Prediction and Therapeutic Design for Diabetic Retinopathy Using LabVIEW

B. Vanmathi1, S. SubaShree2, R. Ravanya3, B. Vidhyavashini4

1Assistant Professor, Arasu Engineering College, Kumbakonam, Tamil Nadu, India.
2,3,4UG-BioMedical Engineering, Arasu Engineering College, Kumbakonam, Tamil Nadu, India.

Email: muralivanmathi@gmail.com1, subaammu2003@gmail.com2, ravanya15@gmail.com3, vidhyavashini30@gmail.com4

Abstract
Diabetic Retinal Disease (DR) is a gradual obstruction in the functioning of the blood vessels in the retina of the eye caused by chronic hyperglycemia, which may be due to diabetes type 1 or type 2. LabVIEW software play as major role in predicting the diabetic retinopathy at different stages. The real time image of the affected eye is acquired using Vision Actuation tool in LabVIEW and then it is processed using Vision assistant tool. Lot technology is I for sending the output result to the corresponding end client. Image processing and lot. Both are implemented using LabVIEW. Additionally, the system extends its functionality beyond diagnostics by incorporating an innovative approach to monitor the temperature of the eye. By integrating LabVIEW’s capabilities with lot, the proposed solution checks the temperature the eye in real-time. If the detected temperature is elevated, a Peltier crystal is employed to cool the eye, demonstrating an adaptive and responsive mechanism to address abnormal temperature conditions. Aims to check the patients whether they are suffering from diabetic retinopathy or not and if they are having the diabetic retinopathy in which stage it is. Because most diabetic people are suffering from this and may also lead to loss of vision. Due to this reason, it is highly required to classify the persons in a short time with high accuracy. Automation reduces human error and subjectivity. Can detect early stages of disease. Ability to process and analyze digital fundus images efficiently.

Keywords: LabVIEW, Chronic Hyperglycemia.

1. Introduction
Diabetic Retinopathy is a progressive eye condition resulting from damage to the blood vessels in the retina due to long-term diabetes. Elevated blood sugar levels can lead to weakened or blocked vessels, impacting vision. Early detection through regular eye exams is essential for effective management and prevention of vision loss. Various treatment options exist, ranging from lifestyle changes to surgical interventions, depending on the severity of the condition. Diabetic retinopathy is a complication of diabetes that affects the eyes. It occurs when high blood sugar levels damage the blood vessels in the retina, leading to vision problems or even blindness. Regular eye exams are crucial for early detection and management. The world’s projected blind population will reach 40 million by 2025. People with diabetes are prone to an eye disease called “Diabetic Retinopathy”.

Diabetic retinopathy is considered as a deadly eye condition as it can cause a loss of vision and blindness in people who have diabetes. The very high blood sugar levels cause significant damage to the blood vessels in the retina [1]. Blood vessels in the eye begin to leak fluid causing the macula to swell or thicken, preventing blood from passing through. Sometimes, there is an abnormal growth of new blood vessels on the retina. All of the mentioned conditions can cause permanent loss of vision. Diabetic retinopathy doesn’t show up with symptoms at first but eventually can worsen things up by causing vision loss. Diagnosing at an early stage can help oneself save their vision. One might not experience symptoms in the early stages of diabetic retinopathy. It might cause trouble reading or seeing faraway object.
1.1 Mild NPDR
The first of the diabetic retinopathy stages is characterized by a balloon-like swelling in certain areas of the blood vessels in the retina called microaneurysms [2]. This stage rarely affects vision or needs treatment, but it does signal diabetes damage has occurred and an increased risk of disease progression. When minimal diabetic retinopathy is detected, providers can offer patient education on blood sugar management and reducing risks of complications from diabetes. In addition, providers should encourage patients to get diabetic retinopathy screenings every 6 months to monitor their eye health.

