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Abstract

Driver drowsiness significantly impacts road safety, leading to numerous accidents. We developed a Driver
Drowsiness Detection system using deep learning for binary classification, utilizing CNN, VGG16, GoogleNet,
AlexNet, MobileNet v2, and ResNet101 architectures. Our models were trained on an annotated dataset of
driver images and evaluated on metrics like accuracy and F1-score. Results show that while deeper networks
offer high accuracy, lightweight models like MobileNet v2 provide a good balance of performance and
computational efficiency. This work demonstrates the potential of these models for real-time drowsiness

detection in advanced driver- assistance systems (ADAS) to enhance road safety.
Keywords: Driver Drowsiness Detection, Deep Learning, Binary Classification, Road Safety, ADAS.

1. Introduction

Driver drowsiness is a major contributor to road
accidents, leading to severe injuries, fatalities, and
significant economic losses globally. The ability to
detect and respond to driver fatigue in real-time can
drastically reduce the risk of accidents, making roads
safer for everyone [1]. Traditional methods of
detecting driver drowsiness, such as self-reporting
and manual observation, are not only impractical for
continuous monitoring but also often inaccurate due
to human error and subjective judgment.With the
advent of deep learning and advancements in
computer vision,automated detection systems have
become feasible. These systems can process visual
data in real-time, identifying subtle signs of
Drowsiness Detection system using deep
learning for binary classification, identifying
drivers as either "drowsy" or "alert". Several state-of-
the-art was in convolutional neural network (CNN)
architectures areemployed in this study to evaluate
their effectiveness in detecting driver drowsiness.The
dataset used for training and evaluating these models
comprises annotated images of drivers exhibiting
various states of alertness. This dataset was
meticulously preprocessed and augmented to ensure
robustness and improve generalization. Key
performance metrics such as accuracy, precision,

recall, and F1-score were used to evaluate and
compare the models [2]. The results of this study
provide valuable insights into the strengths and
weaknesses of different CNN architectures for the
task of driver drowsiness detection. While deeper
networks like ResNet101 andVGGL16 typically offer
higher accuracy, they come with increased
computational demands. Conversely, lightweight
models such as MobileNet _v2 provide a favorable
trade-off between performance and efficiency,
making them suitable for real-time applications. In
conclusion, this research demonstratesthe potential of
deep learning models in enhancing driver safety
through reliable drowsiness detection. The findings
can inform the development of advanced driver-
assistance systems (ADAS) that incorporate real-time
drowsiness detection, ultimately contributing to safer
road environments.

2. Literature Survey

Driver drowsiness detection has emerged as a critical
area of research within the realm of road safety,
owing to its pivotal role in averting accidents caused
by driver fatigue. Traditional methodologies
primarily relied on the observation of behavioral and
physiological indicators, such as monitoring eye
closure rates, head position changes, and
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physiological signals like EEG patterns. While
effective to some extent, these approaches were often
limited by their intrusiveness and incapability to
operate seamlessly in real-time scenarios The advent
of machine learning, particularly deep learning, has
revolutionized the landscape of driver drowsiness
detection. Leveraging advanced computer vision
techniques and sophisticated algorithms, deep
learning models offer the potential for automatic
feature extraction and high-accuracy analysis of
visual data. Convolutional Neural Networks
(CNNSs), in particular, have garnered significant
attention for their prowess in discerning intricate
patterns and features from raw image data.Various
CNN architectures have been explored for driver
drowsiness detection, each with its unique
characteristics and advantages. Models such as
VGG16, GoogleNet, AlexNet, MobileNet v2, and
ResNetl01 have been scrutinized for their
effectiveness in accurately identifying signs of
drowsiness in drivers. These architectures undergo
extensive training on annotated datasets of driver
images, which capture diverse states of alertness and
fatigue. Through this training process, the models
learn to recognize subtle cues and patterns indicative
of drowsiness. Comparative studies have been
conducted to evaluate the performance of these CNN
architectures in detecting driver drowsiness. These
studies often assess metrics such as classification
accuracy, computational efficiency, and real-time
capabilities. While deeper networks like ResNet101
and VGG16 typically exhibit higher accuracy rates,
they also demand greater computational resources,
rendering them less suitable for real-time
deployment in resource-constrained environments.
Conversely, lightweight models like MobileNet v2
offer a compelling compromise between accuracy
and computational efficiency, making them ideal
candidates for real-time applications. The findings
from these studies contribute to the ongoing
development of robust and efficient drowsiness
detection systems aimed at enhancing road safety.
By leveraging the capabilities of deep learning,
researchers endeavor to create solutions that can
reliably identify and mitigate driver fatigue, thereby
reducing the risk of accidents and preserving human

