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Abstract 

In general, medical examinations, complete blood cell (CBC) counting has been essential. Common methods, 

such as automated analyzers and conventional manual counting, were greatly impacted by how medical 

professionals operated. Deep learning algorithms for computer-aided object detection have been successfully 

used in various visual applications in recent years. To precisely identify and count blood cells on blood smear 

images, we present in this research an architecture based on deep neural networks. A publicly available BCCD 

(Blood Cell Count and Detection) dataset assesses our architecture's performance. Images from blood smears 

are frequently low resolution, with overlapping and fuzzy blood cells. Preprocessing was done on the original 

photos, which included blurring, sharpening, enlargement, and picture augmentation. Five models are built 

here with various parameters in the suggested architecture. We thoroughly examine the variables influencing 

their performance and evaluate how well they identify red blood cells (RBC), white blood cells (WBC), and 

platelets. The outcomes of the experiment demonstrate that when blood cells do not excessively overlap, our 

algorithms are capable of reliably identifying blood cells.  
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1. Introduction 

Blood cells contain around 45% of blood tissue by 

volume, and an adult's blood contains generally five 

liters. Red blood cells (RBC), white blood cells 

(WBC), which include neutrophils, monocytes, 

eosinophils, lymphocytes, and basophils, and 

platelets are the three different types of blood cells. 

White blood cells help the immune system fight off 

illnesses, red blood cells are the primary means of 

transporting oxygen, and platelets have a coagulation 

function that helps heal wounds that have scabs. 

Clinically, blood composition is affected by both 

pathologic and physiological changes. As a result, 

blood testing is now a straightforward way to 

determine a person's health or identify illnesses. One 

of the traditional blood tests, complete blood cell 

(CBC) counting, detects and counts basic blood cells 

to analyze, monitor, and control blood variation [1]. 

But manual labor is laborious, time-consuming, and 

prone to error. Early in the 20th century, scientists 

started taking advantage of automated analyzers. 

Many studies use image processing methods and 

statistical or deep learning models to improve CBC 

counts on blood smear images as computing power 

increases but it is challenging to recognize blood cells 

since pictures are foggy and in low resolution.  

Numerous visual identification tasks have seen the 

successful application of convolutional neural 

networks (CNNs) [2]. CNNs are now a common 

method for handling medical image analysis because 

of their exceptional learning and feature extraction 

capabilities [3]. In this work, we provide a unique 

CNN-based deep learning architecture that enables 

accurate CBC counting while concurrently detecting 

and classifying blood cells on blood smear images. 

Here, five models with various configurations are 

built. Finally, we contrast and talk about the outcomes 

of the suggested models in various scenarios. 

2. Materials and Methods 
In order to locate and identify target cells in blood 

smear images, we provide a unique CNN-based deep 

learning architecture. 

2.1 Proposed Architecture 

Four steps of pre-processing are first applied to the 

blood smear images: blurring, sharpening, 
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enlargement, and picture augmentation. The core of 

the model was CNN, which was focused on 

extracting and creating basic feature maps. VGG-

16[4] is used in this paper. In order to speculate on 

the locations of blood cells, we then included the 

Region Proposal Network (RPN) [. Potential feature 

vectors are created in the RoI (Region of Interest) 

Pooling layer by combining the data from the feature 

maps and RPN. Figure 1 shows The Proposed 

Architecture 

 

 
Figure 1 The Proposed Architecture 

 

As seen in the upper portion of Figure 2, VGG-16 can 

be thought of as a composition of five blocks with a 

total of 13 convolutional layers, 5 pooling layers, and 

3 fully-connected layers. VGG-16 uses 3 × 3 filters to 

produce feature maps with various resolutions. The 

pooling layer lowers the feature map resolution by 

max-pooling by a 2x2 window. The softmax layer, 

which is in charge of categorization, is the final 

completely connected layer. To highlight the 

important features, we also used the Convolutional 

Block Attention Module (CBAM) [5]. Given the 

input image, channel attention concentrates on what 

is significant. In addition to channel attention, spatial 

attention concentrates on where informative elements 

are located.The Faster R-CNN architecture was then 

used for blood cell counts, classification, and 

detection. Region Proposal Network (RPN) shares 

feature maps with CNN to provide region proposals. 

To create region proposals, or anchor boxes, and the 

matching lower-dimensional features, it moved a 

window across the feature map in the RPN layer.  

 

 
Figure 2 Feature Fusion in The Proposed 

Architecture 

 

2.2 Evaluation Measures 

For the evaluation of the bounding box and classifier, 

we employed three metrics: the confusion matrix, 

Distance-IoU (DIoU), and Intersection of Union 

(IoU). Equation (1) displays the IoU formula.  

IoU = Ground Truth Bounding Box ∩ Predicted 

Bounding Box / Ground Truth Bounding Box ∪    

Predicted Bounding Box (1) 

Two overlapping boxes are shown to cross and unite 

in Figure 3. We assumed that the ground truth box 

was in Box B and the anticipated box was in Box A. 

