

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0479

e ISSN: 2584-2854

Volume: 02

Issue: 11 November 2024

Page No: 3256-3260

 IRJAEM 3256

Numerical Data Processing by The Implementation of Trees and Graphs

Dhanashri Korpad1, Nisha Satpute2, Nayana Joshi3, Snehal Kulkarni4, Komal Walgude5, Neha Dhadiwal6

1,2,3,4,6Assistant Professor, Vishwakarma College of Arts, Commerce and Science, Pune, Maharashtra, India.

5HMIS Executive, Symbiosis Medical College for Women, Pune, Maharashtra, India.

Email ID: dhanashrikorpad1991@gmail.com1, nisha.satpute3@gmail.com2, nayanajoshi80@gmail.com3,

snehal.lad87@gmail.com4, kswalgude16@gmail.com5, neha.dhadiwal07@gmail.com6

Abstract

Trees and Graphs play a vital role in transport and logistics. In tree, decision tree is one of the important, not

only implemented for data processing, but also considered for Numerical data analysis. The decision tree is a

flow chart-like structure, in which each internal node represents a ‘test’ on an attribute, which has a node

known as root being at the top, which further divides the given data into branches depending upon the

conditions. Every branch consists of a rule, and each leaf node is its outcome. A support tool with a tree-like

structure that models probable outcomes, cost of resources, utilities, and possible consequences. Decision

trees are also used in operations research along with planning logistics. They can help in determining

appropriate plans that will help a company achieve its target. In Graph, Dijkstra's algorithm is an admired

algorithm used to find the shortest paths between nodes in a graph, which may represent road networks for

example. Dijkstra's algorithm finds the shortest path from a given source node to every other node. It can also

be used to find the shortest path to a specific destination node, by concluding the algorithm once the shortest

path to the destination node is found. It is also commonly used on graphs where the edge weights are in real

numbers. A common application of shortest path algorithms is network routing protocols and also support in

route optimization for delivery services, ensuring timely and cost-effective deliveries by finding the best paths

for transportation.

Keywords: Data Processing; Dijkstra's Algorithm; Graph; Shortest Path; Tree

1. Introduction

This paper aims to explore the theoretical foundations

and practical applications of shortest path algorithms,

particularly Dijkstra's algorithm, while examining

how decision trees can enhance decision-making in

this context. Through a comprehensive analysis of

these topics, one can highlight their significance in

contemporary computational problems and identify

potential areas for future research and application.

The ability to quickly determine the shortest path not

only saves resources but also enhances overall

efficiency in transportation and communication. As

global networks continue to expand, the need for

effective pathfinding solutions becomes increasingly

vital. Numerical Data Processing is more quantitative

in nature than qualitative. Both Decision tree and

Dijkstra's algorithm, are one of the perfect algorithms

for quantitative analysis.

2. Decision Tree

Decision tree is the process that helps to collect data

which gather relevant data related to the incident

based on the type which extract the relevant features

from the data for that time of day and location. With

the help of the decision tree, one can model the data

using the labelled incident and then evaluate and

deploy with a real time environment, to detect the

incident with the help of predictive maintenance and

safety monitoring which will identify the potential

safety risks or hazards.

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0479

e ISSN: 2584-2854

Volume: 02

Issue: 11 November 2024

Page No: 3256-3260

 IRJAEM 3257

2.1. Diagram of Decision Tree of PMPML (Pune

Mahanagar Parivahan Mahamandal Ltd):

2.1.1.Data Analysis on the Basis of Time

Form Saswad to Swargate [1]

Route 1: Saswad - Dive Ghat- Hadapsar- Fatima

Nagar- Swargate.

Route 2: Saswad- Bop Dev Ghat- Khadi Machine

Chowk- Swargate.

Figure 1 PMPML Bus Route from Saswad to

Swargate(Pune)

2.1.2. Total Time Taken

Total Time Taken for Route 1- 1 hr 12 mins

Total Time Taken for Route 2- 1 hr 37 mins

Decision tree supports the partitioning structure i.e.,

tree model. the algorithm here displays the analysis

on time, in the given decision tree source and

destination are the two places of pune city, where the

source is Saswad town and destination is Swargate

pune city. Here the decision tree gives us a brief idea

about the branches with specified rule (Time). By

analyzing the source and destination, there are two

specific paths as mentioned. Implementing the above

decision tree in C language, to analyze the Pune

Municipal Transport (PMT) bus system, which will

help in making decisions based on various factors,

such as route selection, bus timing, or passenger

demand. A decision tree consists of nodes

representing decisions or outcomes based on certain

attributes. In our case, Figure 1 shows PMPML Bus

Route from Saswad to Swargate(Pune) such as

distance, time, and passenger count. Below is a

simplified example of how to implement a basic

decision tree in C Language, Shown in Figure 2 & 3.