lives on the road [3-7].

3. Materials

The dataset utilized for the driver drowsiness
detection project, obtained from Kaggle, is
structured to facilitate the development of machine
learning models for identifying drowsiness in
drivers. The dataset is partitioned into two primary
classes, Table 1.

Table 1 File Segmentation

Total Files 41793
Number of Drowsy 22348
Number of Non-Drowsy 19445

Drowsy Class: This class comprises images
capturing instances where drivers display signs of
drowsiness. These signs may include closed eyes,
drooping eyelids, or other facial expressions
indicative of fatigue or reduced alertness [8-12].
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Figure 1 Drowsy Images

ey 3

Non-Drowsy Class: In contrast, this class consists
of images depicting drivers in an alert and attentive
state. These images typically show open eyes, an a
upright posture, and other facial features associated
with wakefulness, Figure 1 [13, 14].

NonDrowsy 3

NoeDrowsy 2 Non-Dvowsy 1

NonDrowsy &
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Figure 2 Non-Drowsy Images

Each class is segregated into separate folders within
the dataset directory. By organizing the data in this

OPEN aACCESS IRIAEM

257


about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 03

Issue:02 February 2025
Page No: 256-264

https://doi.org/10.47392/IRJAEM.2025.041

manner, researchers and developers can effectively
train and evaluate machine learning algorithms to
recognize subtle visual cues indicative drowsiness,
Figure 2.

4. Methodology

This section lacks a clear definition of the overall
research methodology.
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Figure 3 Workflow Chart

4.1. Algorithms
we developed a driver drowsiness detection system
using multiple deep learning algorithms for binary
classification, distinguishing between drowsy and
non-drowsy states. The algorithms implemented
include Convolutional Neural Networks (CNN),
VGG16, GoogleNet, AlexNet, MobileNetV2, and
ResNet101. Each model was pretrained on the
ImageNet dataset and fine-tuned on a custom dataset
of driver images. The architecture of each model was
adjusted to include a Global Average Pooling layer
followed by a dense layer with ReLU activation and
afinal sigmoid output layer for binary classification.
The models were trained using the Adam optimizer
with binary cross-entropy loss. Performance metrics
such as accuracy, precision, recall, and F1-score were
used to evaluate and compare the efficacy of each
model. Experimental results demonstrated that

transfer  learning  with  these  architectures
significantly improves the detection accuracy of
driver drowsiness, Figure 3.

4.2. Convolutional Neural Network (CNN)
We have created two versions of the SimpleCNN
model are defined, one without data augmentation
and one with data augmentation. The SimpleCNN
model is designed for image classification tasks,
particularly for driver drowsiness detection in this
context. It consists of three convolutional layers
followed by max-pooling layers to extract and down
sample image features. The convolutional layers,
namely convl, conv2, and conv3, are responsible for
detecting various patterns and features in the input
images. Each convolutional layer is followed by a
Rectified Linear Unit (ReLU) activation function to
introduce non-linearity and increase the model's
expressive power. After the convolutional layers,
max-pooling layers are applied to reduce the spatial
dimensions of the feature maps while preserving the
most important information. These pooling layers
help in capturing the most salient features and
reducing computational complexity.It consists of
three convolutional layers followed by max-pooling
layers to extract and down sample image features.
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Figure 4 Architecture of CNN

