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Abstract 

Seismic excitation processing is essential for assessing and mitigating the effects of earthquakes and ground 

vibrations. Traditional methods like Fourier Transform (FT) and Short-Time Fourier Transform (STFT) are 

limited when analyzing non-stationary seismic signals, as they cannot simultaneously provide time and 

frequency localization. Wavelet Transform (WT) overcomes these limitations by decomposing signals across 

multiple scales, making it a powerful tool for seismic data analysis. This review delves into the mathematical 

framework of WT, emphasizing its capability to handle transient signals common in seismic events. Key 

wavelets such as Haar, Daubechies, Morlet, and Mexican Hat are explored in terms of their effectiveness in 

seismic signal denoising, event detection, and ground motion analysis. The paper also highlights the 

integration of WT with advanced techniques like machine learning and hybrid signal processing, enhancing 

seismic hazard analysis and real-time earthquake monitoring. Applications in earthquake early warning 

systems (EEWS) and structural health monitoring (SHM) are discussed, demonstrating WT’s versatility. 

Despite its benefits, WT faces challenges such as computational complexity, wavelet selection, and managing 

large seismic datasets. Recent advancements in adaptive wavelet design, cloud computing, and hybrid 

approaches show promise in addressing these challenges, paving the way for more accurate and efficient 

seismic analysis.  

Keywords: Seismic Excitation, Wavelet Transform, Earthquake Monitoring, Seismic Signal Denoising, Event 

Detection, Structural Health Monitoring. 

 

1. Introduction             

Seismic excitation refers to the motion of the ground 

resulting from earthquakes, explosions, or other 

dynamic forces that propagate through the Earth's 

crust in the form of seismic waves (Boore, 2003). 

Analyzing these signals is critical for earthquake 

engineering, structural health monitoring (SHM), and 

seismic hazard assessment (Aki & Richards, 2002). 

However, seismic signals are inherently non-

stationary, exhibiting variations in frequency and 

amplitude over time, posing significant challenges 

for traditional signal processing techniques 

(Bracewell, 2000). Fourier Transform (FT), while 

effective for stationary signals, struggles to represent 

transient phenomena characteristic of seismic waves. 

The introduction of Short-Time Fourier Transform 

(STFT) allowed for localized time-frequency 

analysis by applying a sliding window function 

(Cohen, 1995). However, STFT faces a trade-off 

between time and frequency resolution, limiting its 

application to highly dynamic seismic signals 

(Mallat, 1999). Wavelet Transform (WT) has 

revolutionized seismic data analysis by providing 

multi-resolution analysis, enabling the 

decomposition of seismic signals across different 

scales (Daubechies, 1992). WT can simultaneously 

analyze both low-frequency (long- duration) and 

high-frequency (short-duration) components, making 

it ideal for capturing earthquake onsets and subtle 

ground vibrations (Torrence & Compo, 1998). Figure 

1 illustrates the difference between FT, STFT, and 
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WT in processing seismic signals [1-4].    

 

 
Figure 1 Comparison of Fourier Transform, 

Short-Time Fourier Transform, and Wavelet 

Transform in Seismic Signal Analysis 
  

2. Fundamentals of Wavelet Transform 
Wavelet Transform (WT) is a mathematical tool that 

decomposes signals into components localized in 

both time and frequency domains. Unlike Fourier 

Transform (FT), which represents signals as a sum of 

sinusoidal functions, WT uses scaled and shifted 

versions of a mother wavelet to analyze transient 

signals (Daubechies, 1992). This property makes WT 

ideal for seismic signal processing, as it can detect 

abrupt changes and oscillations characteristic of 

seismic events (Mallat, 1999). 

a. Mathematical Formulation of WT 

The Continuous Wavelet Transform (CWT) of a 

signal x(t) is given by: 

𝑊(𝑎, 𝑏) = ∫  
∞

−∞

𝑥(𝑡)𝜓∗ (
𝑡 − 𝑏

𝑎
)𝑑𝑡 

where: 

 ψ(t) is the mother wavelet, 

 a is the scale parameter (frequency 

component), 

 b is the translation parameter (time 

component), and denotes the complex 

conjugate (Chui, 1992). 