The intersection is shown in red, and the union is 

shown in green. To figure out the IoU of Boxes A and 

B, the red area was divided by the green area. Figure 

3 shows Intersection and Union of Two Overlapping 

Boxes A and B 

 

 
Figure 3 Intersection and Union of Two 

Overlapping Boxes A and B 
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Equation (2), as seen in Figure 4, computes DIoU by 

taking d, the Euclidean distance between the central 

points of the two overlapping boxes, and c, the 

diagonal length of the smallest rectangle that covers 

the two boxes.  

DIoU = IoU − d2 / c2                    (2)        

 

 

Figure 4 Distance-IoU (DIoU) Calculation of Two 

Overlapping Boxes 

 

Equations (3) to (5) are used to determine the 

precision, recall, and F1 score. 

Precision = TP / (TP+FP)                                        (3) 

Recall = TP / (TP+FN)                                           (4) 

F1 Score = 2 x Precision x Recall / Precision + Recall                                    

(5)   

The following is what TP, FN, FP, and TN stand for 

in a binary classification: 

When both the expected and actual classes are 

positive, it is known as true positive (TP). 

When a positive sample is anticipated to be negative,  

it is known as false negative (FN). 

When a negative sample is thought to be positive, it 

is known as false positive (FP). 

When the actual and anticipated classes are both 

negative, it is known as true negative (TN). 

3. Experiments and Results 

3.1 Dataset Description 

The Blood Cell Count and Detection (BCCD) dataset 

is used in the present study. It comes with 364 640 x 

480-pixel blood smear images and an annotation file 

that offers more details about the picture. Figure in 

shows a blood smear image from the dataset, replete 

shows a blood smear image from the dataset, replete 

with bounding boxes and tagged blood cells. Figure 

5 shows Original Image with Ground Truth Bounding 

Boxes and Labels 

 

 
Figure 5 Original Image with Ground Truth 

Bounding Boxes and Labels 

 

Two subsets of the dataset were randomly choosing: 

20% of the images were for validation, whereas 80% 

of the images were for training. Table 1 BCCD 

Dataset 

 

Table 1 BCCD Dataset 

Blood Cells 
Training 

(80%) 

Validation 

(20%) 

Red Blood 

Cell (RBC) 
3310 843 

White Blood 

Cell (WBC) 
297 75 

Platelets 301 60 

 

4. Data Preprocessing 

Four steps of pre-processing were first applied to the 

blood smear images: blurring, sharpening, 

enlargement, and picture augmentation. We changed 

the original photographs from RGB color space to 

grayscale in addition to applying rotation, flipping 

them horizontally and vertically to improve the 

quantity and variety of the images. We also employed 
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bicubic interpolation to expand the images because it 

is hard to discern small items like platelets. The fuzzy 

photos were then sharpened using the unsharp 

masking concept. There are three steps in the unsharp 

masking process: blur the original image, acquire the 

mask by subtracting the blurred image from the 

original, and then add a weighted piece of the mask 

back to the original. Equation (6) illustrates how we 

calculated an image's mask in this study by applying 

a 3 × 3 OpenCV built-in Laplacian filter and then 

subtracting a weighted portion of the mask from the 

image with a parameter k. fsharpen(x, y) = foriginal 

(x, y) − k × fmask(x, y)  Next, in order to smooth out 

the photos, we blurred them using a 3 × 3 Gaussian is 

used in the present study. It comes with 364 640 x 

480-pixel blood smear images and an annotation file 

kernel. 

 

4.1 Model Setting 

We built five models with various preprocessing 

configurations. While some used enhanced photos, 

others used bigger images. While some simply used 

RGB images, others used mixed grayscale and RGB 

images. Next, we established the RPN parameters in 

the five models for detecting blood cells in the 

dataset's images. Selecting the anchors' sizes and 

aspect ratios in RPN is essential for target-object 

detection. Three different blood cell types' pixel sizes 

are shown in Table 2.  For RPN to detect objects, we 

choose 42, 86, and 170 pixels as anchor scales. 

Additionally, we use √2:1/√2, 1/√2:√2, and 1:1 as 

anchor aspect ratios. Consequently, RPN uses 

anchors of nine various diameters. The five suggested 

models' settings are listed in Table 3. Table 2 Blood 

Cell Information in Pixels. 