Following the convolutional and pooling layers, the
feature maps are flattened and fed into two fully
connected layers: fcl and fc2. These layers serve as
the classifier, mapping the extracted features to the
output classes (drowsy or non-drowsy). The first fully
connected layer, fcl, has 512 neurons, followed by
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another layer (fc2) with the number of neurons equal
to the number of output classes. To prevent
overfitting, a dropout layer with a dropoutrate of 0.5
is added after the first fully connected layer. Dropout
randomly sets a fraction of input units to zeroduring
training, which helps in regularizing the modeland
reducing its reliance on specific features.Fig 5 shows
the confusion matrix for Regarding data
transformations, the version without augmentation
applies simple preprocessing steps to the input
Images. It resizes each image to a fixed size of
224x224 pixelsand normalizes the pixel values using
mean and standard deviation values computed from
the ImageNet dataset. These transformations ensure
uniformity in the input data and facilitate efficient
training of the neural network. In contrast, the version
with data augmentation incorporates additional
random transformations to increase the diversity of
the training data. These transformations include
random resized cropping and horizontal flipping,
whichintroduce variations in the training images. By
augmenting the training data with these random
transformations, the model becomes more robust to
variations in input images and is less likely to overfit
to the training set. Overall, both versions of the
SimpleCNN model sharethe same architecture but
differ in the data preprocessing steps applied to the
input images. While the version without
augmentation relies on fixed-size images and
standard  normalization, the version  with
augmentation leverages random transformations to
enhance the model's generalization capability, Figure
4.
4.3. VGG16

VGG16, short for Visual Geometry Group 16, is a
deep convolutional neural network architecture
developed by the Visual Geometry Group at the
University of Oxford. It is characterized by its
simplicity, comprising a series of convolutional
layers followed by max-pooling layers. The
architecture consists of 13 convolutional layers and
three fully connected layers.The model is employed
as a feature extractor and classifier for driver
drowsinessdetection. The model is loaded with pre-
trained weights, which were learned on the ImageNet
dataset, a large dataset with millions of labeled

images across thousands of categories. By leveraging
these pre- trained weights, the model has already
learned to recognize a wide variety of visual features,
making it well-suited for transfer learning.The last
fully connected layer of the model isreplaced with a
new fully connected layer. This new layer has the
number of output neurons equal to the number of
classes in the dataset (in this case, the classes are
drowsy and non-drowsy). By replacing thelast layer,
the model can be fine-tuned to classifyimages
specific to the driver drowsiness detection task.
During the training phase, the model is optimized
using the stochastic gradient descent (SGD)
optimizer with a learning rate of 0.001 and
momentum of 0.9. The model's performance is
evaluated using both training and validation data,with
metrics such as loss and accuracy tracked over
multiple epochs.

4.4. GoogleNet
We utilized GoogLeNet, a deep convolutional neural
network, for the efficient detection of driver
drowsiness. GoogLeNet's architecture, renowned for
its inception modules, allows for efficient computation
and deeper network designs. This makes it
particularly suitable for complex tasks like image
classification. We leveraged transfer learning by
using a pre-trained GoogLeNet model, which was
then fine-tuned for our specific task of binary
classification: detecting drowsy versus non-drowsy
drivers. It replacing its final fully connected layer
with one that outputs two classes. This modification
enabled the network to focus on our specific
classification needs.To improve the model's
generalization and robustness, we applied data
augmentation techniques, such as random cropping
and horizontal flipping, during the preprocessing
stage. Test accuracy:0.9943

4.5. AlexNet
The AlexNet architecture was efficiently utilized for
driver drowsiness detection by leveraging its
powerful convolutional layers for feature extraction
and its fullyconnected layers for classification. By
fine-tuning a pre-trained AlexNet model, we adapted
it to recognize drowsy versus non-drowsy states,
which involved modifying the final layer to match the
number ofclasses in our detection task.
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Figure 4 Architecture of AlexNet

We can observe the layers of Alexnet from fig.9.
Transfer learning played a crucial role in thisprocess,
allowing us to use the pre-trained weights of
AlexNet, which had already learned rich features
from a large-scale image dataset. This approach
enabled usto achieve high accuracy even with a
smaller,domain- specific dataset, as the model's
extensive prior training helped in extracting
meaningful patterns related to drowsiness.

