

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0167 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 1021 - 1028

Safety Protocols and Preventative Measures for Pressure Pipe Explosions in Welding Operations

C Boopathiraam¹, S Ranjith kumar²

¹Assistant professor, Dept. of Safety and Fire Engineering Excel Engineering College, Namakkal, Tamilnadu, India.

²PG-Student, M.E-Industrial Safety Engineering, Dept. of Safety and Fire Engineering Excel Engineering College, Namakkal, Tamilnadu, India.

Email ID: boopathiraam8@gmail.com¹, ranjithkumar152138@gmail.com²

Abstract

Pressure pipe explosions in welding operations present significant safety hazards in industrial environments. These explosions can lead to catastrophic accidents, causing injuries, fatalities, and extensive property damage. This project focuses on identifying the causes of pressure pipe explosions during welding processes and developing effective safety protocols and preventative measures to minimize the risk of such incidents. The study examines the various factors contributing to these explosions, including material defects, improper welding techniques, high internal pressure, and inadequate safety measures. Additionally, the research explores the role of safety standards, equipment maintenance, and operator training in reducing the likelihood of failure. The project aims to design a comprehensive safety framework that includes pre-welding inspections, proper welding procedures, use of appropriate materials, and pressure testing protocols to ensure pipe integrity. The effectiveness of existing safety standards, such as those set by OSHA and ASME, will be evaluated, and recommendations for enhancing these protocols will be provided. The study also investigates technological advancements, such as the use of non-destructive testing (NDT) and pressure monitoring systems, to detect potential weaknesses before welding. Ultimately, the project seeks to propose actionable safety guidelines and solutions that can be implemented in welding operations to safeguard workers and prevent pressure pipe explosions, thereby improving overall industrial safety and reducing operational risks. **Keywords:** Pressure pipe explosions, Welding operations, Safety protocols, Material defects, Non-destructive testing (NDT), Pressure testing

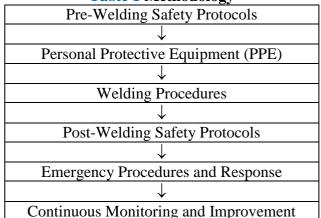
1. Introduction

Pressure pipe welding is a critical component of industrial operations that involve the transport of fluids or gases under high pressure. This process plays a crucial role in the construction, maintenance, and repair of pipelines used in various industries, including oil and gas, chemical processing, power generation, and water distribution. Pressure pipes are designed to handle the stresses and pressures associated with transporting hazardous, corrosive, or high-temperature substances. As a result, the integrity of welded joints in pressure piping systems is paramount to ensure operational safety and efficiency. Welding is the primary method used to join sections of pressure pipes, and the welding process must be conducted with utmost precision and

skill to ensure that the pipe's structural integrity is maintained. Pressure pipe welding operations must meet strict safety, quality, and performance standards to prevent failures, leaks, or catastrophic events such as explosions, which could have severe consequences for both workers and the surrounding environment. This makes understanding the principles and challenges of pressure pipe welding operations critical for the successful implementation and maintenance of high-pressure systems.

2. Pressure Pipe Explosions

Pressure pipe explosions are catastrophic events that can have severe consequences for workers, the environment, and infrastructure. These explosions occur when the internal pressure within a pipeline


OPEN CACCESS IRJAEM

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0167 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 1021 - 1028

Before initiating any welding activity on pressure pipes, comprehensive pre-welding checks must be carried out to ensure the pipe is safe for welding. First, the pipe must be thoroughly purged and depressurized to remove any potentially hazardous gases, including flammable materials, oxygen, or toxic substances that may have accumulated inside (Table 1).

Table 1 Methodology

5. Pre-Welding Safety Protocols

Pressure pipe welding is an essential yet high-risk operation, particularly when working pressurized systems. Welding on these pipes requires thorough planning, preparation, and adherence to safety protocols to mitigate potential hazards such as explosions, fire, gas leaks, or worker injuries. Prewelding safety protocols are crucial for identifying risks and setting the necessary precautions before the actual welding work begins. These protocols ensure the work environment is safe, and all safety measures are in place to protect workers and the surrounding environment. This detailed guide focuses on the various stages of pre-welding safety, including preparation, inspection, environmental control, and personnel readiness. [1-4]

5.1. Pressure Decompression and Purging

One of the most crucial steps before beginning welding on pressure pipes is to depressurize and purge the system. This step eliminates hazardous gases and ensures that the pipe is safe for welding.

