

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.082

e ISSN: 2584-2854

Volume: 03

Issue:03 March 2025

Page No: 520 - 525

 IRJAEM 520

Efficiency Enhancement Architecture of SQL Queries Through Hierarchical

Cache
Achal Vijay Navaloor1, Kumudavalli M V2, Aliya Hassan3
1,2,3 PG- Department of Computer Applications, Dayananda Sagar College of Arts Science & Commerce,

Bangalore, Karnataka, India.

Email ID: achalnavaloor12@gmail.com1, kumudamanju@gmail.com2, aliyahassan0301@gmail.com3

Abstract

Secure Multi-Party Computation (MPC) enables privacy-preserving collaborative data analysis but suffers

from high computational overhead, communication latency, and inefficient query execution. Traditional

caching mechanisms, such as SMPCache, attempt to optimize performance but face limitations due to high

storage overhead, low cache hit rates, and inefficient cache lookup strategies. This study suggests a

Hierarchical SMPCache (H-SMPCache) The approach to address these issues, inspired by CPU caching,

introduces a multi-level caching structure (L1, L2, L3) to efficiently manage SQL queries in MPC

environments. The proposed hierarchical caching model aims to classify queries based on execution cost,

frequency, and computational complexity.

Keywords: Secure Multi-Party Computation (MPC), Hierarchical Caching, SMPCache, SQL Query

Optimization, L1-L2-L3 Cache, Privacy-Preserving Data Analysis.

1. Introduction

Data protection is more crucial than ever during data

analysis using today's data control apps. A key

paradigm that enables many parties to compute

functions on entries while maintaining the privacy of

these inputs is Multi-party Calculation (MPC).

Situations involving sensitive data, like healthcare,

finance, and personal information management,

benefit greatly from this. Nonetheless, MPCs have

significant obstacles, chiefly related to compensating

for computation, communication lags, and ineffective

query processing. The computational complexity

needed to run SQL queries in an MPC context can

exacerbate these issues. This makes real-time

performance challenging. SMPCache and other

classic caching methods have been developed to

increase the speed of these scenarios. The efficiency

of the cache is significantly influenced by the ability

to predict which queries occur most frequently. Poor

cache strategies can result in decreased overall

performance and inefficient resource utilization.

1.1. The Difficulties of Secure Multi-Party

Computation

MPC protocols frequently have significant latency

and poor performance because they demand a lot of

processing power and communication capacity. The

intricacy of the calculations required to run SQL

queries in an MPC environment may make these

problems worse and make achieving real-time

performance challenging. SMPcache and other

traditional caching methods have been developed to

increase speed under these circumstances.9.

Regretfully, people frequently encounter obstacles

that keep them from progressing: Current caching

solutions' large storage space requirements could be

a major disadvantage in situations when storage is

expensive or scarce. The efficacy of the cache is

greatly impacted by predicting which queries will be

executed most frequently. Poor cache hit rates may

result in inefficient resource usage and a decline in

overall performance.Traditional caching algorithms

sometimes handle the search of cached queries

inefficiently, increasing the latency while obtaining

cached data.[1-2]

1.2. The Necessity of Hierarchical Caching

To address these issues, we propose a new method

known as hierarchical smpcache(hsmpcache). The

multilevel cache architecture of computer processors

that improves processing efficiency and increases

about:blank
mailto:achalnavaloor12@gmail.com
mailto:kumudamanju@gmail.com
mailto:aliyahassan0301@gmail.com

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.082

e ISSN: 2584-2854

Volume: 03

Issue:03 March 2025

Page No: 520 - 525

 IRJAEM 521

access to data serves as a model for this approach.

Level 1 (L1), Level 2 (L2), and Level 3 (L3) -

Cutches are all included in the hierarchical cache

model and we recommend that you improve the

handling of SQL queries in your MPC settings.The

fastest and smallest cache is level 1 (L1), whichis

designed for the most frequently visited data and

queries. Provides lightning access and significantly

reduces immediate instructions and data latency.It is

found on all CPU cores. Located inside or next to the

CPU core, it acts as a connection between the ultraast

L1 cache and the slow L3 cache thatdoes not provide

the data that is needed.It's inside the chip, but outside

the main storage, which increases system speed by

reducing the need to access main memory.

