

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.088 e ISSN: 2584-2854 Volume: 03 Issue: 03 March 202

Issue:03 March 2025 Page No: 552 - 558

Survey on Role of Artificial Intelligence in Future Fitness Services

Kowsalya¹, Karthik S², Mathan P³, Ohm Prakash⁴

¹Assistant Professor, Department of CSE, Erode Sengunthar Engineering College, Perundurai, Erode, Tamilnadu, India.

^{2,3,4} UG - Information Technology, Department of CSE, Erode Sengunthar Engineering College, Perundurai, Erode, Tamilnadu, India.

Email ID: kowsalyamcse@esec.ac.in¹, karthikshanmugananthan@gmail.com², mathanpalanisamy369@gmail.com³, boopathyprakash3@gmail.com⁴

Abstract

This Project is a future of fitness is being transformed by deep learning with CNN algorithms, leveraging technologies like MediaPipe and OpenCV for pose estimation. These tools enable real-time tracking of body movements, allowing for precise analysis of posture, form, and exercise performance. By integrating AI, personalized workout recommendations and injury prevention are enhanced. This revolutionizes fitness apps, offering tailored training experiences, progress tracking, and remote coaching, all through automated motion capture systems. It provides an engaging and immersive fitness experience that encourages physical movement and improves overall health.

Keywords: CNN Algorithms, Media pipe, Open CV, Object Detection, Image Processing AI, Fitness, Health.

1. Introduction

The Fitness industry, a dynamic and ever- evolving landscape, has borne witness to remarkable advancements that continuously push the boundaries of both entertainment and technology. From the early days of simple pixelated adventures to the current era of hyper realistic simulations, the evolution of fitness experiences has been nothing short of extraordinary. This journey of innovation has not only captivated audiences worldwide but has also fundamentally transformed the way we perceive and interact with digital entertainment. Gone are the days when fitness was merely a pastime; it has now become a vibrant ecosystem where creativity, technology. storytelling converge to create immersive worlds and unforgettable experiences. However, amidst this rapid progress, it's essential to recognize the limitations of traditional fitness interfaces. While controllers and keyboards have served as the primary conduits for player input, they often confine interaction to the real of finger movements. This restriction. while effective in delivering entertainment, can sometimes hinder the full expression of player engagement and creativity. Moreover, the sedentary nature of many fitness

experiences has raised concerns about its impact on physical health. Prolonged periods of gameplay can contribute to a range of health issues, including obesity, eye strain, and Musculo skeletal problems. As society becomes increasingly aware of the importance of physical activity, the fitness industry faces the challenge of promoting healthier fitness without compromising the immersive habits experience it offers. Furthermore, accessibility remains a significant issue within the fitness community. While strides have been made to accumulate diverse players, individuals with physical disabilities still face barriers to entry. Traditional controllers, designed primarily natural language processing called sentiment analysis use machine learning techniques to unearth precise informationIn addressing these challenges, the fitness industry has an opportunity to lead by example, leveraging innovation and creativity to create experiences that are not only entertaining but also enriching and inclusive. By embracing new technologies such as motion virtual 1 reality, and adaptive interfaces, developers can empower players of all abilities to fully participate in the fitness community. In

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.088 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 552 - 558

conclusion, while the fitness industry continues to thrive and evolve must also must also confront the complex issues of the future accessibility, health, and improve fitness performance.

2. Literature Review

Amirhossein Zolfagharianet al. [1] in his paper A **Testing** Approach Search-Based for Deep Reinforcement Learning Agents. The proposed methodology, named Search-based Testing Approach of Reinforcement Learning Agents (STARLA), addresses the challenges of testing Deep Reinforcement Learning (DRL) agents in safetycritical environments, where traditional adversarial testing often leads to unrealistic scenarios. STARLA utilizes machine learning models and a genetic algorithm to efficiently search for faulty executions of DRL agents within a constrained testing budget. By focusing on identifying sequences of states and actions that lead to policy failures, STARLA demonstrates significant improvements over random testing in fault detection for Deep-Q- Learning agents across two established RL benchmarks. Additionally, the approach facilitates the extraction of rules that characterize these faulty episodes, providing insights into the conditions that lead to agent failures and helping assess deployment risks. Mukundhan Chariar et al. [2] in his paper, AI Trainer: Auto encoder Based Approach for Squat Analysis and Correction. This study introduces a method for classifying squat types and recommending the appropriate squat version using artificial intelligence and computer vision. By leveraging Media Pipe and a deep learning approach, the researchers developed a stacked Bidirectional Gated Recurrent Unit (Bi-GRU) model with an attention layer to evaluate squat performance, categorizing them into seven classes as either good or bad. The proposed model achieved an impressive accuracy of 94%, outperforming other advanced models both with and without the attention mechanism. Additionally, it provides personalized feedback to users on correcting their squat form based on their individual performance and body proportions, helping to improve technique and reduce injury risk. B. NATARAJAN, et al. [3]in his paper Development of an End-to-End Deep Learning Framework for Sign Language Recognition,