In seismic applications, CWT provides a detailed 

analysis of waveforms, but its computational cost is 

high. Therefore, Discrete Wavelet Transform (DWT) 

is often preferred, defined as: 

𝑊𝑗,𝑘 = ∑  

𝑁−1

𝑛=0

𝑥[𝑛]𝜓𝑗,𝑘[𝑛] 

where j and k represent the scale and position indices, 

respectively. DWT employs dyadic scaling, reducing 

the computational load while preserving essential 

signal features (Mallat, 1999). Figure 2 demonstrates 

how a seismic signal is decomposed into wavelet 

coefficients at multiple scales using DWT. Mexican 

Hat Wavelet – Effective in detecting peaks and edges, 

valuable for identifying seismic event onsets 

(Addison, 2002) [5-7]. 

 

 
Figure 2 Multi-Scale Decomposition of a Seismic 

Signal Using Discrete Wavelet Transform (DWT) 

 

b. Key Wavelets for Seismic Processing 

Several wavelets are commonly applied in seismic 

excitation analysis, each with unique properties 

suited for different tasks: 

 Haar Wavelet – Simple and effective for 

detecting sharp transitions (Chui, 1992). 

 Daubechies Wavelets – Known for their 

compact support, ideal for denoising and 

compression (Daubechies, 1992). 

 Morlet Wavelet – Suitable for oscillatory 

signals, often used in time-frequency analysis 

(Torrence & Compo, 1998). 

Figure 3 shows the time-domain representations of 

these commonly used wavelets [8-12]. 

3. Applications of WT in Seismic Analysis 

Wavelet Transform (WT) has proven to be an 

invaluable tool in the analysis of seismic signals, 
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particularly due to its ability to handle the non-

stationary nature of seismic data. Below are key 

applications where WT plays a crucial role in seismic 

processing [13-17]. 

i. Seismic Signal Denoising 

Seismic signals often suffer from noise due to 

environmental interference, instrumentation errors, 

or data transmission issues. Noise removal is critical 

for improving the clarity of seismic records and for 

detecting small magnitude earthquakes or other 

seismic events (Kanasewich,1981)   

 

 
Figure 3 Time-Domain Plots of Haar, 

Daubechies, Morlet, and Mexican Hat 

Wavelets 

 

Traditional filtering methods, like low-pass or high-

pass filters, can distort the seismic signal, particularly 

when noise is not easily separable from the signal of 

interest. Wavelet denoising, however, is a more 

sophisticated technique. It works by decomposing the 

signal into multiple scales and thresholds, retaining 

the most significant components while suppressing 

the noise in the less important components (Donoho, 

1995). The Daubechies wavelet, with its compact 

support and smooth characteristics, is commonly 

used for this purpose. In seismic denoising, WT can 

filter out the high-frequency noise without affecting 

the important low-frequency seismic events. For 

example, Mousavi et al. (2016) applied the 

Daubechies wavelet for denoising seismic data from 

the 2011 Tohoku earthquake. The results showed a 

significant improvement in signal-to-noise ratio, with 

clear detection of low-magnitude seismic events that 

were otherwise masked by noise. 

ii. Seismic Event Detection 

The detection of seismic events, particularly the onset 

of primary (P) and secondary (S) waves, is crucial for 

earthquake early warning systems (EEWS) and 

structural health monitoring (SHM). Traditional 

techniques rely heavily on analyzing the time of 

arrival and energy levels of these waves. However, 

these methods are less effective in non-stationary 

signals with variable frequencies. Wavelet Transform 

has proven effective for detecting transient seismic 

events like P- and S-waves, as it can localize both 

time and frequency information (Torrence & Compo, 

1998). The oscillatory nature of the Morlet and 

Mexican Hat wavelets makes them particularly 

useful for identifying the arrival of seismic waves, as 

they can track rapid changes in amplitude and 

frequency. For instance, a study by Mousavi et al. 

(2019) showed that the combination of WT and 

Convolutional Neural Networks (CNNs) improved 

the detection of small earthquakes in real-time by 

highlighting distinct seismic event patterns. This 

method outperformed traditional signal processing 

techniques in terms of accuracy and speed, enabling 

faster detection and response in earthquake-prone 

regions. 

iii. Ground Motion Analysis 

Seismic ground motion analysis is essential for 

earthquake engineering and structural health 

monitoring. Understanding the intensity, frequency 

content, and duration of ground motion helps 

engineers design structures that can withstand 

earthquakes. Wavelet Transform provides a powerful 

tool for decomposing seismic signals into different 

frequency bands, allowing for the characterization of 

peak ground acceleration (PGA), velocity, and 

displacement (Boore & Bommer, 2005). In seismic 

analysis, WT can reveal critical characteristics such 

as resonance frequencies that may affect building 

structures, enabling engineers to assess whether a 

building is at risk of failure during an earthquake. WT 

also aids in identifying aftershocks and 

differentiating them from the main seismic event. 