1.3. Objectives of the Hierarchical SMPCache

To address these issues, we propose a new

methodknown as hierarchical smpcache (h-

smpcache). The multilevel cache architecture of

computer processors that improves processing

efficiency andincreases access to data serves as a

model for this approach. Level 1 (L1), Level 2 (L2),

and Level 3 (L3) - Cutches are all included in the

hierarchical cache model and we recommend that you

improve the handling of SQL queries in your MPC

settings. The fastest and smallest cache is level 1

(L1), which is designed for the most frequently

visited data and queries. Provides lightning access

and significantly reduces immediate instructions and

data latency. It is found on all CPU cores. Located

inside or next to the CPU core, it acts as a connection

between the ultrafast L1 cache and the slow L3 cache

that does not provide the data that is needed. It's

inside the chipbut outside the main storage, which

increases system speed by reducing the need to access

the main memory

1.4. Cache Management Tools

The Redis Using a computer's main memory (RAM),

Redis is an open-source data structure memory that

stores key-value pairs. Its maternal nature allows for

quick access to regularly used data. Among the many

data structures that Redis offers are strings, lists, sets,

hashes, sort sets, and more. It is renowned for

supporting high performance, low latency, and

sophisticated features including PUB/submessage,

replication, and persistence. Redis is frequently

utilized as a database, message broker, or cache.

Gives rapid access to commonly used data and keeps

significant pairs in storage. By lowering database

load, Memcached is frequently utilized to enhance

web application performance. Because of its

flexibility for horizontal scaling, numerous servers

can collaborate to handle massive volumes of data.

Memcached is renowned for its low memory

overhead and ease of usage. Because it is based on

LevelELDB, it is designed to read quickly. Features

like column families, transactions, and snapshots are

offered by ROCKSDB. Because of this, it can be used

in a range of storage situations. Typically, it is

employed for data caching. This is due to the fact that

it provides an affordable balance between durability

and quickness. To guarantee that periods are written

to the hard drive, ROCKSDB writes data. Because of

this, it's a dependable choice for programs that need

permanent memory. In order to avoid double

calculations and save huge and costly inquiries, it

offers a hard drive. Caching, high-performance

computation, and real-time analytics are just a few of

the many applications that Apache Ignite offers.

Among its characteristics are machine learning,

distributed data structures, SQL support, and acid

transactions. Even after a system restarts, data is

accessible thanks to Apache Ignite hard drives.

Because of this, it is a reliable option for applications

that need fault tolerance and high availability. While

RocksDB and Apache Ignite offer persistent store

options for larger data records and costly

computations, Redis and Memcached enable quick

memory access to frequently used data.

A balanced approach to speed, durability, and

scalability is ensured by this combination.[3-4]

2. Literature Review
J. Shi et al. focus on improving the efficiency of SQL

queries in multi-party collaborative data analysis

using a cache-like optimization mechanism. The

authors address the inefficiencies of existing secure

multi-party computation (MPC) solutions. P.

Alexander discusses the Rosetta system-level

specification language, which is designed for

complex, heterogeneous systems. The paper

emphasizes the importance of standardization in

system-level design and provides insights into the

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.082

e ISSN: 2584-2854

Volume: 03

Issue:03 March 2025

Page No: 520 - 525

 IRJAEM 522

development and application of the Rosetta language.

R. Saha et al. explore the use of randomness to

enhance security and privacy in multi-party

computation (MPC). The authors propose a novel

approach to address the limitations of existing MPC

models by incorporating a random function

generator. Y. -Z. Hu and H. Wang present an

innovative approach to optimizing the performance

of RocksDB, a key-value database, through an auto-

tuning system based on Transformer models. The

authors address the challenges of manually

configuring RocksDB knobs and propose a solution

to enhance performance across various workloads.

M. Sepehri, S. Cimato, and E. Damiani investigate

techniques for executing privacy-preserving queries

on partitioned databases using secure multi-party

computation (SMC). The authors propose a novel

approach to address the challenges of privacy and

efficiency in query processing. C.-S. Stan et al.

(2019) provides a comparative analysis of two

popular data processing frameworks: Apache Spark

and Apache Ignite. The authors evaluate the

performance of these frameworks based on various

metrics, including features, implementation,

architecture, and performance. C. Yearn et al. (2024)

explores the use of meta-learning techniques to

optimize the configuration of RocksDB, a persistent

key-value store, for various workloads. The authors

propose a novel approach called MetaTune, which

aims to address the challenges of tuning RocksDB

configurations for different types of workloads.