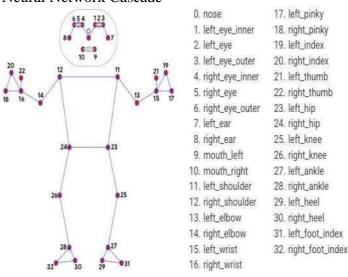
Translation, and Video Generation. This paper presents a comprehensive framework for real-time recognition, translation, and generation of Sign Language (SL) using advanced deep learning techniques. To enhance recognition accuracy, the authors employ the MediaPipe library along with a hybrid Convolutional Neural Network and Bidirectional Long Short Term Memory (CNN Bi-LSTM) model for extracting pose details and generating text. For producing sign gesture videos from spoken sentences, they implement a hybrid Neural Machine Translation and Dvnamic Generative Adversarial Network (GAN) model. The proposed system overcomes challenges faced by existing methods and achieves over classification accuracy. Evaluated using various multilingual sign corpora, the model demonstrates significant improvements in both recognition accuracy and visual quality, achieving notable scores in several metrics, including a 38.06 average BLEU score, 0.921 SSIM, and 8.4 Inception Score, highlighting its effectiveness and robustness. Xiao Sun, et al. [4]in his paper Future of Networked Information Society: A Deeply Interconnected "Primitive Society". This paper proposes an evolutionary model of social formation that emphasizes interconnectedness as a key factor in the development of human society. Through theoretical analysis and simulation, the authors illustrate how social formation evolves at this interconnected level, aligning with historical human experiences. The experimental results have been plotted to showcase the performance of the pro posed model for handling different sign corpus. The findings highlight four main characteristics of the future network information society: the personalization of goods and services, the downsizing of enterprises, decentralization of production and daily life, and the sharing of resources. Ultimately, the authors describe this future society as a highly interconnected "primitive society," reflecting a return fundamental social principles enhanced by modern technology. ALEJANDRO RAMÍREZ-ARROYO, et al. [5]in his paper Artificial Intelligence and Dimensionality Reduction: Tools for Approaching Future Communications. This article introduces a

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.088 Volume: 03 Issue:03 March 2025 Page No: 552 - 558

e ISSN: 2584-2854

novel application of the t-distributed Stochastic Neighbour Embedding (t-SNE) clustering algorithm in the telecommunications field, demonstrating its effectiveness in visualizing large datasets in 2D. proposed work in terms of recognition accuracy and visual quality. The study analysis a communication channel dataset from various environments anechoic, reverberation, indoor, and outdoor—using six channel features. By applying t-SNE, the authors successfully cluster different environments and reveal internal classifications within each scenario. They compare t-SNE's performance with other dimensionality reduction techniques, such as PCA and Isomap, and utilize post-processing methods to recreate real communication scenarios anechoic chamber measurements. The combination of t-SNE and Variational Auto Encoder shows promising results in distinguishing between recreated and real scenarios, highlighting the potential of AI for clustering, classification, and generating new 5G propagation scenarios. PANPAN JIA, al. [6]in his paper Transmission Performance Analysis and Prediction of Relay Networks Based on Artificial Intelligence This paper explores the transmission performance of a wireless relay system affected by Beaulieu-Xie fading, focusing on the evaluation of outage probability (OP). To enable real-time assessment of transmission performance, the authors propose an improved sparrow search algorithm (ISSA) combined with backpropagation (BP) neural network for intelligent OP prediction. Simulation results demonstrate that the ISSA-BP method significantly enhances prediction accuracy, outperforming traditional BP and an improved cuckoo search algorithm based on BP (ICS-BP) by 50.7%. This advancement underscores the potential of AI in optimizing performance evaluations in wireless communication networks. ANDREA SABO, et al. [7]in his paper Automated, Vision-Based Goniometry and Range of Motion Calculation in Individuals With Suspected Ehlers-**Danlos** Syndromes/Generalized **Hypermobility** Spectrum Disorders: A Comparison of Pose-Estimation Libraries to Goniometric Measurements. In a study assessing joint hypermobility in 97 adults