- Pressure Decompression
- Purging the Pipe
- **5.2. Pipe Inspection**

exceeds the design capacity of the pipe, causing it to rupture or burst violently. Such failures are particularly dangerous when dealing with highpressure pipelines used in industries like oil and gas, water treatment, and petrochemicals, generation, where pipes carry fluids or gases under extreme pressure conditions. In these industries, pipelines are essential for transporting materials such as crude oil, natural gas, steam, or even water under high-pressure conditions. The pipes are often subjected to continuous stress from the high pressures within, along with other factors like temperature fluctuations, corrosion, and mechanical stresses. Over time, this stress can lead to weaknesses in the material or in the pipe's welds, increasing the risk of a rupture or explosion. Understanding the causes and risks associated with pressure pipe explosions is crucial for minimizing their occurrence and mitigating the potential damage.

3. Problem Identification

Pressure pipe explosions during welding operations pose significant risks to both workers and infrastructure. Identifying the underlying issues that contribute to these explosions is essential to improving safety protocols and developing effective preventative measures. Several critical problems need to be addressed.

- Material Defects and Incompatibility
- Improper Welding Techniques
- High Internal Pressure and Stress

Pressure pipes used in high-stress environments are often made from specialized materials that must withstand extreme conditions such as high pressure, temperature, and corrosive substances. However, material defects like cracks, weld porosity, or improper composition can compromise the integrity of welded joints, increasing the risk of failures. Additionally, welding on incompatible materials or using incorrect filler metals can weaken the pipe, making it more susceptible to explosions.

4. Methodology

Safety protocols and preventative measures for pressure pipe welding operations are of paramount importance to mitigate the high risks involved in welding pressurized systems, where the consequences of accidents can be catastrophic.

OPEN CACCESS IRJAEM

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0167 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 1021 - 1028

Pipe inspection is an essential step before welding, as it ensures the material is structurally sound and suitable for the welding process. Welding on defective or degraded pipes can lead to failures, especially under high pressure. [5-7]

- Visual Inspection
- Non-Destructive Testing (NDT)

5.3. Environmental and Site Safety Measures

Before welding commences, the worksite must be made safe for operations. This involves controlling the work environment to mitigate risks associated with fire, toxic exposure, and injury.

- Hazardous Materials
- Ventilation
- Temperature Control
- Access Control

5.4. Personal Protective Equipment (PPE)

Before welding begins, it is crucial to ensure that all personnel involved are adequately protected with the appropriate personal protective equipment (PPE). PPE is designed to protect workers from the physical hazards of welding, such as burns, eye injuries, and inhalation of toxic fumes.

5.5. Emergency Preparedness

Welding operations, particularly those involving pressurized systems, carry the risk of accidents, such as fires, gas leaks, or explosions. It is essential to have emergency preparedness protocols in place before welding begins.

- Fire Safety Equipment
- Gas Leak Detection
- Emergency Shutdown Procedures

5.6. Pressure Testing and Purging

Pressure testing is a critical procedure used to ensure the integrity of welded pipelines, verifying that the system can handle its designed operating pressure without leaks or failures. Typically, pressure testing involves applying a liquid (hydrostatic testing) or gas (pneumatic testing) to the pipeline at a pressure greater than the intended operating pressure. This test is essential for identifying any weaknesses, leaks, or structural faults in the welds or pipe material. The pressure test is often conducted at 1.5 to 2 times the normal operating pressure. The system is then monitored for any drop in pressure, indicating possible leaks.

5.7. Inspect the Pipe

Before commencing any welding or pressure testing, a thorough inspection of the pipe is essential to ensure its suitability for the intended application. Inspection helps identify defects or irregularities in the pipe that could compromise its integrity during welding or under pressure. The process begins with a visual inspection to check for signs of cracks, corrosion, dents, or manufacturing defects. Inspecting the pipe's surface ensures that there are no contaminants, like rust, oil, or dirt, which could affect the quality of the weld or cause failures. Additionally, the pipe may undergo more advanced non-destructive testing (NDT) methods, such as ultrasonic or radiographic testing, to detect hidden internal flaws, such as cracks, voids, or weld defects that may not be visible to the naked eye. These tests provide a clear understanding of the material's strength and ability to handle the required pressure levels. The pipe should also be verified for dimensional accuracy to ensure proper fit-up during welding. Ensuring the pipe is free from defects and within specifications reduces the likelihood of weld failure and increases the overall safety and reliability of the pipeline system. [8-10]

5.8. Clear the Area

Before starting welding operations, it is crucial to clear the area around the worksite to minimize risks and ensure safety. A clean and organized workspace is essential to prevent accidents such as tripping, fires, or equipment malfunctions. The first step is to remove any flammable materials