2.2. C Language Implementation of a Simple

Decision Tree

Here’s an illustrative implementation of a decision

tree that decides the best bus route based on

hypothetical data [2].

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// Define a structure for the decision tree node

typedef struct Node {

 char *question;

 struct Node *yes;

 struct Node *no;

 char *result;

} Node;

// Function to create a new tree node

Node* createNode(char *question, char *result)

{

 Node *newNode = (Node *) malloc (sizeof(Node));

 newNode->question = question;

 newNode->yes = NULL;

 newNode->no = NULL;

 newNode->result = result;

 return newNode;

}

// Function to build a sample decision tree for two

routes

Node* buildTree() {

 // Create leaf nodes for the routes

 Node *route1 = createNode(NULL, "Take Route

1");

 Node *route2 = createNode(NULL, "Take Route

2");

 // Create decision nodes

Node *timeDecision = createNode("Is travel time

less than 30 mins?", NULL);

Node *passengerDecision = createNode("Are there

more than 10 passengers?", NULL);

 // Build the tree structure

 timeDecision->yes = route1; // If yes, take Route 1

 timeDecision->no = passengerDecision; // If no,

check passenger count

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0479

e ISSN: 2584-2854

Volume: 02

Issue: 11 November 2024

Page No: 3256-3260

 IRJAEM 3258

 passengerDecision->yes = route2; // If yes, take

Route 2

 passengerDecision->no = route1; // If no, take

Route 1 (fallback)

return timeDecision;

}

// Function to traverse the tree and make a decision

void makeDecision(Node *node) {

 if (node->result! = NULL) {

 printf("%s\n", node->result);

 return;

 }

 char answer [4];

 printf("%s (yes/no): ", node->question);

 scanf("%s", answer);

 if (strcmp(answer, "yes") == 0) {

 makeDecision(node->yes);

 } else {

 makeDecision(node->no);

 }

}

// Main function

int main () {

 // Build the decision tree

 Node *decisionTree = buildTree();

 printf("Decision Tree for Pune PMT Bus

Routes:\n");

makeDecision(decisionTree);

 return 0;

}

Figure 2 Result

Figure 3 Result

Figure 4 Result

3. Dijkstra's Algorithm

Dijkstra's algorithm is designed to find the shortest

paths from a starting node to all other nodes in a

graph, with non-negative edge weights in kilometres.

The algorithm uses a priority queue to explore nodes

based on the cumulative cost from the start node [3].

3.1. Graph Representation

As Dijkstra’s algorithm is used for directed as well as

undirected graphs, which is also implemented in the

Pune Metro System. Where all stations are nodes and

routes are paths or edges which are connected

between two stations. So according to stations, travel

time and distance change.

Figure 4 Pune Metro Map [4]

In the context of the Pune Metro, the graph can be

represented as follows:

• Nodes: Metro stations (e.g., PCMC,

Swargate, Shivajinagar).

• Edges: Tracks between the stations, with

weights representing travel time or distance.

3.1.1. Assuming Some Stations and

Travel Times

PCMC: [(Sant Tukaram Nagar, 5), (Kasarwadi, 10)]

Sant Tukaram Nagar: [(PCMC, 5), (Pune Junction,

15)] Kasarwadi: [(PCMC, 10), (Pune Junction, 8)]

Pune Junction: [(Sant Tukaram Nagar, 15),

(Swargate, 20)] Swargate: [(Pune Junction, 20)]

3.2. Dijkstra’s Algorithm Implementation

Here’s a simplified implementation in C Language to

find the shortest path in the Pune Metro network [2].