at a specialized EDS clinic, video-based goniometry was used to estimate joint range of motion in hyperextended joints. Videos of elbows, knees, shoulders, ankles, and fifth fingers were analyzed using five pose-estimation libraries (AlphaPose, Detectron, MediaPipe-Body, MoveNet Thunder, OpenPose) and two hand pose-estimation libraries (AlphaPose, MediaPipe-Hands). A custom model was also developed for fifth finger analysis. Moderate correlations were found between estimated joint angles from pose-tracking and manual goniometer measurements, with notable results for the elbow, knee, shoulder, and fifth finger, while the ankle results were less accurate. Each poseestimation library's performance varied depending on the joint, indicating that different libraries are needed for different joints. DAN WANG, et al. [8]in his paper Digital and Intelligent Image Processing by Artificial Intelligence and Internet of Things Technology in Sports Fitness Detection. This study explores the application of digital and intelligent technologies in physical fitness, using the treadmill as a case example to examine current fitness equipment and future trends. It proposes an upper and lower computer control scheme, focusing on an industrial computer for controlling the main motor, heart rate, and calorie calculations. Software and algorithm designs were developed and tested. The results show that the treadmill's control system can accurately process data from an Automatic Voltage Regulator (AVR) and display it in image form, that ultrasonic sensors can precisely detect distance, and that human heart rate can be effectively monitored using digital technology, providing stable and reliable intelligent data for fitness. MDRAYHANKHAN, et al. [9]in his paper Multiobjective Fitness Functions zith Nonlinear Switching for Antenna Optimizations. This study introduces a new class of multi- objective functions with nonlinearity and switching behaviour for optimization processes, particularly in antenna design. The methodology focuses on engineering objective functions that better represent desired optimization goals and promote versatile fitness growth during optimization. The proposed approach is applied to optimize various antenna designs, including an end-



https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.088 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025

Page No: 552 - 558

fire array, pyramidal horn antenna, Yagi-Uda array, and wideband patch antenna, using both analytical models and full-wave simulations. Results show that the non-linear fitness functions significantly improve performance with minimal computational effort, achieving higher forward gain, reduced side lobe increased directivity, and levels. enhanced bandwidth compared to traditional linear fitness functions. JIAJUN WANG, et al. [10]in his paper Relationship Between Health Status and Physical Fitness of College Students From South China: An Empirical Study by Data Mining Approach This study explores the relationship between motor competence-related physical fitness and the medical health status of 214 college students from South China. Participants, including 112 males and 102 females from 17 provinces, were administered the Shantou University fitness test battery twice and underwent medical examinations, including questionnaires and physical assessments, conducted by three medical experts. A machine learning model with a new loss function was developed to address soft label issues in the data. Using this model, analyzed highlighted researchers and associations between physical fitness and health status. The findings offer valuable insights for physical educators, universities, and educational authorities to improve student health and fitness. CIRO MENNELLA, et al. [11]in his paper The Role of Artificial Intelligence in Future Rehabilitation Services: A Systematic Literature Review. This study reviews the use of artificial intelligence (AI) in decentralized rehabilitation supporting focusing on remote monitoring and smart assistance. Following PRISMA guidelines, a systematic search of PubMed, Scopus, and IEEE Xplore yielded 519 records, of which 35 studies were included. The review identified supervised and unsupervised machine learning algorithms used for activity recognition, movement classification, and clinical status prediction. Unobtrusive motion capture technologies emerged as key tools for remote monitoring. While AI shows promise for improving access to high-quality therapy in decentralized rehabilitation, concerns about the generalizability of results were noted. Future research should focus on

validating AI technologies in specific clinical settings and evaluating their reliability in remote and home-based care. AI is utilized for tasks like activity recognition, movement classification, and clinical status prediction, using both supervised and unsupervised machine learning algorithms. Jaeho Kim, et al. [12]in his paper Multitask Deep Learning for Human Activity, Speed, and Body Weight Estimation Using Commercial Smart Insoles. This study presents an efficient multitask learning (MTL) framework using commercial smart insoles to manage physical health. The framework addresses three tasks: activity classification, speed estimation, and body weight estimation. Instead of using raw time-series data, sensor data from the insoles is converted into a recurrence plot, significantly improving performance. The pro posed system explores solutions for the real time interactions of hard-of-hearing and speech-impaired people with normal people. A modified MobileNetV2, with fewer than 100K parameters and a low computational budget, serves as the backbone network. Data from 72 users across 16 experiments, the largest dataset for MTL using smart insoles, was collected. Extensive testing showed that the MTL framework is highly efficient, outperforming or matching the performance of single-task models. HAO WU, KE ZHANG, et al. [13]in his paper Simultaneous Face **Detection and Pose Estimation Using Convolutional** Neural Network Cascade