Zhang et al. (2017) demonstrated that WT could 

accurately assess the damage to structures by 
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analyzing the ground motion signal at different 

frequency scales, revealing insights into the 

building's response to seismic events 

 

 
Figure 4 Wavelet Decomposition of a Seismic 

Signal for Ground Motion Analysis 
 

Figure 4. Show how seismic signals can be 

decomposed using WT into various frequency 

components (e.g., low-frequency, high-frequency) to 

analyze ground motion characteristics [18-21]. 

4. Comparative Analysis of Wavelets in Seismic 

Processing 

In seismic signal processing, the choice of wavelet 

can significantly impact the quality of the results. 

Different wavelets offer various advantages in terms 

of time-frequency localization, smoothness, and 

computational efficiency. In this section, we will 

compare the performance of several commonly used 

wavelets in seismic processing, including the Haar, 

Daubechies, Morlet, and Mexican Hat wavelets. The   

comparison will focus on their suitability for seismic 

data processing tasks such as denoising, event 

detection, and ground motion analysis [22-28]. 

4.1 Haar Wavelet 

The Haar wavelet is one of the simplest wavelets, 

characterized by a step-function form. It is often used 

in applications requiring quick decomposition but 

with less emphasis on signal smoothness. The Haar 

wavelet is a discontinuous, piecewise constant 

function, making it ideal for signals with sharp 

discontinuities. However, this simplicity often leads  

to a loss in frequency resolution for smooth signals 

such as seismic data (Mallat, 1989). 

Advantages: Simple to compute, Effective for 

signals with sharp transitions or jumps & Low 

computational cost. 

Disadvantages: Limited frequency resolution, not 

ideal for continuous, smooth seismic signals & May 

introduce artifacts in smooth seismic data due to its 

discontinuous nature. 

Example: For seismic event detection, the Haar 

wavelet might struggle with smooth seismic signals, 

particularly in identifying subtle seismic events or 

differentiating between small signals and noise. It 

may be more useful in initial approximations of large 

seismic signals where sharp boundaries exist. 

4.2 Daubechies Wavelets 

The Daubechies wavelets are a family of orthogonal 

wavelets known for their compact support and 

smoothness. They are often favored for signal 

processing tasks, including seismic analysis, due to 

their ability to provide a good balance between time 

and frequency localization. The Daubechies wavelet 

family is parameterized by the number of vanishing 

moments, which determines its ability to approximate 

smooth functions (Daubechies, 1988). 

Advantages: Smooth and continuous, making it 

well-suited for seismic signals, Good frequency 

localization & Efficient for capturing localized 

features in seismic signals. 

Disadvantages: Computationally more expensive 

than Haar wavelets & May still introduce some 

artifacts in the approximation of certain features. 

Example: In seismic denoising, the Daubechies 

wavelet provides good performance, as it retains 

important features of the signal while removing high-

frequency noise. It is often preferred when dealing 

with real seismic datasets due to its balance of 

smoothness and localization. 

4.3 Morlet Wavelet 

The Morlet wavelet is a complex sinusoidal wavelet, 

often used for time-frequency analysis. It is a 

Gaussian-modulated sine wave, making it 

particularly well-suited for detecting oscillatory 

features in seismic signals. The Morlet wavelet is 

commonly used in seismic studies for identifying and 

analyzing seismic wave propagation and resonance 

(Torrence & Compo, 1998). 

Advantages: Excellent time-frequency localization, 
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Ideal for detecting oscillatory and periodic 

components in seismic data & Effective for analyzing 

seismic wave propagation, especially in transient 

events. 

Disadvantages: Requires complex arithmetic due to 

its sinusoidal nature & computationally expensive 

compared to real-valued wavelets. 

Example: For seismic event detection, particularly 

when analyzing waveforms like the P- and S-waves, 

the Morlet wavelet provides superior performance in 

identifying frequency changes associated with the 

arrival of seismic waves. It excels in identifying 

subtle transient events that may be overlooked using 

other wavelets. 