1.2 Moderate NPDR
The next diabetic retinopathy stage is characterized by damage to some of the blood vessels in the retina, resulting in leakage of blood and fluid into the retina tissue. This fluid can cause a loss of vision. When moderate diabetic retinopathy is detected, providers may refer patients to appropriate specialists, such as ophthalmology or endocrinology, as needed [3]. Providers should work with patients to adjust their diet and blood sugar control regimens to slow the progress of the disease. Patients should continue to have retinal screenings to monitor eye health.

1.3 Severe NPDR
If there is continued inadequate control of diabetes, more blood vessels are damaged and blocked with even more leakage of blood and fluid into the retina, resulting in a much greater impact on vision. In cases of severe no proliferative diabetic retinopathy, a timely referral to a retinal specialist is recommended [4]. The patients should be monitored every 3 to 4 months and work with an endocrinologist or primary care provider on diabetes management.

1.4 Proliferative Diabetic Retinopathy
The most severe stage of Diabetic Retinopathy is Proliferative Diabetic Retinopathy [5]. There is extensive damage to the eye’s blood vessels and worsening circulation inside the eye. In response, the retina grows new blood vessels, but they tend to have abnormal formation and can cause severe damage. At this point, the disease has advanced significantly and can result in vision loss or blindness very threatening to one’s vision. Patients with proliferative diabetic retinopathy require immediate referral to a retina specialist for further examination and treatment [6]. The patient may require injections of anti-VEGF drugs to stop the formation of new blood vessels. Laser treatments can be used to shrink abnormal vessels and reduce leaking. In some cases, a surgical vitrectomy to remove abnormal vessels and scarring may be appropriate.

1.5 Haemorrhage
Haemorrhage refers to the abnormal, excessive bleeding from blood vessels. In the context of diabetic retinopathy, haemorrhage often occurs due to the fragility of new blood vessels that form in the proliferative stage [7]. Haemorrhages in the retina can lead to vision impairment and require prompt medical attention. Treatment may involve laser therapy or other interventions to address the underlying cause and prevent further bleeding.

LabVIEW is a graphical programming environment that provides unique productivity accelerators for test system development, such as an intuitive approach to programming, connectivity to any instrument, and fully integrated user interfaces. A LabVIEW constitutes a graphical programming environment which allows user to design and analyse any complicated system in a shorter time as compared with the text-based programming environment [8]. The LabVIEW graphical programs are called virtual instruments. When data is available at all the inputs, the block or the graphical component is executed. After the execution is completed, the data is supplied to output terminals, and then it is passed to the next block in the dataflow path.

2. LabVIEW
LabVIEW is a graphical programming language commonly used for data acquisition, instrument control, and industrial automation. It allows users to develop applications by connecting virtual instruments and functions with graphical wires. It's widely used in research, engineering, and academia for its ease of use and versatility in designing
complex systems [9]. LabVIEW is a graphical programming environment widely used for data acquisition, instrument control, and industrial automation. Here's a detailed overview:

2.1 Graphical Programming
LabVIEW uses a graphical programming language called G (Graphical Programming Language), where users create programs by connecting various icons, or nodes, together to form a block diagram. This visual approach simplifies programming, making it accessible to both engineers and scientists without extensive coding experience.

2.2 Virtual Instruments (VIs)
In LabVIEW, programs are called Virtual Instruments (VIs). VIs consist of two main parts: the front panel and the block diagram. The front panel is the user interface, where controls (inputs) and indicators (outputs) are placed, while the block diagram contains the graphical code that defines the VI's functionality.

2.3 Dataflow Programming
LabVIEW follows a dataflow programming model, where execution is determined by the flow of data through the nodes[10]. Nodes execute when data is available at their inputs, allowing for parallel execution of code segments and inherently supporting parallel computing.

2.4 Modular Programming
LabVIEW promotes modular programming practices, allowing developers to create reusable code modules called subVIs. SubVIs encapsulate functionality, promoting code reuse, simplifying debugging, and enhancing maintainability.

