

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0150 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 915-923

Environmental Safety in Industrial Waste Management: Innovative Solutions for Hazardous Material Handling

N Prithiviraj¹, J K Kumar²

¹Assistant professor, Dept. of Safety and Fire Engineering Excel Engineering College, Namakkal, Tamilnadu, India.

²PG-Student, M.E-Industrial Safety Engineering, Dept. of Safety and Fire Engineering Excel Engineering College, Namakkal, Tamilnadu, India.

Email ID: npraj.engg@gmail.com¹, psarathy977@gmail.com²

Abstract

Industrial waste management is a critical issue for both environmental safety and public health, especially when dealing with hazardous materials like chemicals, heavy metals, and toxic by-products. Improper disposal of these substances can cause soil contamination, water pollution, and harm human health. This project aims to explore innovative solutions for managing hazardous industrial waste, focusing on minimizing environmental impact and safeguarding workers and surrounding communities. The study begins with a review of current industrial waste management practices, highlighting challenges such as inefficient waste segregation, inadequate containment, and insufficient waste treatment technologies. It points to the need for more effective and sustainable practices in industries like manufacturing, mining, and chemical processing. To address these issues, the project explores advanced waste treatment methods such as chemical neutralization, bioremediation, and waste-to-energy processes, offering alternatives to traditional disposal techniques like incineration and landfilling. Additionally, the role of regulatory frameworks and industry standards is examined, emphasizing the importance of compliance with environmental laws and integrating best practices within industries. The research also focuses on worker safety, analyzing safety protocols that reduce exposure to hazardous materials through personal protective equipment (PPE), training, and engineering controls. The study further explores the use of digital tools, such as real-time monitoring systems and automation, to enhance waste tracking and reduce human error. Ultimately, this project offers a roadmap for industries to adopt safer, more sustainable waste management strategies, thus reducing environmental harm and promoting long-term public health. By implementing these solutions, industries can contribute to a safer and more sustainable future.

Keywords: Industrial waste management, Hazardous materials, Environmental impact, Waste treatment technologies, Worker safety, Sustainable practices.

1. Introduction

Environmental safety in industrial waste management is a crucial concern, particularly when it comes to handling hazardous materials. Industries across sectors such as manufacturing, chemical processing, and mining generate large quantities of waste that can pose serious threats to the environment and public health if not managed properly. Hazardous waste, including chemicals, heavy metals, and toxic by-products, can contaminate soil, water, and air, leading to long-term environmental damage and health risks for communities and workers. Effective

waste management strategies are therefore essential to mitigate these risks and ensure a sustainable, safe environment. [1]

2. Literature Review

Environmental safety in industrial waste management is a pressing concern, especially when dealing with hazardous materials. Recent advancements have led to innovative solutions aimed at mitigating environmental temperatures and pressures above its critical point and health risks associated with hazardous waste.

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0150 e ISSN: 2584-2854 Volume: 03

Issue:03 March 2025 Page No: 915-923

2.1. Advanced Treatment Technologies

Emerging methods such as Supercritical Water Oxidation (SCWO) and Microwave Technology have shown promise in efficiently treating hazardous waste. SCWO operates by treating wastewater at temperatures and pressures above its critical point, facilitating the breakdown of harmful compounds. Microwave irradiation, on the other hand, heats waste uniformly, resulting in dry, stable, and sterilized output. The plasma arc treatment utilizes high temperatures to decompose hazardous materials, effectively neutralizing toxic substances.

2.2. Bioreactor Innovations

Recent developments in bioreactor technology involve using iron-based materials to enhance microbial degradation of industrial residues. This approach accelerates the breakdown of harmful compounds, offering an effective treatment alternative.

2.3. Smart Waste Management Systems

The integration of Internet of Things (IoT) sensors has revolutionized waste collection by monitoring waste levels in real-time. This technology ensures timely pickups, reduces transportation emissions, and enhances overall efficiency in waste management operations.