4.4 Mexican Hat Wavelet 

The Mexican Hat wavelet, also known as the Ricker 

wavelet, is the second derivative of a Gaussian 

function. It is often used in seismic analysis to 

identify edges and discontinuities in the signal. The 

Mexican Hat wavelet is particularly effective in 

detecting seismic events that are sharp and localized, 

such as aftershocks or small magnitude events 

(Torrence & Compo, 1998). 

Advantages: Good for detecting sharp changes and 

localized features in seismic data, Suitable for 

analyzing signals with sharp edges or impulses & 

offers a balance between time and frequency 

resolution. 

Disadvantages: Less smooth compared to 

Daubechies wavelets & May not be as effective for 

capturing smooth, continuous seismic signals. 

Example: The Mexican Hat wavelet is particularly 

useful in detecting aftershocks, as it highlights sharp, 

transient events in the signal. In ground motion 

analysis, the Mexican Hat wavelet can be applied to 

highlight localized disruptions that correspond to 

sudden shifts in ground displacement. 

This figure 5 will illustrate how different wavelets 

perform in terms of preserving important features 

while removing noise from seismic data, shown in 

Table 1. 

 

 

 

 

Table 1 Comparative Summary of Wavelet 

Wavelet 
Main 

Characteristics 
Best For Advantages Disadvantages 

Haar 

Simple step-

function, piecewise 

constant 

Initial approximations 

of signals with sharp 

transitions 

Fast computation, 

low cost 

Poor frequency 

resolution, artifacts 

Daubechies 
Compact support, 

smooth, orthogonal 

Seismic denoising, 

event detection 

Smooth, good time-

frequency 

localization 

Computationally 

expensive 

Morlet 
Gaussian-modulated 

sine wave 

Time-frequency 

analysis, oscillatory 

signals 

Excellent for periodic 

components, good 

frequency 

localization 

Complex 

arithmetic, 

expensive 

Mexican 

Hat 

Second derivative of 

Gaussian, bell-

shaped 

Edge detection, small 

seismic events 

Good for sharp 

transitions, balanced 

time-frequency 

resolution 

Less effective for 

smooth signals 

5. Future Trends in Wavelet-Based Seismic 

Analysis 

Wavelet-based seismic analysis is evolving with 

advancements in machine learning (ML) and deep 

learning (DL), enhancing seismic event detection and 

signal processing. 

i. ML and Wavelets for Seismic Event 

Detection 

ML models, such as Support Vector Machines 

(SVM) and Neural Networks, can be used with 
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wavelet-transformed seismic data for automated 

event detection and classification. Features extracted 

by wavelets improve the accuracy of seismic event 

detection, while ML models can help identify 

earthquakes and anomalies in noisy data. 

ii. Deep Learning and Wavelet Transform 

Deep Learning (DL) models like CNNs and RNNs 

are integrated with wavelets to improve seismic 

signal classification and prediction. Wavelet 

transforms provide time-frequency representations 

that help DL models detect both spectral and 

temporal features of seismic events. 

 

 
Figure 5 Comparative Performance of Wavelets 

in Seismic Data Denoising 
    

iii. Hybrid Approaches 

Hybrid methods, such as combining wavelets with 

Empirical Mode Decomposition (EMD) or Principal 

Component Analysis (PCA), enhance feature 

extraction and noise separation. These approaches 

improve seismic event detection by enabling better 

signal processing. 

iv. Real-Time Seismic Monitoring 

Wavelet-based analysis allows for efficient real-time 

seismic monitoring, crucial for early warning 

systems. It can improve event detection, noise 

reduction, and automated decision support, providing 

rapid alerts for seismic events. 

v. Challenges and Limitations 

Challenges include computational costs, data quality, 

and the interpretability of ML/DL models. 

Overcoming these will enhance the integration of 

wavelet-based methods with advanced techniques in 

seismic analysis. 

Conclusion 

Wavelet-based seismic analysis has proven to be a 

powerful tool for enhancing the resolution and 

accuracy of seismic data processing. By leveraging 

time-frequency representations, denoising 

techniques, and event detection, wavelets offer 

significant improvements over traditional methods. 

The integration of machine learning and deep 

learning further amplifies the potential of wavelet-

based analysis, enabling automated, real-time seismic 

monitoring and improved prediction accuracy. 

Despite challenges like computational complexity 

and data quality, future developments in hybrid 

models and advanced algorithms will address these 

limitations. As technology progresses, wavelet-based 

methods will play an increasingly central role in 

seismic exploration, hazard assessment, and early 

warning systems, offering more reliable and efficient 

solutions in earthquake prediction and monitoring. 
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