e ISSN: 2584-2854
Volume: 03

Issue:03 March 2025
Page No: 520 - 525

International Research Journal on Advanced Engineering
and Management
https://goldncloudpublications.com
https://doi.org/10.47392/IRJAEM.2025.082

Efficiency Enhancement Architecture of SQL Queries Through Hierarchical
Cache

Achal Vijay Navaloor?, Kumudavalli M V?, Aliya Hassan®

123 pG- Department of Computer Applications, Dayananda Sagar College of Arts Science & Commerce,
Bangalore, Karnataka, India.

Email 1D: achalnavaloor12@gmail.com?, kumudamanju@gmail.com?, aliyahassan0301@gmail.com?

Abstract
Secure Multi-Party Computation (MPC) enables privacy-preserving collaborative data analysis but suffers

from high computational overhead, communication latency, and inefficient query execution. Traditional
caching mechanisms, such as SMPCache, attempt to optimize performance but face limitations due to high
storage overhead, low cache hit rates, and inefficient cache lookup strategies. This study suggests a
Hierarchical SMPCache (H-SMPCache) The approach to address these issues, inspired by CPU caching,
introduces a multi-level caching structure (L1, L2, L3) to efficiently manage SQL queries in MPC
environments. The proposed hierarchical caching model aims to classify queries based on execution cost,
frequency, and computational complexity.

Keywords: Secure Multi-Party Computation (MPC), Hierarchical Caching, SMPCache, SQL Query

Optimization, L1-L2-L3 Cache, Privacy-Preserving Data Analysis.

1. Introduction

Data protection is more crucial than ever during data
analysis using today's data control apps. A key
paradigm that enables many parties to compute
functions on entries while maintaining the privacy of
these inputs is Multi-party Calculation (MPC).
Situations involving sensitive data, like healthcare,
finance, and personal information management,
benefit greatly from this. Nonetheless, MPCs have
significant obstacles, chiefly related to compensating
for computation, communication lags, and ineffective
query processing. The computational complexity
needed to run SQL queries in an MPC context can
exacerbate these issues. This makes real-time
performance challenging. SMPCache and other
classic caching methods have been developed to
increase the speed of these scenarios. The efficiency
of the cache is significantly influenced by the ability
to predict which queries occur most frequently. Poor
cache strategies can result in decreased overall
performance and inefficient resource utilization.

1.1. The Difficulties of Secure Multi-Party
Computation

MPC protocols frequently have significant latency
and poor performance because they demand a lot of

processing power and communication capacity. The
intricacy of the calculations required to run SQL
queries in an MPC environment may make these
problems worse and make achieving real-time
performance challenging. SMPcache and other
traditional caching methods have been developed to
increase speed under these circumstances.9.
Regretfully, people frequently encounter obstacles
that keep them from progressing: Current caching
solutions' large storage space requirements could be
a major disadvantage in situations when storage is
expensive or scarce. The efficacy of the cache is
greatly impacted by predicting which queries will be
executed most frequently. Poor cache hit rates may
result in inefficient resource usage and a decline in
overall performance.Traditional caching algorithms
sometimes handle the search of cached queries
inefficiently, increasing the latency while obtaining
cached data.[1-2]
1.2. The Necessity of Hierarchical Caching

To address these issues, we propose a new method
known as hierarchical smpcache(hsmpcache). The
multilevel cache architecture of computer processors
that improves processing efficiency and increases

OPEN aAccsss IRIAEM

520


about:blank
mailto:achalnavaloor12@gmail.com
mailto:kumudamanju@gmail.com
mailto:aliyahassan0301@gmail.com

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 03

Issue:03 March 2025
Page No: 520 - 525

< \RJAEM
- —

N 'I;:_{ 7
L

=

https://doi.org/10.47392/IRJAEM.2025.082

access to data serves as a model for this approach.
Level 1 (L1), Level 2 (L2), and Level 3 (L3) -
Cutches are all included in the hierarchical cache
model and we recommend that you improve the
handling of SQL queries in your MPC settings.The
fastest and smallest cache is level 1 (L1), whichis
designed for the most frequently visited data and
queries. Provides lightning access and significantly
reduces immediate instructions and data latency.lt is
found on all CPU cores. Located inside or next to the
CPU core, it acts as a connection between the ultraast
L1 cache and the slow L3 cache thatdoes not provide
the data that is needed.It's inside the chip, but outside
the main storage, which increases system speed by
reducing the need to access main memory.