Figure 1 Pose Estimation Detection

OPEN CACCESS IRJAEM

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.088 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025

Page No: 552 - 558

This study proposes a multi-task convolutional neural network (CNN) cascade framework to improve face detection and head pose estimation tasks. Traditional methods either separate the tasks, affecting pose estimation accuracy, or use region proposals, leading to high computational costs. The new framework integrates both tasks into a single CNN, allowing for simultaneous face detection and pose estimation, enhancing feature extraction through multi-task learning. A feature fusion strategy further improves head pose estimation performance. The method was evaluated on the FDDB benchmark for face detection and the AFW benchmark for pose estimation, achieving competitive results with real-time performance. JAZA MAHMOOD ABDULLAH, et al. [14]in his paper Fitness Dependent Optimizer: Inspired by the Bee Swarming Reproductive Process. This study introduces a novel swarm intelligence algorithm called the Fitness Dependent Optimizer (FDO), inspired by bee swarming behaviour, though unrelated to existing honey bee or artificial bee colony algorithms. As a particle swarm optimization (PSO)-based algorithm, FDO updates search agent positions by calculating velocity using the problem's fitness function to generate weights, guiding agents through exploration and exploitation phases. The Dependent Optimizer (FDO) is Fitness optimization algorithm inspired by the swarming. LONG GAO, et al. [15]in his paper Residual Attention Convolutional Network for Online Visual Tracking.

3. Discussion

The Integration of deep learning and convolutional neural networks (CNNs) is significantly transforming particularly the future of fitness, through technologies like MediaPipe and OpenCV for pose estimation. These tools allow for real-time tracking of body movements, which is essential for accurately analyzing posture and form during exercises. By harnessing the power of these technologies, fitness applications can provide users with immediate feedback on their performance, helping them to refine their techniques and avoid injuries. Additionally, the application of artificial intelligence in fitness technology enables the creation of personalized workout recommendations tailored to individual users' needs and abilities. With detailed analysis of movement patterns, fitness apps can suggest specific exercises that align with users' fitness goals while also identifying potential injury risks based on their form and execution.

Conclusion

In Conclusion, the integration of deep learning and CNN algorithms, along with advanced technologies like MediaPipe and OpenCV, is revolutionizing the fitness industry by enabling real- time tracking and analysis of body movements. This innovative approach enhances personalized workout recommendations and injury prevention, making fitness apps more effective and user-friendly. Alwill transform the future of fitness by providing personalized workout plans, tracking progress, and offering real-time feedback. Using data from wearables, AI can optimize exercise routines, nutrition, and recovery strategies. It can also predict potential injuries and adjust training to prevent them. Additionally, AI-driven virtual trainers augmented reality can enhance user engagement. By offering tailored training experiences, progress tracking, and remote coaching through automated motion capture systems, these advancements foster an engaging and immersive environment that encourages physical activity and promotes overall health and well-being. AI can optimize future fitness services by providing personalized workout plans.

References

- [1] Amirhossein Zolfagharian, Manel Abdellatif Mojtaba Bagherzadeh ,LionelC.Briand , and Ramesh S. " A Search-Based Testing Approach for Deep Reinforcement Learning Agents." **IEEE Transcations** Software ofEngineering, VOL.49, NO.7, JULY 2023.
- [2] Mukundan Chariar, Shreyas Rao, Aryan Irani, Shilpa Suresh, and C S Asha. "AI Trainer: Autoencoder Based Approach for Squat Analysis and Correction." **IEEE Digital** ObjectIdentifier 10.1109/ ACCESS. 2023. 3316009, VOLUME 11, 2023.
- [3] Alejandro Ramirez-Arroyo, Luz Garcia, Antonio Alex-Amor and Juan F. Valenzuela-Valdes. "Artificial Intelligence and Dimensionality Reduction: Tools for

IRJAEM

International Research Journal on Advanced Engineering and Management

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.088 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025

