

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0161 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 987 - 990

Automatic Street Light Control and Fault Detection System

V.Karuppasamy¹, R. Raampranav², T. Manikkavasagar³, Mr.P.G. Siva sharma karthick⁴

^{1,2,3}IV-B.Tech., Artificial intelligence and Data science, Kamaraj College of Engineering &Technology, K. Vellkulam, Virudhunagar, India.

⁴Assistant Professor, Kamaraj College of Engineering &Technology, K. Vellkulam, sVirudhunagar, India.

Emails ID: 21uad061@kamarajengg.edu.in¹, 21uad042@kamarajengg.edu.in²,

21uad057@kamarajengg.edu.in³, sivasharmaads@kamarajengg.edu.in⁴

Abstract

The Automatic Street Light Control and Fault Detection System is designed to enhance energy efficiency and ensure timely maintenance of street lighting infrastructure. This system automates the switching of street lights based on ambient light conditions and detects faults such as non-functional lamps or wiring issues. The implementation utilizes microcontrollers, Light Dependent Resistors (LDR), relays, and communication modules for real-time monitoring and control. The proposed system significantly reduces energy wastage, minimizes human intervention, and ensures a well-maintained street lighting network.

Keywords: Arduino Uno, LDR Sensor, RTC Module, Wi-Fi Module, Current Sensor, Relay Module, Fault Detection.

1. Introduction

Street lighting is a key component of urban infrastructure, ensuring public safety and efficient navigation for pedestrians and vehicles. Traditional lighting systems typically operate on fixed schedules, leading to unnecessary energy consumption and increased costs. Additionally, identifying faulty street lights requires manual inspections or citizen reports, resulting in delays in maintenance and prolonged outages. An automated street light control and fault detection system addresses these inefficiencies by integrating sensors and smart technology. The system automatically switches lights on and off depending on ambient light conditions while simultaneously monitoring their functionality. Faults such as burnedout bulbs, electrical failures, or wiring issues are detected in real time and communicated to maintenance teams through wireless modules. This system consists of an LDR to detect environmental light levels, a microcontroller to process data, relays for switching operations, current sensors for fault identification, and a wireless communication module for remote monitoring. By implementing this system, urban areas can reduce energy consumption, lower operational costs, and improve response times for

streetlight maintenance. The proposed solution contributes to sustainability by preventing energy waste and ensuring optimal street light functionality. Future advancements may involve artificial intelligence for predictive maintenance and integration with smart city networks to enhance urban infrastructure management [2][4].

2. Literature Survey

Several studies have focused on automated street lighting systems to enhance energy efficiency and operational effectiveness. Early implementations relied on basic timer-based controls, which lacked adaptability to real-time environmental conditions. With advancements in sensor technology, Light Dependent Resistors (LDRs) were introduced to automate lighting based on ambient light intensity, leading to improved energy conservation. Recent research has explored the integration microcontrollers such as Arduino and ESP8266 to process sensor data and make intelligent lighting decisions. These systems offer increased flexibility and reduced power consumption. Studies have also highlighted the role of relays in managing the switching mechanism efficiently [12] [15]. A

OPEN CACCESS IRJAEM

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0161 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 987 - 990

significant challenge in conventional automated systems is the absence of effective fault detection. Research has emphasized the use of current sensors and voltage monitoring techniques to identify nonfunctional lights and circuit failures. Some works have explored Internet of Things (IoT)-based solutions, allowing remote monitoring and real-time alerts for maintenance teams. Comparative analysis of different methodologies reveals that IoT-enabled smart lighting systems provide better energy optimization and fault detection capabilities than traditional automated lighting. These advancements help in reducing operational costs and enhancing the lifespan of street lighting infrastructure.[1]

3. Design Methodology

Despite these improvements, gaps remain in predictive maintenance and real-time analytics. Future studies suggest integrating machine learning algorithms to analyze historical data and predict failures before they occur. Additionally, the combination of AI-based analytics with smart city frameworks can lead to more sustainable and intelligent urban lighting solutions. The Automatic Street Light Control and Fault Detection System integrates multiple sensors and modules, all managed by an Arduino Uno microcontroller. This system enhances energy efficiency by adjusting streetlight operation based on ambient light levels while detecting issues such as voltage fluctuations, lamp failures, and wiring faults. Additionally, Wi-Fi connectivity enables remote monitoring and control via a cloud-based platform [6-10].

