

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2024.0449 e ISSN: 2584-2854 Volume: 02

Issue: 09 September 2024 Page No: 3043-3050

Optimizing Residential Building Orientation: "A Model-Based Approach to Improve Comfort and Efficiency"

Ankita Poddar¹, Anjali Balani², Himani Jaiswal³

^{1,2,3}UG Student - World University of Design, Sonipat, Haryana, India.

Emails: anki.poddar02@gmail.com¹, anjalibalani02@gmail.com², himani.jaiswal2003@gmail.com³

Abstract

This research aims to optimize residential building orientation to enhance energy efficiency and overall occupant comfort through natural lighting and wind direction. The study seeks to identify the most effective building orientation within a specific area by evaluating and comparing various architectural models, considering the unique characteristics of the surrounding environment and microclimate. A key focus is how different orientations influence the microclimate within residential interiors, with particular emphasis on manipulating sun and wind direction, ventilation, and air circulation. Heat transfer is identified as a critical factor in maintaining optimal indoor conditions, particularly in regions with extreme climates. The objectives of the research include understanding how building orientation influences the microclimate within residential interiors, analysing the effects of sun and wind direction on thermal performance, and exploring ventilation strategies to enhance air circulation. Additionally, the study conducts a comparative analysis of different building orientations in a particular case study to identify the most effective design strategies for enhancing comfort and efficiency. The findings are synthesized to provide recommendations for designers and urban planners, supporting the design of residential buildings that are both comfortable and energy-efficient. This research contributes to the broader goal of sustainable development by promoting best practices in building orientation and design.

Keywords: Building Orientation, energy efficiency, microclimate, natural lighting, ventilation

1. Introduction

Environmental challenges, especially those heightened by climate change, pose significant risks to hilly regions, affecting ecosystems, agriculture, glaciers. The increased reliance on air conditioners and refrigerators contributes to global warming, further stressing these vulnerable areas. To combat these issues, reviving passive cooling and heating techniques that use minimal resources is essential. A key element of this approach is building orientation, which, though often overlooked, plays a critical role in reducing energy consumption by optimizing natural energy flows and minimizing the need for mechanical systems. Proper building significantly orientation impacts thermal performance, influencing how various facades respond to different weather conditions. Effective architectural design must consider factors like site planning, form, spatial layout, and facade design in relation to the local climate to ensure comfort and energy efficiency. As mid-rise buildings become more common in small towns and hilly areas,

addressing issues like inadequate sunlight and ventilation through thoughtful building orientation is increasingly important. [1-5]

2. Methodology

The methodology is organized into four major steps: The proposed method for optimizing building design involves several key steps. The first step is to introduce and model the original case study, which includes identifying the building type, desired behavior, and design parameters. This stage focuses on defining the building's requirements and functions through stakeholder interactions and aligning them with existing standards. The next step involves adopting appropriate approaches to predict the building's thermal performance. This includes using dynamic simulation and statistical models to evaluate the building's behavior, with the performance assessed through metrics like normalized mean bias error (NMBE) and coefficient of variation of the root square error (CVRMSE).(Anh-Tuan Nguyena,c, Sigrid Reitera, Philippe Rigob, 2014)

Issue: 09 September 2024

Page No: 3043-3050

e ISSN: 2584-2854

Volume: 02

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2024.0449

Following this, the design undergoes preliminary assessment and benchmarking. This involves comparing the building's performance against historical data or similar buildings to ensure it meets the predefined requirements. If the results are unsatisfactory, iterative adjustments and sensitivity analysis are conducted to refine the design parameters. Sensitivity analysis helps understanding the relationship between design parameters and desired outcomes by simplifying and accelerating parametric studies using meta-models. Optimization is then performed using validated metamodels to find the optimal design parameters that achieve the desired building behavior. This step employs methods such as the desirability function approach to balance multiple objectives, such as minimizing energy consumption while maintaining thermal comfort. Finally, a final evaluation ensures that the design parameters meet the required standards. If the results are not satisfactory, further optimization iterations are carried out until the desired outcomes are achieved. [6-10]