Table 2 Blood Cell Information in Pixels 

 Red Blood Cells White Blood Cells Platelets 

 Min Mean Max Min Mean Max Min Mean Max 

x-axis 42 104 168 31 194 338 19 42 167 

y-axis 39 100 166 27 174 286 23 40 135 

Table 3 Model Settings 

 Model 1 Model 2 Model 3 Model 4 Model 5 

Input Size 480 × 640 600 × 800 720 × 960 480 × 640 480 × 640 

Enlarge No Yes Yes No No 

Anchor 

Boxes Size 

[42, 86, 170] [53, 107, 213] [64, 128, 256] [42, 86, 170] [42, 86, 170] 

Sharpen Yes Yes Yes No Yes 

Images Color Grayscale or RGB RGB 

4.2 Experiment Results 

The experiment outcomes in the validation data of 

every model are displayed in Tables 4 and 5 with 

corresponding confidence scores of 0.9 and 0.8. More 

powerful than the rest are models 1, 2, and 3, which 

were trained using preprocessed photos in both RGB 

and grayscale color spaces. Model 1 is useful for the 

WBC recognition job. Model 3, which was trained  

 

using enlarged (1.5×) photos, gets a notable recall and 

F1score for RBC recognition tests. Model 5, which 

solely uses RGB pictures, has the highest precision 

but the lowest recall. Model 2, which was trained 

obtains the highest F1 scores for the platelet detection 

challenge. Table 4Results of The Validation Data of 

All Models When Confidence Score is 0.9. 
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Table 4 Results of The Validation Data of All Models When Confidence Score is 0.9 

Type Red Blood Cells White Blood Cells Platelets 

Index* P R F1 P R F1 P R F1 

Model 1 0.737  0.744  0.741  0.761  0.95  0.845  0.498  0.412  0.451 

Model 2 0.794  0.673  0.729  0.521  0.614  0.564  0.529  0.492  0.51 

Model 3 0.747  0.823  0.783  0.214  0.2  0.209  0.382  0.288  0.329 

Model 4 0.731  0.762  0.747  0.704  0.886  0.784  0.381  0.431  0.405 

Model 5 0.808  0.517  0.631  0.487  0.936  0.641  0.114  0.067  0.085 

* P, R, and F1 refer to precision, recall, and F1-score, respectively. 

 

Table 5 Results of The Validation Data of All Models When Confidence Score is 0.8 

Type Red Blood Cells White Blood Cells Platelets 

Index* P R F1 P R F1 P R F1 

Model 1 0.693  0.799  0.742  0.691  0.964  0.805  0.508  0.53  0.519 

Model 2 0.761  0.748  0.755  0.536  0.7  0.607  0.47  0.67  0.553 

Model 3 0.701 0.867 0.775 0.279 0.271 0.275 0.453 0.576 0.507 

Model 4 0.684  0.814  0.743  0.662  0.921  0.77  0.351  0.518  0.418 

Model 5 0.763  0.579  0.659  0.414  0.95  0.577  0.14  0.116  0.126 

* P, R, and F1 refer to precision, recall, and F1-score, respectively. 

 

Conclusions 

We present a unique CNN-based architecture for 

blood cell counting and identification in this work. 

We use VGG-16 as the backbone of this design. 

Block attention mechanism (CBAM) and feature 

fusion enhance the feature maps produced by VGG-

16. Blood cell detection makes use of Faster R-CNN's 

RPN and ROI Pooling techniques. Five versions with 

various configurations were built. Two confidence 

scores—0.9 and 0.8, respectively—were used for 

detection trials. Model 3, which employs images in 

both RGB and grayscale color spaces and enlarges 

input photos by 1.5 times, produced the best recalls 

for RBC detection, with 82.3% and 86.7% under two 

confidence values of 0.9 and 0.8, respectively. In the 

meantime, it obtained precision scores of 70.1% and 

74.7% under the two confidence levels. Model 1,  

which employs both RBG and grayscale images and 

does image preprocessing, performs better than other 

models for WBC detection. Under a confidence score 

of 0.9, the precision and recall are 76.1% and 95%, 

respectively, whereas under a confidence score of 0.8, 

they are 69.1% and 96.4%, respectively. Compared to 

RBCs and WBCs, platelets are smaller and less 

numerous. Particularly when the platelets are 

grouped together, platelet detection is more difficult 

than RBC and WBC detection. It is apparent that, for 

unidentified reasons, not all blood cells have labels in 

the BCCD dataset's annotation files, which has a 

substantial effect on all models' accuracy. 

Future Work 

Some blood cells are visible near the image's edge in 

blood smear pictures. In order to accommodate 

defective blood cells, we are presently working on 
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enhancing our architecture using the idea presented 

in Mask R-CNN [50]. Recent approaches for object 

detection using deep learning are also being 

considered. In order to incorporate more blood cell 

samples for learning, we also search for more datasets 

of blood smear images. Data Availability Statement: 

The public dataset, Blood Cell Count and Detection 

(BCCD) dataset, used in the experiment is available 

at https://github.com/Shenggan/BCCD_Dataset. 

Abbreviations 

The following abbreviations are used in this 

manuscript: 

 

ANN 
Artificial Neural Network 

 

CBAM 
Convolutional Block Attention Module 

 

CBC 
Complete Blood Cell 

 

CNN 
Convolutional Neural Network 

 

DIoU 
Distance-IoU 

 

HSV Hue, Saturation, and Value 

IoU Intersection of Union 

RBC Red Blood Cell 

RBG Red, Blue, and Green 

RoI 
Region of Interest 

 

RPN 
Region Proposal Network 

 

SVM Support Vector Machine 

WBC 
White Blood Cell 
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