2.4. Regulatory and Policy Frameworks

A comprehensive review of hazardous waste management emphasizes the importance of prevention, reduction, recycling, waste-to-energy processes, advanced treatment technologies, and proper disposal. It also highlights the need for robust policies and international conventions to regulate and manage hazardous waste effectively. [2]

3. Problem Identification

The management of hazardous industrial waste poses significant challenges to environmental safety and public health. One of the primary problems is inefficient waste segregation, where hazardous materials are not properly identified or sorted, leading to contamination and improper disposal. This issue is particularly prominent in industries like manufacturing, mining, and chemical processing, where a variety of waste types, including toxic chemicals, heavy metals, and radioactive substances, are generated. Another significant problem is the lack

of proper containment systems for hazardous waste. Without secure storage, these materials can leach into the soil, contaminate groundwater, and pollute the air, causing long-term environmental damage. Additionally, outdated waste treatment technologies, such as incineration and landfilling, can exacerbate environmental harm by releasing toxic gases and leaving behind hazardous residues.

4. Methodology



Figure 1 Methodology

The methodology for the project on Environmental Safety in Industrial Waste Management aims to explore effective solutions for hazardous material handling, assessing current practices, identifying challenges, and proposing innovative approaches to mitigate environmental and safety risks. [3]

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0150 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 915-923

4.1. Defining The Research Objectives and Scope

Defining the research objectives and scope is the first critical step in the project on environmental safety in industrial waste management. The primary objective is to explore innovative solutions for the safe handling and disposal of hazardous materials in industries such as manufacturing, processing, and mining. The scope of the research focuses on identifying existing challenges in hazardous waste management, including inefficient waste segregation, inadequate containment systems, and outdated treatment technologies. It also examines the environmental and health risks posed by improper waste handling.

4.2. Literature Review and Data Collection

The literature review and data collection phase of the project focuses on examining existing research and practices related to industrial waste management, particularly the handling of hazardous materials. A comprehensive review of scholarly articles, industry reports, and government publications will be conducted to identify current trends, challenges, and technological advancements in hazardous waste management. This review will explore waste treatment methods, such as chemical neutralization, bioremediation, and waste-to-energy technologies, while also assessing traditional practices like incineration and landfilling. [5]

4.3. Global Hazardous Waste Generation

According to the United Nations Environment Programme (UNEP), approximately 400 million tons of hazardous waste are generated globally each year. This waste includes materials like chemicals, heavy metals, and solvents that can significantly impact the environment and human health if not managed properly.

4.4. Waste Disposal Practices

The International Solid Waste Association (ISWA) reports that over 60% of hazardous waste is either incinerated or landfilled, with landfills contributing to long-term environmental pollution due to leaching and methane emissions.

4.5. Worker Exposure

A study by the U.S. Occupational Safety and Health Administration (OSHA) reveals that approximately

2.3 million workers in the U.S. are exposed to hazardous chemicals in their workplace, contributing to significant health risks, including respiratory issues, cancer, and neurological damage.[4]

4.6. Waste-to-Energy Technologies

According to the International Energy Agency (IEA), the use of waste-to-energy technologies has the potential to generate about 0.3% of global electricity, while also significantly reducing the volume of hazardous waste that would otherwise end up in landfills.

4.7. Regulatory Compliance

In the European Union, about 35% of industrial facilities do not fully comply with the EU's Hazardous Waste Directive, posing a major challenge to ensuring effective hazardous material management and environmental protection.

4.8. Identifying Problems in Hazardous Material Handling

Identifying problems in hazardous material handling is a crucial step in addressing the challenges of industrial waste management. One of the primary issues is the inefficient segregation of hazardous materials from non-hazardous waste. In many industries, improper sorting leads to contamination complicates waste treatment, increasing environmental risks. Additionally. inadequate containment systems often fail to safely store hazardous materials, leading to leakage, spills, or accidental releases into the environment. This can result in contamination of soil, water, and air, with long-lasting effects on ecosystems and human health.