3.1. System Components and Workflow

- **Arduino Uno:** Serves as the central processor, collecting sensor data and executing system commands.
- LDR (Light Dependent Resistor)

 Module: Detects ambient light intensity
 and signals the Arduino to control the
 streetlight.
- **Relay Module:** Facilitates the switching of streetlights based on LDR readings and fault detection inputs.
- **Current Sensor:** Monitors electrical flow to identify faults like failed lamps or wiring issues.[11]

- Wi-Fi Module (ESP8266): Enables realtime data transmission for remote monitoring and control.
- RTC (Real-Time Clock) Module: Ensures scheduled streetlight operation, even without Wi-Fi connectivity.
- Cloud and Dashboard: Stores real-time data, provides analytics, and allows users to monitor and control streetlights remotely.

3.2. System Operation

- Automatic Light Control: The LDR continuously measures ambient light intensity. When light levels drop below a set threshold (e.g., at dusk), the relay activates the streetlight. As daylight increases (e.g., at dawn), the relay turns off the streetlight to save energy.
- Fault Detection: The current sensor monitors power flow in the circuit. Abnormal readings, such as zero current (indicating a failed bulb) or irregular spikes (suggesting wiring faults), trigger alerts. The system sends fault notifications to the cloud dashboard for quick maintenance response.
- Remote Monitoring & Control: The ESP8266 module uploads real-time data to the cloud, allowing users to access system updates remotely. Users can manually control the streetlights and receive fault alerts for timely interventions.[3]

3.3. Advantages of the Proposed Design

- Energy Efficiency: Minimizes unnecessary power consumption by adapting lighting to environmental conditions. Automated Fault Detection: Detects lamp failures and wiring faults, facilitating timely maintenance.
- **Remote Monitoring:** Allows real-time system control and visualization through a cloud-based interface.
- **Scalability:** The system is adaptable for large-scale urban deployment with multiple interconnected streetlights. This

OPEN CACCESS IRJAEM

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0161 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 987 - 990

methodology ensures a cost-effective and intelligent approach to street lighting, contributing to sustainable and efficient urban management. Figure 1 shows Design Architecture.

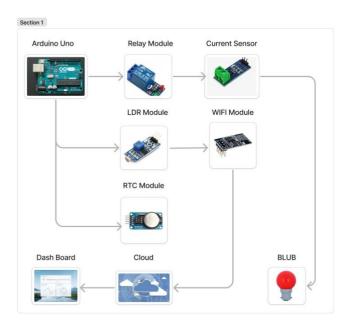


Figure 1 Design Architecture

4. Result and Discussion

The Automatic Street Light Control and Fault Detection System was effectively developed using an Arduino Uno, LDR module, RTC module, Wi-Fi module, current sensor, and relay module. Figure 2 shows Hardware Output. The system autonomously controlled streetlights based on ambient light levels, eliminating the need for manual operation. The current sensor efficiently identified faulty or nonoperational bulbs, while the Wi-Fi module enabled real-time transmission of fault alerts for remote supervision. The RTC module facilitated scheduled lighting, optimizing energy consumption. Additionally, the relay module ensured reliable switching of AC bulbs based on sensor inputs. This smart system minimizes energy wastage, enhances maintenance efficiency, and allows continuous streetlight monitoring. By improving public safety, reducing operational costs. and supporting sustainable urban infrastructure, it offers a practical and efficient lighting solution. Figure 3 shows Software Output [5].