4.6. MobileNet V2

MobileNetV2 was employed for detecting driver
drowsiness, leveraging its efficient architecture
designed for mobile and embedded applications .
MobileNetV2, known for its balance between high
accuracy and low computational cost, provided a
robust solution for real-time drowsiness detection.
We utilized the pre-trained MobileNetVV2 model,
which was initially trained on the ImageNet dataset.
This pre-trained model served as a strong starting
point due to its rich feature extraction
capabilities.The final classification layer of
MobileNetV2 was replaced with a new fully
connected layer tailored to the specific number of
classes in our drowsiness detection task. This
adjustment allowed the model to output predictions
aligned with our application. Instead of training the
entire model from scratch, we fine-tuned it.

4.7. ResNet101
ResNet-101 was employed to detect driver
drowsiness, utilizing its advanced deep learning
structure to ensure high precision and reliability in this
task. ResNet-101, with its deep architecture, is known
for achieving high performance on complex tasks. Its
residual connections help in training very deep

networks efficiently, preventing issues like vanishing
gradients. Despite its depth, ResNet-101 can be
optimized for deployment in real-time systems with
appropriate hardware, making it suitable for in-car
embedded systems to monitor driver drowsiness in
real-time. We used the ResNet-101 model pre-trained
on the ImageNet dataset. This pre-trained model
provided a strong foundation due to its extensive
feature extraction capabilities. The final fully
connected layer of ResNet-101 was replaced to match
the number of classes in our drowsiness detection
task. This allowed the model to output predictions
relevantto our specific application.

4.8. Preprocessing
A standardized preprocessing pipeline was employed
to optimize the input images for effective analysis.
This  pipeline  comprised several essential
transformations to ensure that the data was
appropriately formatted and augmented for robust
model training and evaluation. The first step involved
applying a Random Resized Crop transformation,
which randomly selected and resized regions of the
images to a fixed size of 224x224 pixels. By
introducing random cropping, the model was
exposed to diverse sections of the images, facilitating
the learning of invariant features and improving
generalization performance. Following the crop
operation, a Random Horizontal Flip was performed.
This augmentation technique horizontally flipped the
images with a certain probability, enriching the
dataset with additional variations in orientation. This
augmentationencouraged the model to learn features
invariant to left-right orientation changes, thereby
enhancing its ability to detect drowsiness from
images captured under different conditions.
Subsequently, the images were converted into
PyTorch tensors using the ToTensor transformation.
This conversion facilitated seamless integration with
the PyTorch framework and enabled efficient
computation on GPU devices duringboth training and
inference stages. Finally, a Normalization step was
applied to standardize thepixel values of the images.
By adjusting the pixel intensities to have a mean of
[0.485,0.456,0.406] and a standard deviation of
[0.229,0.224,0.225], the input data was normalized to
a common scale. This normalization ensured that the
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model received input data with consistent statistical
properties, promoting stable and effective training
across different architectures.

4.9. Training and Validation Phase
The training process involved multiple iterations
(epochs) over the entire training dataset,during which
the model learned to make accuratepredictions and
adjust its parameters based on the observed errors.

Epoch 6/14 Epoch ©/14

Loss: B.1788 Acc: 0.92
oss: ©.0550 Acc: ©.9783

n train Loss : ©.0580 Acc: 0.9771
al Loss: ©.0208 Acc: ©.9923 val Loss: ©.0379 Acc: ©.9867

train Loss: ©.8173 Acc: ©.9931 train Loss: ©.0384 Acc: 0.9850
val Loss: ©.0135 Acc: ©.9951 val Loss: ©.0331 Acc: ©.9876

Epoch 9/14

train Loss: ©.0148 Acc: ©.9947 train Loss: ©.0329 Acc: 0.9876
val Loss: ©.0249 Acc: ©.9917 val Loss cc: ©.9929