- Inadequate Training and Awareness
- Poorly Labelled or Unclear Signage
- Insufficient Personal Protective Equipment (PPE):
- Lack of Proper Ventilation
- Improper Storage and Segregation
- Spills and Leaks
- Inadequate Emergency Response Plans
- Inconsistent Compliance with Regulations
- Manual Handling of Dangerous Materials
- Outdated or Inefficient Equipment

industries, improper sorting leads to contamination and complicates waste treatment, increasing environmental risks

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0150 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 915-923

4.9. Proposing Innovative Solutions for Hazardous Material Handling

Proposing innovative solutions for hazardous material handling is essential to improving environmental safety and reducing the health risks associated with industrial waste. One of the most promising solutions is the adoption of advanced waste treatment technologies. Techniques such as waste-to-energy systems can convert hazardous waste into valuable energy, reducing both the volume of waste and its environmental impact. These systems can also generate renewable energy, contributing to sustainability. Additionally, bioremediation is a growing field that uses microorganisms to break down hazardous materials, offering a more environmentally friendly method of detoxifying contaminated sites. The leveraging natural processes, this approach reduces the need for harmful chemical treatments and offers a sustainable alternative for waste management. (Figure 1)

- Robotic Automation for Material Handling
- Smart Personal Protective Equipment (PPE)
- AI-Driven Risk Assessment Tools
- Automated Spill Containment Systems
- Drones for Hazardous Material Monitoring
- Intelligent Storage Systems
- Virtual Reality (VR) and Augmented Reality (AR) Training
- Advanced Leak Detection Sensors
- Sustainable Packaging Solutions
- Block chain for Traceability and Compliance

Figure 1 Robotic Automation for Material Handling

5. Developing Recommendations and Solutions

Developing recommendations and solutions for environmental safety in industrial waste management requires a multifaceted approach to address the challenges associated with hazardous material handling. Based on the identified problems, several key recommendations can be made to improve both waste management practices and worker safety. [6]

5.1. Adoption of Advanced Waste Treatment Technologies

To mitigate the environmental impact of hazardous waste, industries should transition from traditional disposal methods like incineration and landfilling to Advanced more sustainable alternatives. technologies such as chemical neutralization, bioremediation, and waste-to-energy processes should be prioritized. Chemical neutralization can down hazardous substances, break bioremediation uses microorganisms to decompose environment. Waste-to-energy toxins in the technologies can convert hazardous waste into usable energy, reducing reliance on landfills and decreasing emissions.

5.2. Improved Waste Segregation and Containment

Implementing better waste segregation protocols is critical to ensuring hazardous materials are correctly identified and managed. The use of more efficient waste classification systems, along with robust containment solutions such as secure storage containers and containment barriers, can prevent leakage and contamination. This would help in reducing soil and groundwater pollution. [7]

5.3. Strengthening Worker Safety Protocols

Ensuring the safety of workers exposed to hazardous materials is paramount. Industries should invest in comprehensive safety training programs and provide personal protective equipment (PPE) to workers. Regular training sessions on handling hazardous materials, emergency response procedures, and the proper use of PPE will minimize exposure risks. Additionally, integrating engineering controls like ventilation systems and automated waste handling systems can reduce human contact with harmful substances. industries, improper sorting leads to contamination and complicates.

OPEN CACCESS IRJAEM

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0150 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 915-923

6. Data Analysis and Evaluation

Table 1 Data Analysis and Evaluation

Table 1 Data Analysis and Evaluation			
Data Category	Statistic	Source	Evaluation
Global	400 1111	United Nations	The scale of hazardous waste
Hazardous	400 million tons of	Environment	generation highlights the
Waste	hazardous waste annually	Programme	urgency of more sustainable
Generation		(UNEP)	waste management practices.
Disposal Methods	60% incinerated or landfilled	International Solid Waste Association (ISWA)	Current methods like landfilling and incineration contribute to long-term environmental pollution.
Landfill Contribution	25% of hazardous waste is landfilled	ISWA	Landfilling causes soil and groundwater contamination, indicating the need for better containment solutions.
Incineration Contribution	35% of hazardous waste is incinerated	ISWA	Incineration can release harmful emissions, showing the need for alternative technologies like waste-to-energy.
Worker Exposure	2.3 million U.S. workers exposed to hazardous materials	U.S. OSHA	Worker exposure to hazardous chemicals is high, emphasizing the importance of safety protocols and PPE.
Occupational Injuries	14% of occupational injuries related to hazardous materials	U.S. OSHA	Worker safety remains a significant concern, and innovative solutions are needed to reduce these risks.
Water Pollution from Hazardous Waste	35% of water pollution from industrial hazardous waste	U.S. EPA	Industrial waste contamination significantly impacts water sources, highlighting the need for better waste treatment solutions.
Regulatory Non- Compliance	35% of facilities in the EU fail to comply with regulations	European Union (EU)	Inconsistent compliance with waste management regulations indicates a gap in enforcement and industry adherence.
Waste-to- Energy Potential	Waste-to-energy could generate 0.3% of global electricity	International Energy Agency (IEA)	Waste-to-energy technologies present a promising alternative for managing hazardous waste sustainably.