Figure 2 Hardware Output

Current Sensor 1: 840 Current Sensor 2: 525 Night Mode: Lights ON LDR Value: 80 Current Sensor 1: 532 Current Sensor 2: 518 Day Mode: Lights OFF LDR Value: 173 Current Sensor 1: 203 Current Sensor 2: 524 Day Mode: Lights OFF LDR Value: 175 Current Sensor 1: 430 Current Sensor 2: 525 Day Mode: Lights OFF LDR Value: 169 Current Sensor 1: 230 Current Sensor 2: 523 Day Mode: Lights OFF LDR Value: 169 Current Sensor 1: 451 Current Sensor 2: 526 Day Mode: Lights OFF LDR Value: 170 Current Sensor 1: 293 Current Sensor 2: 524 Day Mode: Lights OFF

Figure 3 Software Output

Conclusion

The Automatic Street Light Control and Fault Detection System offers an energy-efficient and reliable solution for urban lighting management [14]. The integration of real-time fault detection ensures prompt maintenance, reducing downtime and operational costs. Future enhancements could involve AI-driven analytics for predictive maintenance and further connectivity with smart city

e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 987 - 990

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0161

frameworks [13].

References

- [1]. Chowdhury, A. T. M. M. M., Sultana, J., & Sourav, M. S. "IoT-based Efficient Streetlight Controlling, Monitoring and Real-time Error Detection System in Major Bangladeshi Cities." International Journal of Engineering and Advanced Technology, 2022.
- [2]. Rani, M. J., Kavya, K., Priya, O. N., Kiruthika, R., & Kamali, S. "Smart Street Lighting System with Fault Detection using IoT." International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 2020.
- [3]. Lakshmi, M. V., Rajesh, Y., Sekhar, S. C., Kiran, S. P., & Mahesh, R. S. "IoT Based Automatic Street Light Control and Fault Detection System." International Journal for Research in Applied Science & Engineering Technology, 2020.
- [4]. Sofi, M. A., Nanda, A., Rather, G. A., & Sofi, M. A. "IoT Based Automated Street Light Control with Fault Detection and Reporting System." International Journal of Engineering Trends and Technology, 2021.
- [5]. Vamsi, V. H., Reddy, A. S., & Kumar, M. V. "Sensor Enabled Centralized Monitoring System for Streetlight Fault Detection Using IoT." Springer Journal of Smart Cities and Infrastructure, 2024.
- [6]. Sharma, R., & Gupta, P. "IoT-Enabled Street Light Automation with Energy Optimization." Journal of Electrical and Electronics Engineering, 2023.
- [7]. Patel, R., Singh, D., & Kumar, A. "Smart Street Lighting and Fault Detection System Using IoT and Machine Learning." International Journal of Advanced Research in Computer Science, 2021.
- [8]. Zhang, L., & Chen, Y. "An Intelligent IoT-Based Adaptive Street Lighting System." IEEE Internet of Things Journal, 2022.
- [9]. Kumar, R., & Das, A. "IoT-Driven Smart Street Light Management with Predictive Maintenance." Journal of Emerging Technologies and Innovative Research, 2023.

- [10]. Wong, K. S., & Lee, H. "AI-Based Fault Detection for IoT-Connected Smart Street Lights." IEEE Transactions on Industrial Informatics, 2024.
- [11]. Ali, M. S., & Rahman, M. "A Secure IoT-Based Smart Street Lighting System with Fault Monitoring." Journal of Engineering Science and Technology, 2021.
- [12]. Gupta, S., & Verma, P. "Energy Efficient IoT-Based Smart Street Lighting for Smart Cities." International Journal of Smart Grid and Clean Energy, 2022.
- [13]. Park, J., & Kim, S. "Cloud-Integrated IoT-Based Smart Street Lighting and Fault Detection System." Sensors and Actuators Journal, 2023.
- [14]. Singh, P., & Mehta, A. "IoT and AI-Powered Fault Detection in Smart Street Lighting Networks." International Conference on Smart Cities and Sustainable Development, 2024.
- [15]. Bose, T., & Roy, A. "Edge Computing for IoT-Based Smart Street Light Monitoring and Fault Diagnosis." Journal of Internet of Things and Smart Cities, 2023.