improving file access performance compared to the

baseline measurement. The experiments performance

is measured using the Flexible I/O tester (fio) tool, a

widely adopted benchmarking tool for measuring I/O

performance under various workloads and

configurations. The significant improvements in

IOPS and bandwidth when accessing files on the SSD

highlight the system's capability to enhance

performance by intelligently managing file

placement. This optimization leads to faster data

access and improved overall system efficiency.

Conclusion

The proposed predictive caching system offers a

promising solution for optimizing file system

performance through proactive caching based on

machine learning predictions. By leveraging Apriori

algorithm to identify frequently accessed files and

dynamically adjusting the cache contents by

symbolic link and accessing frequently files with less

access time, the system demonstrates significant

improvements in file access times and overall system

responsiveness. The frequently accessed files are

accessed effectively with less access time.

Furthermore, the least frequently accessed files from

SSD are removed using LRU approach. This

approach enhances the efficiency of file access and

provides a scalable and adaptive solution to the

challenges of managing large volumes of data.

Acknowledgments

We are sincerely grateful to our encouraging project

guide Dr. K. A. Malgi, our project coordinator Dr. K.

A. Malgi and our motivating panel member Prof. K.

V. Patil who have extended valuable guidelines, aid

and unwavering encouragement throughout the

various stages of the project. We also express our

gratitude to Prof. Dr. D. A. Godse for her insightful

directions. We take pleasure in offering big thanks to

our honourable Principal Prof. Dr. P. V. Jadhav.

References

[1]. M. Sheraz, M. Ahmed, X. Hou, and D. Jin

(2021), “Artificial Intelligence for Wireless

Caching: Schemes, Performance, and

Challenges,” IEEE Communications Surveys

& Tutorials, vol. 23, issue. 1, pp. 31-32. doi:

10.1109/COMST.2020.3008362.

[2]. Dr. P. IsakkiDevi, and M. Sathya (2017),

“Apriori Algorithm on Web Logs for Mining

Frequent Link,” IEEE International

Conference on Intelligent Techniques in

Control, Optimization and Signal Processing

(INCOS).

[3]. S. Maffeis (1993), “Cache Management

Algorithms for Flexible Filesystems,”

Association for Computing Machinery.

[4]. J. Lewis, M. Alghamdi, M. A. Assaf, X.

Ruan, Z. Ding, and X. Qin (2011), “An

automatic prefetching and caching system,”

IEEE, pp. 7-8.

[5]. H. Herodotou (2019), “AutoCache:

Employing Machine Learning to Automate

Caching in Distributed File Systems,” 2019

IEEE 35th International Conference on Data

Engineering Workshops (ICDEW). doi:

10.1109/ICDEW.2019.00-21.

[6]. J. Grioen, and R. Appleton (1996), “The

Design, Implementation, and Evaluation of a

Predictive Caching File System,” Citeseer.

[7]. P. Shah, J. Francois Paris, A. Amer, D. D. E.

Long (2004), “Identifying Stable File Access

Patterns,” 21st IEEE Conference on Mass

Storage Systems and Technologies.

[8]. B. Daniel, “Understanding the Linux Kernel.”

[9]. L. Robert, “Linux Kernel Development.”

[10]. Y. Fu, H. H. Yang, K. Nguyen Doan, C. Liu,

X. Wang and T. Q. S. Quek (2020), “Effective

Cache-Enabled Wireless Networks: An

Artificial Intelligence- and Recommendation

Oriented Framework,” IEEE Vehicular

Technology Magazine, vol. 16, issue. 1, pp.

20-28. doi: 10.1109/MVT.2020.3033934.

[11]. M. Al-Maolegi, B. Arkok (2014), "An

Improved Apriori Algorithm for Association

Rules," International Journal on Natural

Language Computing (IJNLC), vol. 3, no. 1.

doi: 10.5121/ijnlc.2014.3103.

[12]. C. Borgelt (2003), “Efficient

Implementations of Apriori and Eclat,”

Department of Knowledge Processing and

Language Engineering School of Computer

Science, Otto-von-Guericke-University of

Magdeburg.

about:blank
about:blank
about:blank
about:blank
about:blank

International Research Journal on Advanced Engineering and

Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0339

e ISSN: 2584-2854

Volume: 02

Issue: 07 July 2024

Page No: 2348-2353

 IRJAEM 2353

[13]. Butt, A.R., Gniady, C., Hu, Y.C. (2007), “The

Performance Impact of Kernel Prefetching on

Buffer Cache Replacement Algorithms,”

IEEE Transactions on Computers, vol. 56, no.

7., pp. 889-908.

[14]. J. Griffioen, R. Appleton (1994), “Reducing

File System Latency using a Predictive

Approach,” USTC'94: Proceedings of the

USENIX Summer 1994 Technical

Conference- Volume 1.

[15]. K. Korner (1990), Dept. of Computer Sci.,

Univ. of Southern California, Los Angeles,

“Intelligent caching for remote file service,”

IEEE Computer Society Digital Library.

about:blank