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0150 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025

Page No: 915-923

6.1. Regulatory Compliance Policy Enhancement

Stronger regulatory frameworks and enforcement are essential. Governments should enforce stricter compliance with hazardous waste management standards, ensure regular audits, and impose penalties non-compliance. Collaboration industries, environmental agencies, and policymakers is vital to establishing a clear and cohesive waste management strategy. [8]

6.2. Reporting and Presentation of Findings

Reporting and presenting the findings in the project Environmental Safety in Industrial Management: Innovative Solutions for Hazardous Material Handling is a crucial step in communicating the research results to stakeholders, including industry professionals, regulatory bodies, and the public. The goal is to effectively highlight the key issues identified in hazardous waste management and propose actionable solutions for improvement.

6.3. Structuring the Report

The report will begin with an introduction that outlines the objectives, scope, and significance of the study. It will then proceed with a detailed literature review that summarizes the current state of hazardous waste management practices and the challenges faced by industries. The methodology section will describe the research process, data collection techniques, and analysis methods used in the study. This will be followed by a section that identifies the key problems hazardous material handling, including inefficiencies in waste segregation, inadequate containment, and worker safety concerns.

6.4. Data Analysis and Evaluation

A thorough data analysis section will present statistical findings on the volume of hazardous waste generated, the methods of disposal, and the environmental and health risks associated with improper handling. This section will include visual aids such as tables, charts, and graphs to provide clear insights into the scope of the issue. The evaluation will discuss the limitations of current practices and the potential impact of innovative solutions, such as advanced treatment technologies and enhanced safety protocols. industries, improper sorting leads to contamination and complicates waste treatment.

6.5. Recommendations and Solutions

findings will culminate in a set of recommendations for addressing the identified problems, including adopting sustainable waste technologies, improving management segregation, and strengthening worker safety measures. The report will conclude by proposing implementation strategies for these solutions, emphasizing the importance of regulatory compliance and industry-wide cooperation. [9]

6.6. Presentation

The findings will be presented to key stakeholders through clear, concise slides, and visual aids to support decision-making. The presentation will be designed to engage the audience, discussion, encourage action and implementing innovative solutions for hazardous waste management. [10]

7. Implementation Strategy and Conclusion

An effective implementation strategy is crucial for ensuring that the innovative solutions proposed in the project Environmental Safety in Industrial Waste Management: Innovative Solutions for Hazardous Material Handling are successfully adopted in industrial settings. This strategy will focus on a phased approach that integrates the recommended while solutions addressing kev operational. regulatory, and safety challenges. [11]

Phase 1: Assessment and Planning

The first step is a comprehensive assessment of current waste management practices within targeted industries. This involves conducting site audits to evaluate existing waste segregation, containment systems, and disposal methods. Based on this assessment, a customized implementation plan will be developed, aligning with the unique needs of each industry. This phase will also focus on evaluating regulatory requirements and ensuring that the proposed solutions comply with local international environmental standards. [12]

Phase 2: Technology Adoption

In this phase, industries will begin to adopt innovative waste treatment technologies such as chemical neutralization, bioremediation, and wasteto-energy processes. A pilot program will be initiated to test the effectiveness of these technologies in real-

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0150 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 915-923

world conditions. The implementation of automated waste handling systems and real-time monitoring tools will be explored to ensure safe and efficient material handling. This phase also involves providing workers with adequate training on new technologies and safety procedures. [13]

Phase 3: Strengthening Worker Safety

A key component of this strategy is the enhancement of worker safety protocols. Industries will be required to invest in personal protective equipment (PPE), safety training, and the installation of engineering controls such as ventilation systems to minimize exposure to hazardous materials. A continuous feedback loop will be established to assess the effectiveness of these measures and to make adjustments as necessary.