Page No: 552 - 558

- Approaching Future Communications". Digital Object Identifier 10.1109/ OJCOMS. 2022.31564
- [4] Andrea Sabo, Nimish Mittal, Amol Deshpande, Hance Clarke, and Babak Taati. "Automated, Vision-Based Goniometry and Range of Motion Calculation in Individuals With Suspected Ehlers-Danlos Syndromes/Generalized Hypermobility Spectrum Disorders: A Comparison of Pose- Estimation Libraries to Goniometric Measurements." IEEE 5, no. 4 VOLUME 11, 2022.
- [5] B.Natrajan, E.Rajalakshmi, R.Elakkiya, Ketan Kotecha, Ajith Abraham and Subramaniyaswamy . Development of an Endto-End Deep Learning Framework for Sign Language Recognition, Translation, and Video Generation Proceedings of the IEEE 85, no. 1 Digital (1997): Object Identifier 62 10.1109/ACCESS.2022.32105433, **VOLUME** 10, 2022.
- [6] Dan Wang, and YingYing Zheng. "Digital and Intelligent Image Processing by Artificial Intelligence and Internet of Things Technology in Sports Fitness Detection." Proceedings of the IEEE 85, no. 1 (1997): 24-38,VOLUME,10,2022
- [7] Jaza Mahmood Abdullah, and Tarik Ahmed Rashid. "Fitness Dependent Optimizer: Inspired by the Bee Swarming Reproductive Process."

 Digital Object Identifier 10.1109/
 ACCESS.2019.2907012, VOLUME 7, 2019.
- [8] Xiao Sun, Jun Qian, Ziyang Wang, Jinwei Miao and Yueting Chai. "Future of Networked Information Society: A Deeply Interconnected "Primitive Society". "International Journal of Crowd Science | VOL. 6 NO.4 | 2022 | 178–183.
- [9] MD Rayhan Khan, Constantinos L.Zekios, Bhardwai, Shubhendu and Stavros Geogakopoulos. Multi-objective **Fitness Functions** With Nonlinear Switching for Optimizations." Digital Antenna Object 10.1109/OJAP.2022.3178840, Identifier VOLUME3, 2022.
- [10] Jaeho Kim, Hyewon Kang, Jaewan Yang, Haneul Jung, Seulki Lee and Junghye Lee. "

- Multitask Deep Learning for Human Activity, Speed, and Body Weight Estimation Using Commercial Smart Insoles." IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 18, 15 SEPTEMBER 2023.
- [11] Jiajun wang, Zixin Xie, Yan Li, Youyi Song, Jingwen Yan, Weihua Bai, Teng Zhou and Jing Qin. "Relationship Between Health Status and Physical Fitness of College Students From South China: An Empirical Study by Data Mining Approach." Digital Object Identifier 10.1109/ ACCESS. 2020. 2986039, VOLUME 8, 2020.
- [12] Long gao, Yunsong Li and Jifeng Ning. "Residual Attention Convolutional Network for Online Visual TrackingDigital Object Identifier 10.1109/ACCESS.2019.2927791, VOLUME 7, 2019.
- [13] Hao Wu, Ke Zhang and Guohui Tian.
 "Simultaneous Face Detection and Pose Estimation Using Convolutional Neural Network Cascade." Digital Object Identifier10.1109/ACCESS.2018.2869465, VOLUME 6, 2018.
- [14] Ciro Mennella, Umberto Maniscalco, Giuseppe De Pietro, and Massimo Esposito. "The Role of Artificial Intelligence in Future Rehabilitation Services: A Systematic Literature Review." Digital Object Identifier 10.1109/ACCESS.2023.3236084, VOLUME 11, 2023.
- [15] Panpan Jia, Lingyong Gu, Yanyang Zeng, and Jiangfeng Sun. "Transmission Performance Analysis and Prediction of Relay Networks Based on Artificial Intelligence." Digital Object Identifier 10.1109/ ACCESS. 2024. 3386746, VOLUME 12, 2024
- [16] Panpan Jia, Lingyong Gu, Yanyang Zeng, and Jiangfeng Sun. "Transmission Performance Analysis and Prediction of Relay Networks Based on Artificial Intelligence." Digital Object Identifier 10.1109/ ACCESS. 2024. 3386746, VOLUME 12, 2024.
- [17] Wenqiang Hua, Cong Zhang, Wen Xie and Xiaomin Jin. "Polarimetric SAR Image Classification Based on Ensemble Dual- Branch

OPEN CACCESS IRJAEM

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.088 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 552 - 558

CNN and Superpixel Algorithm. "Digital Object Identifier 10.1109/ACCESS 2023. 3236084, 2023.

[18] Jianping wang, Xueyan Zhnag, Guohong Gao, Yingying Lv, Qian Li, Zhiyu Li, Chengchao Wang, and Guanglan Chen. "Open Pose Mask R-CNN Network for Individual Cattle Recognition." Digital Object Identifier 10.1109 / ACCESS. 2023. 3321152.