3. Literature Review

3.1. Building Orientation

Building orientation involves strategically positioning a structure on its site, including the placement of openings, roof types, and shading devices. Effective orientation aims to maximize natural daylight while minimizing reliance on artificial heating and cooling. This approach ensures that buildings can capture sunlight efficiently and promote natural airflow, which is crucial for sustainable, energy-efficient design. By optimizing orientation, buildings can reduce consumption, lower greenhouse gas emissions, and enhance occupant comfort. Key factors influencing building orientation include natural elements such as solar radiation, prevailing winds, and atmospheric humidity, as well as human-made factors like vegetation and neighboring structures. In urban environments, street layouts and nearby buildings affect solar exposure and ventilation, impacting thermal comfort and energy efficiency. Studies suggest aligning a building's longitudinal axis along the East-West direction to optimize solar gain and shading. This alignment allows the southern façade to

absorb more heat during colder months, while the northern façade remains cooler in extreme summer heat. Proper orientation also enhances natural ventilation and daylighting, reducing the need for mechanical systems and contributing to energy savings. (Ajoku Judith Ifeoma, 2021; Ifeoluwa Akande, 2021). [11-15]

3.2. Natural Lighting

Natural lighting plays a significant role in building design. Due to the Earth's axial tilt, the Sun's position shifts with the seasons, affecting how sunlight impacts a building. Orientation that aligns with the Sun's path can reduce heating costs by 10-40%. Longitudinally oriented buildings typically use less energy for heating and cooling, leading to lower costs and increased comfort. Effective daylighting strategies, such as using skylights and designing thinner profiles with taller windows, help maximize natural light and reduce electricity use. Daylighting, a strategy for optimizing natural light to improve visual comfort and reduce energy consumption, involves techniques like using skylights designing buildings with thinner profiles and taller windows to maximize natural light. Atriums and courtyards also allow light to penetrate interior spaces. Buildings with a longer east-west axis are especially effective for daylighting. When designing a building, it is crucial to ensure that it harmonizes with the site's position and orientation. In the northern hemisphere, specific lighting qualities are associated with each facade, and the orientation plays a significant role in determining light quality. The guidelines provided below apply to buildings in the northern hemisphere, with the terms "north" and "south" reversed for those in the southern hemisphere. [16-18]

3.3. Ventilation

Ventilation is another critical aspect of building design. Natural ventilation leverages wind and buoyancy to introduce and distribute fresh air, maintaining a healthy indoor environment. This method helps regulate air movement, manage thermal conditions, and control moisture. Integrating natural with architectural design—through ventilation elements like towers, atria, and thermal mass—can enhance indoor comfort and well-being. Natural

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2024.0449 e ISSN: 2584-2854 Volume: 02

Issue: 09 September 2024 Page No: 3043-3050

ventilation can be driven by wind pressures or the density differences between indoor and outdoor air. Wind-driven ventilation relies on atmospheric pressure differences caused by wind. Near the Earth's surface, wind speed is affected by surface friction and terrain, creating variations in the atmospheric boundary layer. The placement of openings within a closed space significantly impacts wind ventilation and can enhance cooling and thermal comfort. Refer to Figure 1 for different types of openings designed to improve ventilation within a room. (Ajoku Judith Ifeoma, 2021; Ifeoluwa Akande, 2021;). Buoyancydriven (stack) ventilation relies on the principle that warm air, being less dense, naturally rises within a room. As it ascends, it is replaced by cooler, denser air from outside. A neutral pressure plane exists where the pressure difference between inside and outside is zero. The effectiveness of the stack effect can be influenced by wind pressure, as well as the design of the building's openings and internal layout. (Tong Yang, 2012; Derek J. Cllements-Croome, 2012;). When wind encounters obstacles such as trees or buildings, its velocity pressure is converted into static pressure. On the windward side of a building, this conversion creates an overpressure. Conversely, on the leeward side, an under-pressure is generated.