Phase 4: Regulatory Compliance and Monitoring Ensuring that industries adhere to updated regulations and industry standards is critical. Regular audits will be conducted to evaluate compliance with environmental laws and to monitor the performance

environmental laws and to monitor the performance of new waste management systems. Collaboration with regulatory bodies will be essential for ensuring that industries meet their compliance targets. [14]

Phase 5: Continuous Improvement and Evaluation

The final phase involves ongoing evaluation and refinement of waste management practices. Industry stakeholders will engage in regular reviews to assess the success of the implemented solutions, make improvements, and integrate new innovations in response to emerging challenges. This phase emphasizes the importance of continuous adaptation to ensure long-term sustainability and environmental safety.

8. Hazardous Material Handling

Innovative solutions for hazardous material handling focus on improving safety, efficiency, and sustainability while minimizing risks to workers, communities, and the environment. Technological advancements play a key role in these solutions, such as the use of automation, robotics, and smart sensors to enhance precision and reduce human exposure to hazardous substances. One innovation is the development of smart PPE (personal protective equipment) that includes sensors capable of

monitoring air quality, temperature, and the presence of harmful chemicals. These wearable devices alert workers when they are exposed to dangerous conditions, providing real-time safety data and allowing for faster responses. [15]

- Step: 1 Problem Identification and Research
- Step: 2 Solution Conceptualization and Design
- Step: 3 Prototyping and Testing
- Step: 4 Implementation and Integration
- Step: 5 Evaluation and Continuous Improvement
- Step: 6 Documentation and Reporting

9. Fire Prevention and Protection in Material Handling

Handling hazardous materials presents a significant risk for fire hazards, as many chemicals, fuels, and industrial substances are flammable, reactive, or explosive. Effective fire prevention and protection strategies are essential to safeguard workers, protect the environment, and prevent catastrophic damage to facilities. These strategies must be incorporated into the overall hazardous material management plan, as fire hazards can arise at various stages, including storage, transportation, use, and disposal. Hazard Identification and Risk Assessment [16]

- Implementation of Fire Prevention Strategies
- Fire Protection Systems Design and Installation
- Employee Training and Awareness Programs
- Regular Maintenance and Inspection of Fire Safety Equipment
- Establish Emergency Response and Evacuation Plans
- Documenting and Reporting Fire Safety Procedures
- Continuous Improvement of Fire Prevention and Protection Measures

Conclusion

The first step in solving fire-related problems involves identifying potential hazards and conducting thorough research. This research includes analyzing the materials, substances, and practices that could increase fire risks, especially in hazardous materials storage, usage, and disposal. In such cases, the

e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 915-923

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0150

damage from fire can be catastrophic. This is where risk management and evaluation come into play. As a safety expert, I assess the environment, the materials present, equipment failures, and other potential causes to determine the probability of an uncontrollable fire. Once this analysis is complete, I move on to developing fire prevention measures and designing systems aimed at reducing risks. This involves reevaluating how materials are handled, stored, and selecting the appropriate materials to minimize fire hazards. The next phase includes integrating advanced technologies, such as fire detection systems, sprinklers, and retardant fuel engines, which are rigorously tested to ensure they work in emergency scenarios. The employee training and awareness campaigns are vital to ensure workers are equipped with fire prevention skills, know how to use fire extinguishers, and understand safe material handling practices. Ongoing inspections maintenance of fire prevention systems are crucial to ensure functionality. Finally, regular evaluations of the systems and protocols, along with continuous improvement, ensure a proactive approach to fire safety, mitigating risks to both workers and the environment.