1.3. Objectives of the Hierarchical SMPCache
To address these issues, we propose a new
methodknown as hierarchical smpcache (h-
smpcache). The multilevel cache architecture of
computer processors that improves processing
efficiency andincreases access to data serves as a
model for this approach. Level 1 (L1), Level 2 (L2),
and Level 3 (L3) - Cutches are all included in the
hierarchical cache model and we recommend that you
improve the handling of SQL queries in your MPC
settings. The fastest and smallest cache is level 1
(L1), which is designed for the most frequently
visited data and queries. Provides lightning access
and significantly reduces immediate instructions and
data latency. It is found on all CPU cores. Located
inside or next to the CPU core, it acts as a connection
between the ultrafast L1 cache and the slow L3 cache
that does not provide the data that is needed. It's
inside the chipbut outside the main storage, which
increases system speed by reducing the need to access
the main memory

1.4. Cache Management Tools
The Redis Using a computer's main memory (RAM),
Redis is an open-source data structure memory that
stores key-value pairs. Its maternal nature allows for
quick access to regularly used data. Among the many
data structures that Redis offers are strings, lists, sets,
hashes, sort sets, and more. It is renowned for
supporting high performance, low latency, and
sophisticated features including PUB/submessage,
replication, and persistence. Redis is frequently

utilized as a database, message broker, or cache.
Gives rapid access to commonly used data and keeps
significant pairs in storage. By lowering database
load, Memcached is frequently utilized to enhance
web application performance. Because of its
flexibility for horizontal scaling, numerous servers
can collaborate to handle massive volumes of data.
Memcached is renowned for its low memory
overhead and ease of usage. Because it is based on
LevelELDB, it is designed to read quickly. Features
like column families, transactions, and snapshots are
offered by ROCKSDB. Because of this, it can be used
in a range of storage situations. Typically, it is
employed for data caching. This is due to the fact that
it provides an affordable balance between durability
and quickness. To guarantee that periods are written
to the hard drive, ROCKSDB writes data. Because of
this, it's a dependable choice for programs that need
permanent memory. In order to avoid double
calculations and save huge and costly inquiries, it
offers a hard drive. Caching, high-performance
computation, and real-time analytics are just a few of
the many applications that Apache Ignite offers.
Among its characteristics are machine learning,
distributed data structures, SQL support, and acid
transactions. Even after a system restarts, data is
accessible thanks to Apache Ignite hard drives.
Because of this, it is a reliable option for applications
that need fault tolerance and high availability. While
RocksDB and Apache Ignite offer persistent store

options for larger data records and costly
computations, Redis and Memcached enable quick
memory access to frequently used data.

A balanced approach to speed, durability, and
scalability is ensured by this combination.[3-4]

2. Literature Review

J. Shi et al. focus on improving the efficiency of SQL
queries in multi-party collaborative data analysis
using a cache-like optimization mechanism. The
authors address the inefficiencies of existing secure
multi-party computation (MPC) solutions. P.

Alexander discusses the Rosetta system-level
specification language, which is designed for
complex, heterogeneous systems. The paper

emphasizes the importance of standardization in
system-level design and provides insights into the

OPEN aAccsss IRIAEM

521


about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 03

Issue:03 March 2025
Page No: 520 - 525

{' TRIAEM

3 k-'L J}J_j

=

https://doi.org/10.47392/IRJAEM.2025.082

development and application of the Rosetta language.
R. Saha et al. explore the use of randomness to
enhance security and privacy in multi-party
computation (MPC). The authors propose a novel
approach to address the limitations of existing MPC
models by incorporating a random function
generator. Y. -Z. Hu and H. Wang present an
innovative approach to optimizing the performance
of RocksDB, a key-value database, through an auto-
tuning system based on Transformer models. The
authors address the challenges of manually
configuring RocksDB knobs and propose a solution
to enhance performance across various workloads.
M. Sepehri, S. Cimato, and E. Damiani investigate
techniques for executing privacy-preserving queries
on partitioned databases using secure multi-party
computation (SMC). The authors propose a novel
approach to address the challenges of privacy and
efficiency in query processing. C.-S. Stan et al.
(2019) provides a comparative analysis of two
popular data processing frameworks: Apache Spark
and Apache Ignite. The authors evaluate the
performance of these frameworks based on various
metrics, including features, implementation,
architecture, and performance. C. Yearn et al. (2024)
explores the use of meta-learning techniques to
optimize the configuration of RocksDB, a persistent
key-value store, for various workloads. The authors
propose a novel approach called MetaTune, which
aims to address the challenges of tuning RocksDB
configurations for different types of workloads.