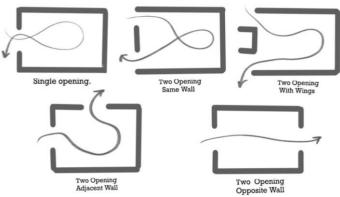


Figure 1 Types of Ventilation Source: (Nathan-Mazzuca, 2017)

4. Design Considerations

Shading systems, window-to-wall ratios, glass thickness, and thermal insulation are all essential components in managing heat gain and loss. Effective shading reduces excessive heat entry, while appropriate window design minimizes thermal loads.

Glass thickness influences how much solar radiation enters and is absorbed by the building, and thermal insulation reduces heat transfer, contributing to energy conservation. Solar chimneys can be designed to capture solar radiation, which increases the temperature difference between incoming outgoing air, thereby enhancing stack ventilation. Openable windows are the most commonly used vents in natural ventilation systems and come in four main types: sliding (sash), horizontal-vane opening, vertical-vane opening, and tilt-and-turn windows, as summarized in the BSRIA guide. The selection of windows, when combined with the building's form, orientation, façade details, and internal layout, influences indoor airflow patterns and provides various options for controlling direction and volume of airflow. (Ajoku Judith Ifeoma, 2021; Ifeoluwa Akande, 2021;). Overall, optimizing building orientation and incorporating natural ventilation and lighting strategies are crucial for achieving thermal reducing energy consumption, promoting sustainable building practices. By aligning design with natural forces and utilizing passive strategies, buildings can enhance comfort, improve energy efficiency, and reduce environmental impact.

5. Case Studies

5.1. Habitat67, Montreal, Canada

Figure 2 Architect- SAFDIE Architects

SITE PLANNING-Habitat 67 features a zigzag layout with communal spaces, ensuring privacy through separated apartment entries, green buffers, and well-planned landscaping. The 12-story complex includes 158 units with varied designs, offering views on three sides, landscaped terraces, and walkways,

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2024.0449 e ISSN: 2584-2854 Volume: 02

Issue: 09 September 2024 Page No: 3043-3050

with surface areas ranging from 624 to 3,000 square feet and private terraces of 225 to 1,000 square feet. CIRCULATION-Habitat 67 features three elevator cores that stop every fourth floor, connecting continuous pedestrian streets. The structure's units, pedestrian streets, and elevator cores serve as loadbearing elements, with 76 outdoor and 200 indoor parking spaces, six elevators, seven staircases, and 18 external corridors facilitating circulation. KEY FEATURES-Habitat 67's staggered modular design ensures nearly every apartment receives direct sunlight and effective cross-ventilation from multiple directions, unlike traditional high-rises where units can block light. Each unit has at least three facades, maximizing daylight and airflow, reducing the need for artificial cooling. Private terraces enhance ventilation, support plant growth, and improve air quality. The offset unit arrangement provides natural shading and seasonal sunlight control, reducing solar gain in summer and increasing warmth in winter. Strategically placed windows optimize natural light, views, and privacy, balancing ventilation with privacy as shown in Figure 2.

5.2. T ZED Homes, Bangalore, India

Figure 3 Architecture by- Biotech Consortium India Ltd (BCIL)

APPROACH - TZED Homes aims to significantly reduce carbon emissions throughout the building's lifecycle while maintaining high energy standards, making it India's first residential project to seek Carbon credits under the Clean Development Mechanism. The project focuses on innovative solutions in design, materials, water, waste, air quality, and energy management. SITE PLANNING-The five-acre TZED Homes site features 95 residences designed for sustainability, with water

harvesting capacity determining the number of homes. The master plan includes two parallel buildings with a central street, maximizing natural light and incorporating green spaces for recreation. KEY FEATURES - TZED Homes in Bangalore are designed to optimize sunlight and ventilation. The homes are oriented to maximize natural sunlight and minimize heat gain, with strategic placement of units. Large windows and open spaces enhance crossventilation, reducing the need for artificial cooling. Sun shading devices, such as overhangs and louvers, control direct sunlight and maintain cooler indoor temperatures. Ventilation shafts improve airflow and remove stale air. Private balconies and terraces offer additional sunlight and ventilation opportunities. Green roofs and landscaping provide shading and improve air quality. The buildings are aligned with prevailing winds for natural cooling, and highperformance glazing maximizes daylight while minimizing heat gain as shown in Figure 3.