2.5 Hardware Integration
LabVIEW provides extensive support for interfacing with hardware devices such as data acquisition devices, instruments (oscilloscopes, multimeters, etc.), and industrial control systems. Through drivers and APIs, LabVIEW can communicate with a wide range of hardware devices from various manufacturers [11].

2.6 Signal Processing and Analysis
LabVIEW includes a rich set of built-in functions and libraries for signal processing, analysis, and visualization. Users can perform tasks such as filtering, Fourier analysis, spectral analysis, and more, directly within the LabVIEW environment.

2.7 Real-Time and FPGA Programming
LabVIEW supports real-time and FPGA (Field-Programmable Gate Array) programming for applications requiring deterministic timing or high-speed processing [12]. Real-Time modules enable the development of applications with guaranteed timing behavior, while FPGA modules allow users to program hardware for custom data processing tasks.

2.8 Application Areas
LabVIEW finds applications in a wide range of industries including aerospace, automotive, biotechnology, manufacturing, research, and education. It is commonly used for tasks such as automated testing, measurement automation, process control, and scientific research [13]. Overall, LabVIEW's intuitive graphical programming interface, extensive hardware integration capabilities, and support for real-time and FPGA programming make it a powerful tool for engineers and scientists across various domains.

3. Pattern Matching Program
Creating a pattern matching program for images typically involves several steps:

3.1 Pre-processing Convert images to a suitable format, resize them if necessary, and apply any required transformations like grayscale conversion or noise reduction [14].

3.2 Feature Extraction
Extract distinctive features from the images, such as corners, edges, or key points. Common techniques include SIFT (Scale-Invariant Feature Transform), SURF (Speeded-Up Robust Features), or ORB (Oriented FAST and Rotated BRIEF) [15].

3.3 Matching
Match features between the target image (or template) and the reference image. This step usually involves comparing the extracted features and finding correspondences.

3.4 Verification
Filter out false matches and refine the matches to improve accuracy.
3.5 Visualization (optional)
Optionally, visualize the matched features or overlay the template on the target image to show the detected patterns.

4. Chronic Hyperglycemia
Chronic hyperglycemia refers to persistently elevated levels of glucose (sugar) in the blood over a prolonged period of time. It's commonly associated with diabetes mellitus and can lead to various complications if not properly managed, such as damage to the eyes, kidneys, nerves, and blood vessels. Proper management typically involves lifestyle changes, medication, and monitoring blood glucose levels regularly. Chronic hyperglycemia is not a standalone disease but rather a symptom or characteristic feature of diabetes mellitus, both type 1 and type 2. Diabetes mellitus is a metabolic disorder characterized by high blood sugar levels resulting from defects in insulin secretion, insulin action, or both. While chronic hyperglycemia is a hallmark of diabetes, it can also occur in other conditions such as Cushing's syndrome, pancreatic disorders, and certain medications. However, diabetes remains the most common and significant cause of chronic hyperglycemia. Chronic hyperglycemia refers to consistently elevated blood glucose levels over an extended period, typically defined as weeks to months. It's primarily associated with diabetes mellitus, a metabolic disorder characterized by impaired insulin function, leading to inadequate glucose uptake by cells and subsequent elevated blood sugar levels.

4.1 In Diabetes, Chronic Hyperglycemia can result from:

- **Insufficient Insulin Production**
 In type 1 diabetes, the pancreas fails to produce enough insulin due to autoimmune destruction of insulin-producing beta cells. Without sufficient insulin, glucose cannot enter cells for energy, leading to elevated blood sugar levels.

- **Insulin Resistance**
 In type 2 diabetes, cells become resistant to the effects of insulin, impairing glucose uptake. This forces the pancreas to produce more insulin to compensate, but over time, the beta cells may become unable to meet the body's insulin demands, resulting in hyperglycemia.

4.2 Chronic Hyperglycemia can lead to Various Complications:

- **Micro vascular Complications**
 Prolonged high blood sugar damages small blood vessels, leading to conditions such as diabetic retinopathy (eye damage), nephropathy (kidney damage), and neuropathy (nerve damage).