Z. Ji et al. (2014) presents a framework designed to

enhance the performance of data access in the

Ubiquitous Consumer Wireless World (UCWW) by

leveraging Redis, a NoSQL database. The authors

propose a distributed Redis framework to address the

limitations of a single Redis node and improve the

system's performance in handling large volumes of

requests from web applications. W. Wei, K. Namba,

and F. Lombardi (2016) presents a detailed analysis

of a hybrid cache memory design. The authors focus

on evaluating the performance and architectural

aspects of hybrid cache memory, which combines

different types of memory technologies to achieve

optimal performance. K. Kawabata and N.

Hayashibara was presented at the 2024 IEEE 29th

Pacific Rim International Symposium on Dependable

Computing (PRDC) in Osaka, Japan. The paper

discusses the implementation of Oblivious Random

Access Memory (ORAM) using caching and

prefetching techniques to improve performance.[5-8]

3. Methodology

Figure 1 CPU and Information

CPU and Information Needs the main part of a

computer system that is in charge of carrying out

commands and computations is the Central

Processing Unit (CPU). Data will be queried if the

CPU needs it to carry out the instruction. Prior to

arriving at main memory (RAM), this request travels

in a hierarchical fashion through several cache

storage tiers. In order to maintain effective CPU

performance, the objective is to get your data as fast

as feasible. There are two distinct caches within this

cache: Data Cache (L1D): Holds the most often used

information. The CPU can access the most

commonly used data and instructions because of the

close proximity to the CPU core, which guarantees

reduced latency when accessing data. Cache, L2

cache, and the next cache level, receives the

requirements. The L2 cache may be allocated to a

single core or shared over many seeds, depending on

the CPU architecture. Size and Speed: Compared to

the L1 cache, the L2 cache is larger but operates more

slowly. For frequently requested information and

commands that don't fit into the L1 cache, it serves as

secondary memory. in the L3 cache. It is typically

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.082

e ISSN: 2584-2854

Volume: 03

Issue:03 March 2025

Page No: 520 - 525

 IRJAEM 523

shared by the chip under all CPU cores and offers

shared storage for any data that the kernel might

want. Size and Speed: In the hierarchy, the L3 cache

is the biggest and slowest. Although it keeps access

to the data from the intermediate data acceptance

phase, it archives the data and instructions that are

utilized frequently. Hit: The requested data will

return to the CPU and be used in a subsequent inquiry

if it is located in the L3 cache. Information. from

RAM, or main memory. This is where the data is kept

if none of the cache layers are accessible. RAM is far

slower than cache memory, but it is also much larger.

Because RAM is physically farther from the CPU and

is of the dynamic random access memory (DRAM)

type, accessing data from it has a larger latency than

cache memory. To speed up access in the future, the

data is then copied into the L3, L2, and L1 caches.

The CPU will be able to swiftly access data the next

time it's needed. Fastest offers the quickest access to

the information and commands that are utilized the

most. The amount of time the CPU takes to output

data is greatly decreased as a result. It saves the data

and instructions kept in the middle and acts as a

common resource for all CPU cores. Make sure you

always have access to the data you require, even if the

CPU demands a high delay, in case data is

unavailable at any of the cache levels. Secondary

memory for information and commands that are

regularly accessed. Several cache storage levels (L1,

L2, and L3) are used by the CPU to guarantee

effective data calls prior to main memory (RAM).

This multi-phase method ranks data access and

storage according to CPU core proximity and usage

frequency. This enhances CPU performance overall

and lowers latency. You can comprehend complex

designs that allow modern CPUs to manage data

requirements efficiently by knowing the function and

interactions of each cache level and RAM. [9]

4. Results and Discussion
Theoretical Performance Improvements Query

Runtime: The main goal of H-smpcache is to use

cache structures at several levels to reduce query

execution time. In this structure, in many cases,

accessed and calculated inexpensive queries are

stored in the fastest cache (L1). By using L1 cache

speed, these queries can be processed with minimal

latency. Categorization of queries based on execution

cost and frequency allows the system to prioritize

faster cache levels forQuilly resolution. This

theoretical approach ensures that the most common

and simple queries are executed immediately,

improving overall system performance. In the

HSMPCache model, queries are categorized based on

execution cost and fraud. This classification allows

the system to store the queries that are most

frequently accessed in the L1 cache, the fastest cache

level. As a result, it is expected to have the highest hit

rate for the L1 cache. Less frequently asked queries

are stored in the slower but larger L2 and L3 caches.