6. Case Study- Jewel Residency

This research focuses on analyzing a residential building located in the heart of Dehradun, Uttarakhand, and proposes solutions to the project's problem statement while considering the principles of building orientation. Developed on 9 bighas of prime land in central Dehradun, the Jewel Residency is conveniently situated on GMS Road, near Hotel Sunpark Inn. The project commenced in 2017 and was completed on schedule in 2021. It features a total of 206 units, including 1, 2, and 3 BHK flats. (Figure 4 showcases the site of jewel residency at dehradun along with the solar and general wind directions)

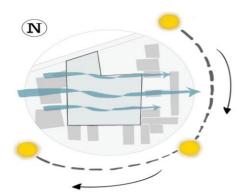


Figure 4 Showcases the Site of Jewel Residency at Dehradun along with the Solar and General Wind Directions (Author)

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2024.0449 e ISSN: 2584-2854 Volume: 02

Issue: 09 September 2024 Page No: 3043-3050

6.1. Climate Study

Dehradun, nestled in the foothills of the Himalayas in northern India, has a humid subtropical climate with distinct seasonal variations. During the summer months (April to June), temperatures range from 20°C to 35°C. The monsoon season (July to September) brings heavy rainfall, contributing to the region's lush greenery. Winters (December to February) are cool, with temperatures dropping to around 5°C, and occasional frost. The city's climate is influenced by its proximity to the mountains, leading to moderate humidity levels and significant temperature fluctuations between day and night.

6.2. Site Analysis

The current site model consists of six blocks, each with eight floors. Surrounding the site are builder floors (G+4 buildings) and a high-rise structure. The orientation of the model, combined with this surrounding scenario, creates several challenges for the residents. As shown in Figure 6, we observe that the configuration obstructs the prevailing winds and sun direction at the site.

7. Problem Statement

There are three main issues we are addressing: Firstly, residents receive insufficient heat and sunlight in their apartments. Secondly, the orientation leads to poor ventilation and airflow. Thirdly, the blocks are placed too closely together, resulting in limited breathing space. (Refer to figure 5).

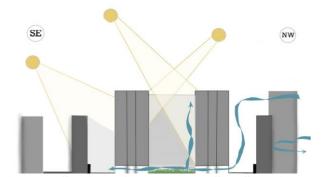


Figure 5 Section of the Present Site Showing the Problems Currently Present at Site (Author)

The figure illustrates that the prevailing wind direction is from northwest to southeast, which significantly hinders ventilation. The airflow is disrupted and deflected, preventing adequate air circulation to the flats located in the central

courtyard. Furthermore, the solar path, which extends from east to west, limits sunlight exposure to the northwest-facing sections of the site. As a result, these design conditions contribute to suboptimal air circulation and insufficient natural light in specific areas of the development.

7.1. Model Based Approach 7.1.1. Suggestion 1

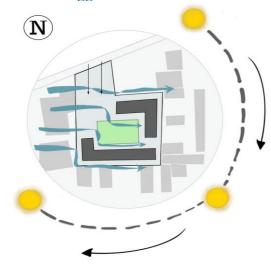


Figure 6 Model Based on Cavity Usage and Wind Flow (Author)

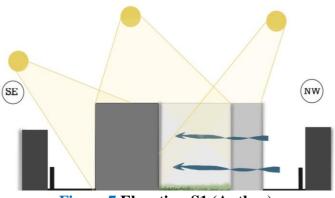


Figure 7 Elevation-S1 (Author)

As shown in Figure 7, Positioning a smaller façade on the windward side allows air to flow smoothly through the building, while gaps between structures enhance ventilation. The building's east-to-southwest orientation ensures that all wings receive ample sunlight. The balance between built and unbuilt spaces creates a high-quality living environment by optimizing natural light, air circulation, and overall comfort.