Epoch 10/14

550 ©.0132 Acc: ©.9952
©.0106 Acc: ©.9959 val Loss: 0.0145 Acc: ©,9944

oss: ©.0112 Acc: ©.9958 train Loss: ©.823@ Acc: ©.9913
al Loss: ©.8078 Acc: ©.9966 val Loss: ©.8226 Acc: ©.9919

Figure 5 Training Epoch in Colab

Each model was initialized with its respective
architecture, including pre-trained weights if
applicable, Figure 5. The last fully connected layer of
the modelwas modified to output predictions for the
specific number of classes in the dataset. The training
dataset was loaded into batches using PyTorch's
DataLoader module. Batching allowed the model to
process multiple samples simultaneously, leveraging
parallelism for faster computation. Within each
epoch,for both training and validation phases, the
model performed a forward pass on the input data.
The inputimages were fed into the model, and the
model generated predictions for each sample in the
batch.After obtaining the model predictions, the loss
function was calculated to quantify the disparity
between the predicted outputs and the ground truth
labels. The cross-entropy loss, a common choice for
classification tasks, was typically employed.With the
loss computed, backpropagation was performed to
calculate the gradients of the loss with respect to the
model parameters. These gradients were then used to
update the model's parameters (weights and biases)
performance. At the end of each epoch, the model's
performance was evaluated on both the training and

2 i https://doi.org/10.47392/IRJAEM.2025.041

Gradient Descent (SGD) or its variants. This process
aimed to minimize the loss and improve the model's
validation datasets. Metrics such as loss and accuracy
were computed to assess the model's performance and
monitor for overfitting. The training loop iterated
over multiple epochs, with the model gradually
improving its performance as it learned from the
training data. Early stopping mechanisms might have
been employed to prevent overfitting and determine
the optimal number of epochs. loss computed,
backpropagation was performed to calculate the
gradients of the loss with respect to the model
parameters. These gradients were then used to update
the model's parameters (weights and biases)
performance.At the end of each epoch, the model's
performance was evaluated on both the training and
Gradient Descent (SGD) or its variants. This process
aimed to minimize the loss and improve the model's
validation datasets. Metrics such as loss and accuracy
were computed to assess the model's performance and
monitor for overfitting. The training loop iterated over
multiple epochs, with the model gradually improving
its performance as it learned from the training data.
Early stopping mechanisms might have been
employed to prevent overfitting and determine the
optimal number of epochs, Table 2.

5. Result and Discussion

Table 2 Accuracy of All Models

CNN without 0.9993
Augmentaion
CNN with 0.9849
Augmentation
AlexNet 0.9981
GoogleNet 0.9943
MobileNetV2 0.9988
VGG16 0.9981
ResNet101 0.9998

We have concluded the result with accuracy metrics
Confusion matrix and Classification report. The
evaluation of different deep learning models for
driver drowsiness detection yielded notable results,
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showcasing their efficacy in enhancing road safety.
Among the models tested, ResNet-101 emerged as
the top performer, achieving an impressive accuracy
of 99.98%. Close behind, CNN without of
99.81%, indicating their reliability in drowsiness
detection tasks. Despite slightly lower performance,
GoogLeNet still achieved a commendable accuracy
0f 99.43%. The Simple CNN model, while exhibiting
a lower accuracy of 98.49%, remains a viable option
for drowsiness detection systems. These results
underscore the effectiveness of deep learning

architectures in accurately detecting driver
drowsiness, thereby contributing to enhanced road
safety measures. The high accuracy rates obtained by
these models emphasize their potential to be
integrated into real-time drowsiness detection
systems, offering proactive measures to mitigate the
risks associated with drowsy driving. Further
research and development in this domain could lead
to the implementation of more advanced and robust
models, ultimately fostering safer transportation
environments for all road users, shown in Table 3.

Table 3 Confusion Matrix and Graph
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Conclusion

The superior performance of models such as ResNet-
101, CNN without augmentation, and MobileNetV2
highlights  their ~ promise  for  real-world
implementation in driver drowsiness detection
systems. Further research and development in this
domain could lead to the implementation of more
advanced and robust models, ultimately fostering
safer transportation environments for all road users.
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