The approach seeks to increase the overall cache hit

rate by strategically allocating queries among

multiple cache layers. Larger, slower caches (L2 and

L3) hold less important and infrequently used

queries. By making sure that only necessary queries

are stored in a small amount of space in the L1 cache,

this method reduces storage efforts. Consequently,

the system may optimize caching tools, make

effective use of available storage resources, and

guarantee that queries with higher priority are

resolved promptly. Because only critical queries are

retained at each cache level, this distribution lessens

query storage redundancy. The model maximizes

storage space by removing duplicate storage for

queries, ensuring that each cache level has pertinent

and understandable data. This improves query

resolution efficiency and lowers the system's overall

storage load. There is no thorough communication

between the parties that can use a large range if the

query is answered in the cache. The system can

manage the majority of its query needs locally by

keeping frequently accessed queries in the L1 cache.

This boosts bandwidth efficiency and decreases

confidence in the communication channel. Data

transfer between the parties is not necessary if the

query is resolved in the cache. Delays in

communication are reduced as a result. This method

lowers the possibility of data leaks during

transmission while simultaneously speeding up query

resolution. The concept guarantees the security of

sensitive data and reduces communication efforts by

limiting data transfer. Fast calculations are handled

by the L1 cache, whereas more complex calculations

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.082

e ISSN: 2584-2854

Volume: 03

Issue:03 March 2025

Page No: 520 - 525

 IRJAEM 524

are handled by the L2 and L3 caches. The system can

accommodate workloads at several cache levels and

avoid a single cache level becoming a bottleneck

thanks to this load distribution. The approach

guarantees optimal use of resources and boosts

overall system efficiency by allocating arithmetic

jobs according to their complexity. Scalability:

Scalability has a significant impact on a cache

system's performance. Without causing appreciable

performance deterioration, the H-SMPCache model

is made to scale and handle fault load increases well.

The system can consider more requests by

distributing them across multiple cache levels by

employing a hierarchical structure. This guarantees

that even when the query load rises, the system will

continue to respond swiftly and effectively. H-

SMPCache is appropriate for a range of computer

settings and workloads due to its scalable nature.

MPC enables several parties to work together through

entries and manage these entries directly. H-

SMPCache guarantees the security of sensitive data

while query processing by including MPC.

Additionally, the use of Anhentious RAM (ORAM)

continues to be protected from access patterns and

leaks. Oram continuously mixes and reduces data and

makes it difficult to access to it to make itaccessible.

This combination of MPC and ORAM increases the

general privacy and security of your cache system.

Each of these frameworks provides unique features

and capabilities for secure calculations.Rosetta: A

free and open-source software framework called

Rosetta enables the private and safe execution of SQL

queries in a multi-party computing environment. This

focuses on a multi-party SQL version that is secure

and protects privacy when database queries are being

executed. Caching systems are a flexible solution for

safe data processing because of their flexibility to

adapt to the data security and protection needs of

different applications. With the use of a secure multi-

party computing framework and a multi-level cache

structure, H-SMPCache seeks to offer a reliable and

effective query-processing solution in a secure

computing environment. It is a promising method for

enhancing distributed data processing systems'

security and performance because of its scalable

nature and adaptation to different MPC frameworks.

Conclusion

H-SMPCACHE (Hierarchical SMPCACHE): A

Novel Approach and a different solution to the

problems of a secure MPC environment (multi-party

computing) is the hierarchical, secure, secure, multi-

party computation cache (H-SMPCache). H-

SMPCache seeks to minimize communication

efforts, optimize memory utilization, and shorten

query execution times by drawing inspiration from

the CPU's multi-level cache design. With strong data

protection and security standards, this approach

enhances efficiency and performance. This

guarantees that joint requests are processed rapidly,

lowers latency, and improves system efficiency

overall. This is because, with fewer requests, the L1

cache has the highest hit rate, followed by the L2 and

L3 caches. Performance is enhanced and access time

is decreased with this distribution. While crucial

queries are not maintained in the L2 and L3 caches,

important requests are stored in the L1 cache. This

guarantees that memory usage is kept to a minimum

and that queries are promptly and highly prioritized

answered. Every cache level optimizes query

resolution efficiency by containing distinct and

pertinent material. This lessens reliance on

communication lines and improves bandwidth

efficiency. No data transmission is necessary if the

query is resolved in the cache. This lowers the chance

of data loss and connection lag. Fast calculations are

handled by the L1 cache, whereas more complex

calculations are handled by the L2 and L3 caches.