6. Personal Protective Equipment (PPE)

Personal Protective Equipment (PPE) in welding is crucial for safeguarding welders from the numerous hazards they face during welding operations. Welders are exposed to risks such as intense heat, harmful radiation, flying sparks, molten metal, toxic fumes, and loud noise. Proper PPE protects against these dangers and ensures the welder's safety and wellbeing. Key pieces of PPE include welding helmets with auto-darkening filters to shield the eyes and face from UV and infrared radiation, welding gloves that protect hands from heat and burns, and flame-resistant clothing to prevent burns from sparks and molten metal. Respirators help protect against

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0167 e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025

Page No: 1021 - 1028

- inhaling toxic fumes, while hearing protection guards against hearing damage from loud welding noise. Welding boots provide protection from falling objects and molten metal, and welding jackets shield the upper body from heat and sparks. Additionally, safety glasses and heat-resistant sleeves further enhance protection. By wearing proper PPE, welders reduce their risk of injury or illness significantly. [10-11]
 - Welding Helmets/Face Shields
 - Welding Gloves
 - Flame-Resistant Clothing
 - Respirators
 - **Hearing Protection**
 - **Welding Boots**
 - **Heat-Resistant Sleeves**
 - Safety Glasses and Goggles
 - Welding Aprons
 - Welding Respirators (with Welding Filters)
 - Welding Jacket
 - Fall Protection Gear (for Elevated Welding)
 - Welding Cap (Head Protection)

7. Welding Procedures

Welding is a fabrication process that joins materials, usually metals or thermoplastics, by applying heat, pressure, or both to form a strong bond. It involves melting the workpieces and, in some cases, adding a filler material to create a molten pool that solidifies to form the joint. Common welding methods include Shielded Metal Arc Welding (SMAW), Gas Metal Arc Welding (GMAW), and Tungsten Inert Gas (TIG) welding. Welding is widely used in industries such as construction, manufacturing, automotive, and aerospace for creating durable and reliable connections between parts, structures, and components. Proper safety protocols are essential during welding. [12-13]

7.1. Welding Method Selection

- Shielded Metal Arc Welding (SMAW) (Stick Welding)
- Gas Metal Arc Welding (GMAW) (MIG Welding)
- Gas Tungsten Arc Welding (GTAW) (TIG Welding)
- Flux-Cored Arc Welding (FCAW)

- Submerged Arc Welding (SAW)
- Electroslag Welding (ESW)
- Electrogas Welding (EGW)
- Oxy-Acetylene Welding (OAW)
- Laser Beam Welding (LBW)
- Plasma Arc Welding (PAW)
- Resistance Spot Welding (RSW)
- Friction Stir Welding (FSW)
- Ultrasonic Welding (USW)
- **Cold Welding**
- Stud Welding

7.2. Monitoring During Welding

Monitoring during welding is a critical aspect of ensuring the safety, quality, and integrity of the weld, especially when working on pressure pipes. The welding process involves intense heat, molten metal, and potential hazards, so real-time observation is vital to detect issues early and prevent potential failures.

- Monitor Pressure Levels
- Use Flame Arrestors and Welding Screens
- Real-Time Inspection of the Weld
- Maintain Consistent Heat Control
- Protect the Environment and Workers
- Continuous Feedback and Adjustments

7.3. Post-Welding Safety Protocols

Post-Welding Safety Protocols are essential to ensure that welded pressure pipes are safe and free from defects before being put into service. Once the welding is completed, several critical steps need to be taken to verify the quality of the weld and maintain safety standards. First, the welded pipe should undergo cooling in a controlled manner to avoid rapid temperature changes that could cause thermal stress or cracking. This process may involve using heat treatment methods, such as post-weld heat treatment (PWHT), to relieve residual stresses and improve the strength of the weld. Next, the weld area should be thoroughly inspected using non-destructive testing (NDT) methods like ultrasonic testing (UT) or x-ray inspection to detect internal flaws such as cracks, voids, or porosity that could compromise the weld's integrity under pressure. Visual inspection should also be performed to ensure the weld bead is smooth and uniform. It's also essential to check for pressure leaks within the welded system. This can be done

Volume: 03 Issue:03 March 2025 Page No: 1021 - 1028

e ISSN: 2584-2854

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0167

using methods like pressure testing with water or air to ensure that the pipe holds pressure and there are no weak spots in the weld. Finally, workers should follow proper clean-up protocols, including removing any slag, residue, or welding debris from the area. The work environment should be inspected for safety hazards, and any necessary repairs or adjustments should be made before the system is put into operation.