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0479

e ISSN: 2584-2854

Volume: 02

Issue: 11 November 2024

Page No: 3256-3260

 IRJAEM 3259

#include <stdio.h>

#include <limits.h>

#include <stdbool.h>

#define V 5 // Number of vertices in the graph

// Function to find the vertex with the minimum

distance

int minDistance(int dist[], bool sptSet[]) {

 int min = INT_MAX, min_index;

 for (int v = 0; v < V; v++) {

 if (!sptSet[v] && dist[v] <= min) {

 min = dist[v];

 min_index = v;

 }

 }

 return min_index;

}

// Function to implement Dijkstra's algorithm

void dijkstra(int graph[V][V], int src) {

 int dist[V]; // Output array. dist[i] holds the shortest

distance from src to j

 bool sptSet[V]; // sptSet[i] will be true if vertex i is

included in the shortest path tree

 // Initialize all distances as INFINITE and sptSet[]

as false

 for (int i = 0; i < V; i++) {

 dist[i] = INT_MAX;

 sptSet[i] = false;

 }

 // Distance from source to itself is always 0

 dist[src] = 0;

 // Find the shortest path for all vertices

 for (int count = 0; count < V - 1; count++) {

 // Pick the minimum distance vertex from the set

of vertices not yet processed

 int u = minDistance(dist, sptSet);

 sptSet[u] = true; // Mark the picked vertex as

processed

 // Update dist value of the adjacent vertices of

the picked vertex

 for (int v = 0; v < V; v++) {

 // Update dist[v] if and only if it is not in

sptSet, there is an edge from u to v,

 // and the total weight of path from src to v

through u is smaller than the current value of dist[v]

 if (!sptSet[v] && graph[u][v] && dist[u] !=

INT_MAX && dist[u] + graph[u][v] < dist[v]) {

 dist[v] = dist[u] + graph[u][v];

 }

 }

 }

 // Print the constructed distance array

 printf("Vertex\tDistance from Source\n");

 for (int i = 0; i < V; i++) {

 printf("%d\t\t%d\n", i, dist[i]);

 }

}

// Main function to test the above functions

int main() {

 // Example graph represented as an adjacency

matrix

 int graph[V][V] = {

 {0, 5, 0, 0, 10},

 {5, 0, 0, 15, 0},

 {0, 0, 0, 20, 0},

 {0, 15, 20, 0, 25},

 {10, 0, 0, 25, 0}

 };

 dijkstra(graph, 0); // Starting from vertex 0

(PCMC)

return 0;

}

Figure 5 Result

4. Disadvantage

Above mentioned code of Decision Tree and Dijkstra

Algorithm, are well defined for the implementation in

numerical analysis, for finding the shortest route

between the source and destination, but there are few

dis-advantage of the both algorithms, which are listed

below, Shown in Figure 4 & 5.

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2024.0479

e ISSN: 2584-2854

Volume: 02

Issue: 11 November 2024

Page No: 3256-3260

 IRJAEM 3260

4.1. Decision Tree

• They are largely unstable compared to other

decision predictors. A small change in data

can result in a major change in the structure of

the decision tree

• Use quantitative data only, and ignore

qualitative aspects of decision.

4.2. Dijkstra Algorithm

• Non-Negative Weights Only: Dijkstra's

algorithm works only with graphs that have

non-negative edge weights. If there are

negative weights, the algorithm can produce

incorrect results [5]

• Single Source: Dijkstra’s algorithm finds the

shortest path from a single source to all other

vertices, which might not be efficient if only

the shortest path to a specific destination is

needed.

Conclusion

This simple decision tree implementation in C

Language can help analyse decision-making

processes for the Pune PMT bus system based on

user-defined criteria. You can expand the tree with

more complex questions and routes as needed.

This implementation of Dijkstra's algorithm in C

Language provides a foundational approach to

finding the shortest paths in a graph, applicable to

scenarios like metro systems. You can modify the

graph matrix to represent different metro networks as

needed.

References

[1] Time Table. (n.d.). https://pmpml.org/

assets/schedule/170866629042bbb3b37009c

5fd5bea2b0df59c1b62.pdf

[2] 1st-year-study-materials-vssut/let-us-c-by

yashvant- kanetkar.pdf at master

msatul1305/1st-year-study-materials-vssut.

(n.d.). GitHub. Retrieved October 29,2024,

from https://github.com/msatul1305/1st-year-

study-materials-vssut-study-materials-

vssut/blob/master/ let-us-c-by-yashavant-

kanetkar.pdf

[3] Rosen, K. (n.d.). Discrete Mathematics and its

applications. (Seventh Edition ed.). Tata

McGraw Hill.

[4] (n.d.).https://punemetrorail.org/route-

map.aspx

[5] Dijkstra's-Algorithm. (n.d.). https://www.

geeksforgeeks.org/why-does-dijkstras-

algorithm-fail-on-negative-weights/.

about:blank
https://pmpml.org/