Z. Ji et al. (2014) presents a framework designed to
enhance the performance of data access in the
Ubiquitous Consumer Wireless World (UCWW) by
leveraging Redis, a NoSQL database. The authors
propose a distributed Redis framework to address the
limitations of a single Redis node and improve the
system's performance in handling large volumes of
requests from web applications. W. Wei, K. Namba,
and F. Lombardi (2016) presents a detailed analysis
of a hybrid cache memory design. The authors focus
on evaluating the performance and architectural
aspects of hybrid cache memory, which combines
different types of memory technologies to achieve
optimal performance. K. Kawabata and N.
Hayashibara was presented at the 2024 IEEE 29th

Pacific Rim International Symposium on Dependable
Computing (PRDC) in Osaka, Japan. The paper
discusses the implementation of Oblivious Random
Access Memory (ORAM) using caching and
prefetching techniques to improve performance.[5-8]
3. Methodology

Figure 1 CPU and Information

CPU and Information Needs the main part of a
computer system that is in charge of carrying out
commands and computations is the Central
Processing Unit (CPU). Data will be queried if the
CPU needs it to carry out the instruction. Prior to
arriving at main memory (RAM), this request travels
in a hierarchical fashion through several cache
storage tiers. In order to maintain effective CPU
performance, the objective is to get your data as fast
as feasible. There are two distinct caches within this
cache: Data Cache (L1D): Holds the most often used
information.  The CPU can access the most
commonly used data and instructions because of the
close proximity to the CPU core, which guarantees
reduced latency when accessing data. Cache, L2
cache, and the next cache level, receives the
requirements. The L2 cache may be allocated to a
single core or shared over many seeds, depending on
the CPU architecture. Size and Speed: Compared to
the L1 cache, the L2 cache is larger but operates more
slowly. For frequently requested information and
commands that don't fit into the L1 cache, it serves as
secondary memory. in the L3 cache. It is typically

OPEN aAccsss IRIAEM

522


about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 03

Issue:03 March 2025
Page No: 520 - 525

{ RJAEM
Mg

s 'I;:_{ 7
L

3

https://doi.org/10.47392/IRJAEM.2025.082

shared by the chip under all CPU cores and offers
shared storage for any data that the kernel might
want. Size and Speed: In the hierarchy, the L3 cache
is the biggest and slowest. Although it keeps access
to the data from the intermediate data acceptance
phase, it archives the data and instructions that are
utilized frequently. Hit: The requested data will
return to the CPU and be used in a subsequent inquiry
If it is located in the L3 cache. Information. from
RAM, or main memory. This is where the data is kept
if none of the cache layers are accessible. RAM is far
slower than cache memory, but it is also much larger.
Because RAM is physically farther from the CPU and
is of the dynamic random access memory (DRAM)
type, accessing data from it has a larger latency than
cache memory. To speed up access in the future, the
data is then copied into the L3, L2, and L1 caches.
The CPU will be able to swiftly access data the next
time it's needed. Fastest offers the quickest access to
the information and commands that are utilized the
most. The amount of time the CPU takes to output
data is greatly decreased as a result. It saves the data
and instructions kept in the middle and acts as a
common resource for all CPU cores. Make sure you
always have access to the data you require, even if the
CPU demands a high delay, in case data is
unavailable at any of the cache levels. Secondary
memory for information and commands that are
regularly accessed. Several cache storage levels (L1,
L2, and L3) are used by the CPU to guarantee
effective data calls prior to main memory (RAM).
This multi-phase method ranks data access and
storage according to CPU core proximity and usage
frequency. This enhances CPU performance overall
and lowers latency. You can comprehend complex
designs that allow modern CPUs to manage data
requirements efficiently by knowing the function and
interactions of each cache level and RAM. [9]