- **Macro vascular Complications**
 Chronic hyperglycemia increases the risk of developing cardiovascular diseases such as coronary artery disease, stroke, and peripheral vascular disease.

4.3 Diabetic Ketoacidosis (DKA)
In severe cases of untreated or poorly managed diabetes, chronic hyperglycemia can lead to DKA, a life-threatening condition characterized by ketone accumulation in the blood due to the breakdown of fat for energy in the absence of sufficient insulin.

4.4 Management of Chronic Hyperglycemia typically involves:

- **Blood Sugar Monitoring**
 Regular monitoring of blood glucose levels to track fluctuations and adjust treatment accordingly.

- **Lifestyle Modifications**
 Including a healthy diet, regular exercise, weight management, and smoking cessation to improve insulin sensitivity and overall health.

- **Medications**
 Such as insulin injections, oral hypoglycaemic agents, or other drugs to help control blood sugar levels.

- **Education and Support**
 Diabetes self-management education to empower individuals to make informed decisions about their health and adhere to treatment plans.

- **Regular Medical Care**
 Including routine check-ups, screenings for complications, and adjustments to treatment as needed.

Overall, effective management of chronic hyperglycemia is essential to prevent complications...
and maintain a good quality of life for individuals with diabetes.

- **IoT**
 IoT, short for Internet of Things, refers to the network of physical objects embedded with sensors, software, and other technologies to connect and exchange data with other devices and systems over the internet. Here's a detailed breakdown:
 - **Devices**
 IoT encompasses a wide range of devices, from simple household appliances like smart thermostats and light bulbs to complex industrial machinery and wearable fitness trackers. These devices are equipped with sensors and actuators to interact with the physical world.
 - **Connectivity**
 IoT devices are connected to the internet, allowing them to communicate with each other and with central systems. They typically use various communication protocols such as Wi-Fi, Bluetooth, ZigBee, or cellular networks to transmit data.
 - **Data Collection**
 IoT devices collect data from their surroundings through sensors. These sensors can measure temperature, humidity, motion, light, sound, and many other parameters, depending on the device's purpose.
 - **Data Processing**
 Once collected, the data is processed locally on the device or transmitted to a central server or cloud platform for further analysis. This analysis can involve real-time processing for immediate actions or batch processing for long-term insights.
 - **Interoperability**
 Interoperability is crucial in IoT systems to ensure that devices from different manufacturers can communicate and work together seamlessly. Standardized communication protocols and data formats facilitate interoperability.
 - **Security**
 Security is a significant concern in IoT due to the large number of connected devices and the potential risks of data breaches or unauthorized access. Security measures such as encryption, authentication, access control, and regular software updates are essential to mitigate these risks.

4.5 Applications

IoT has numerous applications across various industries, including smart homes, healthcare, agriculture, manufacturing, transportation, and smart cities. Examples include remote monitoring of patients' health, predictive maintenance of industrial equipment, precision agriculture, and traffic management systems.

4.6 Challenges

Despite its potential benefits, IoT faces several challenges, including privacy concerns related to the collection and use of personal data, interoperability issues, security vulnerabilities, scalability challenges, and the need for efficient energy management in battery-powered devices. Overall, IoT has the potential to revolutionize how we interact with the physical world, enabling greater efficiency, convenience, and insights across various domains. However, addressing its challenges effectively is crucial to realizing its full potential while ensuring privacy, security, and sustainability.

5. Temperature Sensor

A temperature sensor is a device that measures the temperature of its environment and converts it into an electrical signal, usually for the purpose of monitoring or controlling temperature in various systems or applications.

6. Peltier Crystal

A Peltier crystal, also known as a Peltier device or Here's a breakdown of how a driver relay works:

- **Input Signal**
 The driver relay receives an input signal, typically a low-voltage signal from a microcontroller, PLC (Programmable Logic Controller), or other control device. This input signal determines whether the relay should be activated (energized) or deactivated (de-energized).