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2024.0449 e ISSN: 2584-2854 Volume: 02

Issue: 09 September 2024 Page No: 3043-3050

7.1.2. Suggestion II

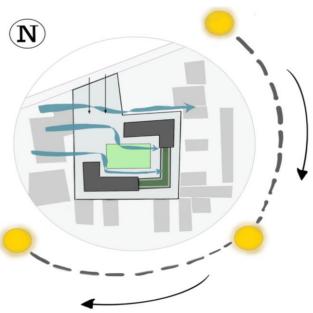


Figure 8 Model with Connecting Buildings (Author)

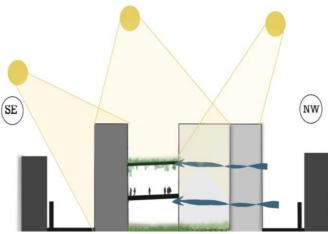


Figure 9 Elevation-S2 (Author)

By placing a smaller façade on the windward side, air flows easily through the building, and gaps between structures improve ventilation. The east-to-southwest orientation ensures that all wings benefit from ample sunlight. The mix of built and open spaces enhances living quality by maximizing natural light, air circulation, and comfort. Additionally, a connecting space between two buildings serves as a buffer or entertainment area, further facilitating cross-ventilation and contributing to the building's overall functionality and comfort. (Refer Figure 8, 9).

7.1.3. Suggestion III

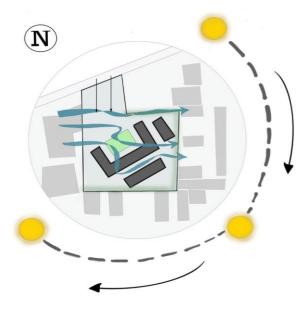


Figure 10 Model Based on Asymmetry and Block Usage for Wind Manipulation (Author).

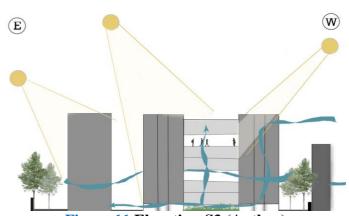


Figure 11 Elevation-S3 (Author)

The building's placement is designed to facilitate air circulation throughout the site. Vegetation is strategically positioned as a wind barrier along the sides, redirecting air flow back into the building. The main façade features open, collaborative zones that not only allow wind to pass through but also provide ample spaces for residents to interact and enjoy. Additionally, the buildings are arranged to avoid dead zones, ensuring that sunlight reaches all areas. This thoughtful orientation maximizes natural light and enhances comfort for residents, making the space

e ISSN: 2584-2854 Volume: 02

Issue: 09 September 2024 Page No: 3043-3050

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2024.0449

both functional and pleasant. The design effectively balances airflow, sunlight, and community spaces, creating a well-ventilated, sunlit environment that promotes interaction and quality living. (Refer Figure 10, 11)

Conclusion

The research highlights the critical importance of optimizing building orientation and design in hilly where environmental challenges exacerbated by climate change. Proper orientation, combined with passive cooling and heating techniques, significantly reduces reliance on energyintensive mechanical systems, thereby lowering energy consumption and mitigating global warming effects. The strategic placement of buildings, as demonstrated in the case studies, ensures efficient air circulation, maximizes natural sunlight, and enhances thermal comfort. The incorporation of vegetation as wind barriers, along with open collaborative zones, promotes natural ventilation and fosters a sense of community among residents. By addressing common issues such as inadequate sunlight, poor ventilation, and overcrowded layouts, the proposed solutions provide a balanced approach to building design. This not only improves living conditions but also aligns sustainable practices by minimizing environmental impact. The findings underscore the importance of integrating site-specific considerations into architectural design, particularly in regions vulnerable to climatic extremes, to create energyefficient, comfortable, and environmentally responsible living spaces.