4. Results and Discussion

Theoretical Performance Improvements Query
Runtime: The main goal of H-smpcache is to use
cache structures at several levels to reduce query
execution time. In this structure, in many cases,
accessed and calculated inexpensive queries are
stored in the fastest cache (L1). By using L1 cache
speed, these queries can be processed with minimal

latency. Categorization of queries based on execution
cost and frequency allows the system to prioritize
faster cache levels forQuilly resolution. This
theoretical approach ensures that the most common
and simple queries are executed immediately,
improving overall system performance. In the
HSMPCache model, queries are categorized based on
execution cost and fraud. This classification allows
the system to store the queries that are most
frequently accessed in the L1 cache, the fastest cache
level. As a result, it is expected to have the highest hit
rate for the L1 cache. Less frequently asked queries
are stored in the slower but larger L2 and L3 caches.
The approach seeks to increase the overall cache hit
rate by strategically allocating queries among
multiple cache layers. Larger, slower caches (L2 and
L3) hold less important and infrequently used
queries. By making sure that only necessary queries
are stored in a small amount of space in the L1 cache,
this method reduces storage efforts. Consequently,
the system may optimize caching tools, make
effective use of available storage resources, and
guarantee that queries with higher priority are
resolved promptly. Because only critical queries are
retained at each cache level, this distribution lessens
query storage redundancy. The model maximizes
storage space by removing duplicate storage for
queries, ensuring that each cache level has pertinent
and understandable data. This improves query
resolution efficiency and lowers the system's overall
storage load. There is no thorough communication
between the parties that can use a large range if the
query is answered in the cache. The system can
manage the majority of its query needs locally by
keeping frequently accessed queries in the L1 cache.
This boosts bandwidth efficiency and decreases
confidence in the communication channel. Data
transfer between the parties is not necessary if the
query is resolved in the cache. Delays in
communication are reduced as a result. This method
lowers the possibility of data leaks during
transmission while simultaneously speeding up query
resolution. The concept guarantees the security of
sensitive data and reduces communication efforts by
limiting data transfer. Fast calculations are handled
by the L1 cache, whereas more complex calculations

OPEN aAccsss IRIAEM

523


about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 03

Issue:03 March 2025
Page No: 520 - 525

{ RJAEM
Mg

s 'I;:_{ 7
L

3

https://doi.org/10.47392/IRJAEM.2025.082

are handled by the L2 and L3 caches. The system can
accommodate workloads at several cache levels and
avoid a single cache level becoming a bottleneck
thanks to this load distribution. The approach
guarantees optimal use of resources and boosts
overall system efficiency by allocating arithmetic
jobs according to their complexity. Scalability:
Scalability has a significant impact on a cache
system's performance. Without causing appreciable
performance deterioration, the H-SMPCache model
Is made to scale and handle fault load increases well.
The system can consider more requests by
distributing them across multiple cache levels by
employing a hierarchical structure. This guarantees
that even when the query load rises, the system will
continue to respond swiftly and effectively. H-
SMPCache is appropriate for a range of computer
settings and workloads due to its scalable nature.
MPC enables several parties to work together through
entries and manage these entries directly. H-
SMPCache guarantees the security of sensitive data
while query processing by including MPC.
Additionally, the use of Anhentious RAM (ORAM)
continues to be protected from access patterns and
leaks. Oram continuously mixes and reduces data and
makes it difficult to access to it to make itaccessible.
This combination of MPC and ORAM increases the
general privacy and security of your cache system.
Each of these frameworks provides unique features
and capabilities for secure calculations.Rosetta: A
free and open-source software framework called
Rosetta enables the private and safe execution of SQL
queries in a multi-party computing environment. This
focuses on a multi-party SQL version that is secure
and protects privacy when database queries are being
executed. Caching systems are a flexible solution for
safe data processing because of their flexibility to
adapt to the data security and protection needs of
different applications. With the use of a secure multi-
party computing framework and a multi-level cache
structure, H-SMPCache seeks to offer a reliable and
effective query-processing solution in a secure
computing environment. It is a promising method for
enhancing distributed data processing systems'
security and performance because of its scalable
nature and adaptation to different MPC frameworks.