- **Transistor Circuit**
 In many cases, the driver relay employs transistor circuits to amplify and control the input signal. Common types of transistors used in relay driver circuits include bipolar junction transistors (BJTs) or field-effect transistors (FETs). The transistor acts...
as a switch, allowing a small current from the input signal to control a larger current that flows through the relay coil.

- **Relay Coil**
The relay coil is an electromagnet that is energized when a current flows through it. When energized, the electromagnetic force generated by the coil causes the relay's contacts to move, either opening or closing the circuit connected to the relay.

- **Relay Contacts**
The relay's contacts are the electrical connections that open or close in response to the thermoelectric cooler, a semiconductor device that uses the Peltier effect to transfer heat when an electric current is passed through it. It consists of two different types of conductive materials (usually n-type and p-type semiconductors) connected in series and sandwiched between two ceramic plates. When a DC current is applied, one side of the device absorbs heat while the other side releases it, creating a temperature differential across the device. This effect can be used for cooling or heating applications depending on the direction of the current flow. Peltier devices are commonly used in applications such as electronic cooling, food and beverage cooling, and precise temperature control in scientific instruments.

7. **Driver Relay**
A driver relay, also known as a relay driver, is a device or circuit used to control the operation of a relay. Relays are electromechanical switches that use an electromagnet to mechanically open or close electrical contacts, as shown in Figure 1.

7.1 **Here's a breakdown of how a driver relay works:**
- **Input Signal**
The driver relay receives an input signal, typically a low-voltage signal from a microcontroller, PLC (Programmable Logic Controller), or other control device. This input signal determines whether the relay should be activated (energized) or deactivated (de-energized).
- **Transistor Circuit**
In many cases, the driver relay employs transistor circuits to amplify and control the input signal. Common types of transistors used in relay driver circuits include bipolar junction transistors (BJTs) or field-effect transistors (FETs). The transistor acts as a switch, allowing a small current from the input signal to control a larger current that flows through the relay coil.

- **Relay Coil**
The relay coil is an electromagnet that is energized when a current flows through it. When energized, the electromagnetic force generated by the coil causes the relay's contacts to move, either opening or closing the circuit connected to the relay.

- **Relay Contacts**
The relay's contacts are the electrical connections that open or close in response to the energization of the relay coil. These contacts can be used to control larger currents or voltages than what the input signal can directly handle. They provide isolation between the input signal and the high-power circuit being controlled.

- **Output Circuit**
The output circuit connected to the relay contacts can be used to control various loads such as lights, motors, solenoids, heaters, or other electrical devices. When the relay is activated, the contacts close, allowing current to flow through the output circuit. When the relay is deactivated, the contacts open, interrupting the current flow.

Overall, a driver relay provides a convenient way to control high-power electrical loads using low-power control signals, making it a fundamental component in many electronic systems and industrial automation applications.

8. **A USB to UART**
(Universal Asynchronous Receiver-Transmitter) converter is a type of interface converter that enables communication between a computer's USB port and a UART interface, commonly found in microcontrollers, sensors, and other electronic devices. Here's how it typically works:

8.1 **USB Interface**
The USB side of the converter plugs into a USB port on a computer or other USB-enabled device. This connection provides power to the converter and
allows data transfer between the device and the computer.

8.2 UART Interface
The UART side of the converter connects to the UART interface of the target device. UART is a standard asynchronous serial communication protocol used for transmitting and receiving data between devices. It typically consists of two lines: one for transmitting data (TX) and one for receiving data (RX).

![Figure 1 Block Diagram for Diabetic Retinopathy](image)

8.3 Conversion Process
The USB to UART converter converts data between the USB protocol used by the computer and the UART protocol used by the target device. It translates data received from the computer via USB into a format that can be understood by the UART interface of the target device, and vice versa.

8.4 Driver Installation
In most cases, the USB to UART converter requires a driver to be installed on the computer to enable communication. The driver facilitates the communication between the converter and the operating system of the computer.

8.5 Applications
USB to UART converters are commonly used for various purposes, including programming and debugging microcontrollers, interfacing with sensors and other embedded systems, and serial communication with devices that lack native USB connectivity.