References

- [1]. Tong Yang, Derek J. Clements-croome (2012) Natural Ventilation in built environment. DOI:10.1007/978-1-4419-0851-3 488
- [2]. Mammar Hamdani, Sidi Mohammed EI Amine Bekkouche, Tayeb Benouaz, Rafik Belarbi, Mohamed Kamel Cherier, Minimization of indoor temperatures and total solar isolation by optimizing the building orientation in hot climate ,doi:0.3846/2029882X.2014.988756.
- [3]. Vaghela, S., Patel, A. S., Solanki, J. V., & Damdoo, K. (2024). Optimizing Renewable

- Energy Integration in Green Building Projects: Addressing Barriers and Enhancing Energy Performance. International Research Journal on Advanced Engineering Hub (IRJAEH), 2(08), 2179-2183. https://doi.org/10.47392/IRJAEH.2024.0296
- [4]. Alisha Sinha(2020), Building Orientation as the Primary Design Consideration for Climate Responsive Architecture in Urban Areas, DOI: 10.2478/aup-2020-0006
- [5]. Anthony Denzer (2014), Modern architecture and theories of solar orientation
- [6]. Ajoku Judith Ifeoma, Ifeoluwa Akande (2021),Impact of Building Orientation on Building Performance (A Case Study of Selected Buildings in Ikotun Area of Lagos),ISSN No:-2456-2165
- [7]. Mohammad Arif Kamal (2012), an overview of passive cooling techniques in buildings: Design concepts and architectural interventions.
- [8]. Kumbhar, A., & Radke, A. (2024). Vertical Extension and Retrofitting of the Existing RCC Commercial Building—A review. International Research Journal on Advanced Engineering Hub (IRJAEH), 2(03), 559-563. https://doi.org/10.47392/IRJAEH.2024.0081
- [9]. Shivani S, Vignesh Ayyathurai (2021), Study of Residential Building Orientation in Energy Consumption and Assessment of Indoor Environmental Quality.
- [10]. Patil, H., Chougale, J., & Radke, A. (2024). A Review on Comparison of RCC and Steel Multistorey Building with and Without Beam Projections. International Research Journal on Advanced Engineering Hub (IRJAEH), 2(03), 546-550. https://doi.org/10.47392/IRJAEH.2024.0078
- [11]. Saket Kumar Kirme, Dr. Vijay S. Kapse, Impact of Building Orientation and Built Area on Heat Gain in Residential Buildings.
- [12]. Building Orientation for passive design, BUILDING ORIENTATION FOR PASSIVE DESIGN Archi-Monarch
- [13]. Global warming and vanishing glaciers: Is

e ISSN: 2584-2854 Volume: 02

Issue: 09 September 2024 Page No: 3043-3050

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2024.0449

- rising temperature behind Uttarakhand disaster? Global warming and vanishing glaciers: Is rising temperature behind Uttarakhand disaster? India Today
- [14]. Orientation of the Building: Purposes, Importance, Factor Affecting & Advantages of Orientation of the Building, Orientation of the Building: Purposes, Importance, Factor Affecting & Advantages of Orientation of the Building Dream Civil
- [15]. Importance of Building Orientation In Architecture, Importance Of Building Orientation In Architecture (thearchspace.com)
- [16]. Anh-Tuan Nguyena, Sigrid Reitera, Philippe Rigob(2014), A review on simulation-based optimization methods applied to building performance analysis.
- [17]. A. Nabil(2005), Useful daylight Illuminance: A new paradigm for assessing daylight in buildings, DOI:10.1191/1365782805li128oa
- [18]. Ralph Evins (2013).A review of computational optimisation methods applied to sustainable building design.