Conclusion

H-SMPCACHE (Hierarchical SMPCACHE): A
Novel Approach and a different solution to the
problems of a secure MPC environment (multi-party
computing) is the hierarchical, secure, secure, multi-
party computation cache (H-SMPCache). H-
SMPCache seeks to minimize communication
efforts, optimize memory utilization, and shorten
query execution times by drawing inspiration from
the CPU's multi-level cache design. With strong data
protection and security standards, this approach
enhances efficiency and performance. This
guarantees that joint requests are processed rapidly,
lowers latency, and improves system efficiency
overall. This is because, with fewer requests, the L1
cache has the highest hit rate, followed by the L2 and
L3 caches. Performance is enhanced and access time
is decreased with this distribution. While crucial
queries are not maintained in the L2 and L3 caches,
important requests are stored in the L1 cache. This
guarantees that memory usage is kept to a minimum
and that queries are promptly and highly prioritized
answered. Every cache level optimizes query
resolution efficiency by containing distinct and
pertinent material. This lessens reliance on
communication lines and improves bandwidth
efficiency. No data transmission is necessary if the
query is resolved in the cache. This lowers the chance
of data loss and connection lag. Fast calculations are
handled by the L1 cache, whereas more complex
calculations are handled by the L2 and L3 caches.
This equilibrium boosts system efficiency and avoids
bottlenecks. By allocating many cache layers and
guaranteeing system response, the hierarchical
structure incorporates extra queries. MPC guarantees
the security of sensitive data while it is being
processed by queries. Purster terminated the global
Privation and Securition, and Vollische Ram (Oram)
advanced even further with Si-kyung. This flexibility
guarantees that your cache system satisfies security
and data protection standards for a range of
applications. H-SMPCache offers a reliable and
effective solution for query processing in a secure
computer environment by integrating multi-stage
cache structure and MPC frameworks. It is a potential
method for enhancing the security and performance

OPEN aAccsss IRIAEM

524


about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 03

Issue:03 March 2025
Page No: 520 - 525

https://doi.org/10.47392/IRJAEM.2025.082

of distributed data processing systems because of its
scalability —and compatibility — with  several
frameworks. This concept is an important tool for
contemporary, secure computer applications since it
uses a hierarchical caching structure to increase
performance and efficiency while protecting privacy
and secure data.

References

[1]. J. Shiet al., "SMPCache: Towards More
Efficient SQL Queries in  Multi-Party
Collaborative  Data  Analysis,” in IEEE
Transactions on Knowledge and Data
Engineering, doi:

10.1109/TKDE.2025.3535944.

[2]. P. Alexander, "Rosetta: Standardization at the
System Level," in Computer, vol. 42, no. 1, pp.
108-110, Jan. 2009, doi: 10.1109/MC.2009.23

[3]. R. Saha, G. Kumar, G. Geetha, M. Conti, and
W. J. Buchanan, "Application of Randomness
for Security and Privacy in Multi-Party
Computation,” in IEEE Transactions on
Dependable and Secure Computing, vol. 21,
no. 6, pp. 5694-5705, Nov.-Dec. 2024, doi:
10.1109/TDSC.2024.3381959.

[4]. Y.-Z. HuandH.Wang, "TATune: A RocksDB
Knob Tuning System Based on Transformer,"
in IEEE Access, vol. 11, pp. 143589-143600,
2023, doi: 10.1109/ACCESS.2023.3343455.

[5]. M. Sepehri, S. Cimato, and E. Damiani,
"Privacy-Preserving Query Processing by
Multi-Party Computation,” in The Computer
Journal, vol. 58, no. 10, pp. 2195-2212, Oct.
2015, doi: 10.1093/comjnl/bxu093.

[6]. C.-S.Stan, A. -E. Pandelica, V. -A. Zamfir, R.
-G. Stan and C. Negru, "Apache Spark and
Apache Ignite Performance Analysis," 2019
22nd International Conference on Control
Systems and Computer Science (CSCS),
Bucharest, Romania, 2019, pp. 726-733, doi:
10.1109/CSCS.2019.00129.

[7]. C.Yearn,J. Lee, S. Seo and S. Park, "Towards
Workload-Specific Configuration Tuning via
Meta-Learning for RocksDB," 2024 IEEE
International Conference on Systems, Man, and
Cybernetics (SMC), Kuching, Malaysia, 2024,
pp. 4450-4457, doi:

[8].

[a].

10.1109/SMC54092.2024.10831422.

Z.Ji, I. Ganchev, M. O'Droma and T. Ding, "A
Distributed Redis Framework for Use in the
UCWW," 2014 International Conference on
Cyber-Enabled Distributed Computing and
Knowledge Discovery, Shanghai, China, 2014,
pp. 241-244, doi: 10.1109/CyberC.2014.50.
W. Wei, K. Namba and F. Lombardi, "Design
and comparative evaluation of a hybrid Cache
memory at  architectural level," 2016
International Great Lakes Symposium on VLSI
(GLSVLSI), Boston, MA, USA, 2016, pp. 125-
128, doi: 10.1145/2902961.2903002.

OPEN aAccsss IRIAEM

525


about:blank