Overall, USB to UART converters provide a convenient and versatile way to establish serial communication between computers and UART-enabled devices, making them essential tools for electronics enthusiasts, engineers, and developers.

9. Diabetic Retinopathy
Diabetic Retinopathy affects the eyes of individuals with diabetes, causing damage to the blood vessels in the retina as shown in Figure 2. Here are some key differences between a normal eye and an eye with diabetic retinopathy:

- **Blood Vessel Changes**
 In diabetic retinopathy, blood vessels may leak, swell, or become blocked, leading to impaired vision. In a normal eye, blood vessels in the retina are healthy and function properly.

- **Microaneurysms**
 Diabetic retinopathy can cause the formation of microaneurysms, small bulges in blood vessels that can leak fluid. These are not present in a normal eye.

- **Hemorrhages**
 Bleeding into the retina or vitreous, the gel-like substance inside the eye, can occur in diabetic retinopathy but not in a normal eye.

- **Neovascularization**
In advanced stages of diabetic retinopathy, new blood vessels may grow on the retina or into the vitreous, which doesn't happen in a normal eye.

Figure 2 Normal Eye vs. Diabetic Retinopathy

- **Macular Edema**

 Diabetic retinopathy can lead to swelling of the macula, the central part of the retina responsible for sharp vision. This can cause blurry or distorted vision, which is not typical in a normal eye.

- **Vision Changes**

 People with diabetic retinopathy may experience gradual vision loss or sudden vision changes, whereas vision in a normal eye typically remains stable unless affected by age or other conditions. Regular eye exams, especially for individuals with diabetes, are crucial for early detection and management of diabetic retinopathy to prevent vision loss.

10. **Result and Conclusion**

LabVIEW is widely used for image classification tasks including Diabetic retinopathy detection. The expected result will depend on several factors such as the quality of the dataset, the choice of architecture and the optimization technique used. Typically, a well-designed and trained LabVIEW can achieve accuracy in detecting diabetic retinopathy in the range of accuracy 90% to 95% on benchmark dataset. In conclusion, while expected result of using LabVIEW for diabetic retinopathy detection in a multi-class classification program are promising, it is crucial to have a high-quality dataset and carefully designed and trained model to achieve optimal results. Diabetic retinopathy is a serious complication of diabetes that can lead to vision loss and blindness. Diabetic retinopathy early and accurately is important for preventing vision loss and preserving vision. The following some of the problem that are solved by detecting diabetic retinopathy:

- **Early Diagnosis**

 Early detection of diabetic retinopathy allows early intervention which can prevent or delay the progression of the disease and reduce vision loss.

- **Better Management of Diabetes**

 Detecting diabetic retinopathy can provide important information about the management of diabetes, as it can indicate the level of blood sugar control and the severity of the disease.

- **Improved Treatment Outcome**

 Early detection of diabetic retinopathy allows for prompt and effective treatment which can improve the outcomes of treatment reduced the risk vision loss.

- **Improved Quality of Life**

 Early detection and treatment of diabetic retinopathy can improve the quality of life of individuals with diabetes with preserving their vision and reducing the risk of blindness.

- **Reducing Healthcare Cost**

 Early detection and treatment of diabetic retinopathy can reduce the healthcare costs by preventing the progression of the disease and reducing the need for more invasive and expensive treatment. In conclusion, detecting diabetic retinopathy is important for early diagnosis, better management of diabetes, improved the treatment outcomes, improved the quality of life, and reduced healthcare costs. Need and trained LabVIEW model to achieve optimal results.

References

1. Abràmoff MD, Reinhardt JM, Russell SR, Folk JC, Mahajan VB, Niemeijer M, Quellec

[9]. Shailesh Kumar and Basant Kumar "Diabetic Retinopathy Detection by Extracting Area and Number of Microaneurysms from Colour Fundus Images", 12th International Conference on Information and Communication Technology and System, 2019.