This equilibrium boosts system efficiency and avoids

bottlenecks. By allocating many cache layers and

guaranteeing system response, the hierarchical

structure incorporates extra queries. MPC guarantees

the security of sensitive data while it is being

processed by queries. Purster terminated the global

Privation and Securition, and Vollische Ram (Oram)

advanced even further with Si-kyung. This flexibility

guarantees that your cache system satisfies security

and data protection standards for a range of

applications. H-SMPCache offers a reliable and

effective solution for query processing in a secure

computer environment by integrating multi-stage

cache structure and MPC frameworks. It is a potential

method for enhancing the security and performance

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.082

e ISSN: 2584-2854

Volume: 03

Issue:03 March 2025

Page No: 520 - 525

 IRJAEM 525

of distributed data processing systems because of its

scalability and compatibility with several

frameworks. This concept is an important tool for

contemporary, secure computer applications since it

uses a hierarchical caching structure to increase

performance and efficiency while protecting privacy

and secure data.

References

[1]. J. Shi et al., "SMPCache: Towards More

Efficient SQL Queries in Multi-Party

Collaborative Data Analysis," in IEEE

Transactions on Knowledge and Data

Engineering, doi:

10.1109/TKDE.2025.3535944.

[2]. P. Alexander, "Rosetta: Standardization at the

System Level," in Computer, vol. 42, no. 1, pp.

108-110, Jan. 2009, doi: 10.1109/MC.2009.23

[3]. R. Saha, G. Kumar, G. Geetha, M. Conti, and

W. J. Buchanan, "Application of Randomness

for Security and Privacy in Multi-Party

Computation," in IEEE Transactions on

Dependable and Secure Computing, vol. 21,

no. 6, pp. 5694-5705, Nov.-Dec. 2024, doi:

10.1109/TDSC.2024.3381959.

[4]. Y. -Z. Hu and H. Wang, "TATune: A RocksDB

Knob Tuning System Based on Transformer,"

in IEEE Access, vol. 11, pp. 143589-143600,

2023, doi: 10.1109/ACCESS.2023.3343455.

[5]. M. Sepehri, S. Cimato, and E. Damiani,

"Privacy-Preserving Query Processing by

Multi-Party Computation," in The Computer

Journal, vol. 58, no. 10, pp. 2195-2212, Oct.

2015, doi: 10.1093/comjnl/bxu093.

[6]. C. -S. Stan, A. -E. Pandelica, V. -A. Zamfir, R.

-G. Stan and C. Negru, "Apache Spark and

Apache Ignite Performance Analysis," 2019

22nd International Conference on Control

Systems and Computer Science (CSCS),

Bucharest, Romania, 2019, pp. 726-733, doi:

10.1109/CSCS.2019.00129.

[7]. C. Yearn, J. Lee, S. Seo and S. Park, "Towards

Workload-Specific Configuration Tuning via

Meta-Learning for RocksDB," 2024 IEEE

International Conference on Systems, Man, and

Cybernetics (SMC), Kuching, Malaysia, 2024,

pp. 4450-4457, doi:

10.1109/SMC54092.2024.10831422.

[8]. Z. Ji, I. Ganchev, M. O'Droma and T. Ding, "A

Distributed Redis Framework for Use in the

UCWW," 2014 International Conference on

Cyber-Enabled Distributed Computing and

Knowledge Discovery, Shanghai, China, 2014,

pp. 241-244, doi: 10.1109/CyberC.2014.50.

[9]. W. Wei, K. Namba and F. Lombardi, "Design

and comparative evaluation of a hybrid Cache

memory at architectural level," 2016

International Great Lakes Symposium on VLSI

(GLSVLSI), Boston, MA, USA, 2016, pp. 125-

128, doi: 10.1145/2902961.2903002.

about:blank