References

- [1]. Ahkola, H., Junttila, V., Kauppi, S., 2024. Do hazardous substances in demolition waste hinder circular economy? J. Environ. Manag. 364, 121362 https://doi.org/10.1016/J.JENVMAN.2024.121362.
- [2]. Akbarieh, A., Jayasinghe, L.B., Waldmann, D., Teferle, F.N., 2020. BIM based end-oflifecycle decision making and digital deconstruction: literature review. Sustainability 2020 12. https://doi.org/10.33 90/SU12072 670,2670 12, 2670.
- [3]. Akinade, O.O., Oyedele, L.O., 2019. Integrating construction supply chains within a circular economy: an ANFIS-based waste analytics system (A-WAS). J. Clean. Prod. 229, 863–873. https://doi.org/10.1016/J.JCLE PRO.2019.04.232.
- [4]. Aviv-Reuven, S., Rosenfeld, A., 2021. Publication patterns' changes due to the

- COVID-19 pandemic: a longitudinal and short-term scientometric analysis. Scientometrics 126, 6761–6784. https://doi.org/10.1007/s 11192-021-04059-x.
- [5]. Aziminezhad, M., Taherkhani, R., 2023. BIM for deconstruction: a review and bibliometric analysis. J. Build. Eng. 73, 106683 https://doi.org/10.1016/J.JOBE.2023.106683
- [6]. Ben Abdallah, A., Ray, S., Mim, S.J., Mahmud, T.S., Richter, A., Ng, K.T.W., 2024. Assessment of demographics and motivations of post-consumer textile waste management using a bibliometric approach. J. Mater. Cycles Waste Manag. https://doi.org/10.1007/s10163-024-01994-8.
- [7]. Burt, J., Purver, K., 2014. Building information modelling for small-scale residential projects. Proc. Inst. Civ. Eng.: Management, Procurement and Law 167, 134–
 - 140.https://doi.org/10.1680/mpal.13.000 19.
- [8]. Carmo, J.L., Rohden, A.B., Garcez, M.R., 2022. Recycling construction and demolition waste as aggregate in porous asphalt pavement for urban stormwater management. J. Mater. Civ. Eng. 34, 04022258 https://doi.org/10.1061/(ASCE)MT.1943-5533.0004420.
- [9]. Cheng, J.C.P., Won, J., Das, M., 2015. Construction and demolition waste management using BIM technology. https://iglc.net/Papers/Details/1184, 18 Jun 20204.
- [10]. Cobo, M.J., Lopez-Herrera, ~ A.G., Herrera-Viedma, E., Herrera, F., 2012. SciMAT: a new science mapping analysis software tool. J. Am. Soc. Inf. Sci. Technol. 63, 1609–1630. https://doi.org/10.1002/ASI.22688.
- [11]. Cobo, M.J., Lopez-Herrera, ´A.G., Herrera-Viedma, E., Herrera, F., 2011a. Science mapping software tools: review, analysis, and cooperative study among tools. J. Am. Soc. Inf. Sci. Technol. 62, 1382–1402. https://doi.org/10.1002/ASI.21525.
- [12]. Cobo, M.J., Lopez-Herrera, A.G., Herrera-Viedma, E., Herrera, F., 2011b. An approach

OPEN CACCESS IRJAEM

e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 915-923

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0150

for detecting, quantifying, and visualizing the evolution of a research field: a practical application to the Fuzzy Sets Theory field. J Informetr 5, 146–166. https://doi.org/10.1016/J.JOI.2010.10.002.

- [13]. Doan, D.T., Ghaffarianhoseini, Ali, Naismith, N., Ghaffarianhoseini, Amirhosein, Zhang, T., Tookey, J., 2019. Examining green star certification uptake and its relationship with building information modelling (BIM) adoption in New Zealand. J. Environ. Manag. 250, 109508 https://doi.org/10.1016/J.
- [14]. Ghisellini, P., Ripa, M., Ulgiati, S., 2018. Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition F. Naghibalsadati et al. Journal of Environmental Management 369 (2024) 122293 11 sector. A literature review.
- [15]. Han, D., Kalantari, M., Rajabifard, A., 2024. The development of an integrated BIMbased visual demolition waste management planning system for sustainabilityoriented decision-making.
- [16]. Hasan, M.M., Ng, K.T.W., Mahmud, T.S., Xue, J., Ray, S., 2024. The role of collaborative research network on E-waste studies in North American using a bibliometric approach. Ecol. Inf. 82, 102736 https://doi.org/10.1016/j.ecoinf.2024.102736

OPEN CACCESS IRJAEM