- Cooling of welded area
- Visual inspection
- Non-destructive testing (NDT)
- Pressure testing
- Post-weld heat treatment (PWHT)
- Removal of slag and debris
- Clean and inspect work area
- Documentation and quality control
- Weld strength verification
- Final safety check

8. Emergency Procedures and Response

Emergency Procedures in Welding are critical to ensure worker safety and protect against potential hazards associated with welding operations. The procedures outline the steps to take in the event of accidents or hazardous situations to minimize injury or property damage. [16-18]

9. Continuous Monitoring and Improvement

Continuous monitoring and improvement refer to an on-going process of tracking performance, detecting issues, and making necessary adjustments to enhance efficiency and effectiveness. This concept is applied across various fields, including business, healthcare, technology, and environmental management. In business, continuous monitoring involves regularly assessing key metrics such as productivity, customer satisfaction, and financial performance to identify trends and pinpoint areas for improvement. The leveraging real-time data, companies can quickly address emerging challenges and seize opportunities growth. This proactive approach helps organizations stay competitive in a dynamic market. Improvement, on the other hand, is the systematic effort to make incremental or significant changes that lead to better outcomes. It requires a culture of learning and adaptability, where feedback is valued and used to refine processes. Tools such as root cause analysis, performance reviews, and benchmarking play a key role in this phase (Table 2). Together, continuous monitoring and improvement form a feedback loop that fosters innovation sustainability. The regularly assessing performance and making data-driven adjustments, organizations ensure they are constantly evolving to meet changing demands and expectations. [14-15]

Table 2 Emergency Response

Emergency Situation	Immediate Action
Fire Emergency	Activate Fire Alarm, Use Fire Extinguisher, Evacuate Area and Fire Watch
Explosion Response	Depressurize System, Evacuate the Area, Alert Emergency Personnel, Avoid Ignition Sources
Gas Leak Response	Shut Off Gas Supply, Evacuate Area, Avoid Ignition, Call for Emergency Help
Electric Shock Response	Turn Off Power Source, Do Not Touch the Victim, Administer CPR, Seek Medical Attention
Burn Injury Response	Minor burns, severe burns, chemical burns
Eye Injury Response	Flush Eyes with Water, Seek Medical Attention, Protective Equipment
Chemical Exposure Response	Move to Fresh Air, Decontaminate, Alert Emergency Services, Use Respirators
Confined Space Emergency	Alert emergency personnel, rescue team, ventilation
First Aid for Respiratory Issues	Move Victim to Fresh Air, CPR or Artificial Respiration, Oxygen Administration
Equipment Malfunction or Failure	Shut down equipment, inspect equipment, replace damaged equipment
Post-Welding Hazards	Slag Removal, Ventilate Work Area, Inspect the Weld
Evacuation Procedures	Clear evacuation routes, assembly point, emergency personnel

OPEN CACCESS IRJAEM

e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 1021 - 1028

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0167

This approach is crucial for long-term success, as it cultivates a mindset of continuous growth and resilience (Table 3).

Table 3 Monitoring and Improvement

Table 3 Monitoring and Improvement		
Monitoring	Recommendation	
Monitoring welding parameters	WeldingCurrent(Amperage), Welding Voltage, Travel Speed, Arc Length, Wire Feed Speed, Gas Flow Rate, Heat Input, Preheat Temperature, Post-Weld Cooling Rate And Pulse Frequency (For Pulsed Welding)	
Weld quality inspection	Visual Inspection (VT), Ultrasonic Testing (UT), Radiographic Testing (RT), Magnetic Particle Testing (MT), Dye Penetrant Testing (PT), Leak Testing Hardness Testing, Destructive Testing X-Ray Fluorescence (XRF) Testing and Eddy Current Testing (ECT)	
Feedback loops for improvement	Establishing feedback loops in welding operations promotes continuous improvement.	
Training and skill development	Fundamental training for beginners, advanced welding techniques, welding parameters and control, weld inspection and quality control, certification programs, troubleshooting and problem-solving, soft skills and professionalism, on-the-job training and mentorship, new technology and trends	
Process optimization	The efficiency, consistency, and cost-effectiveness of welding operations. This includes analyzing welding methods, materials, and equipment to identify areas for improvement.	
Safety audits and risk assessments	Safety Audits:	
Customer feedback	Surveys and questionnaires, Follow-up calls, Customer reviews, Direct communication, Focus groups	
Use of technology and automation	Welding robots and automated systems, laser welding, additive manufacturing (3D printing for welding), augmented reality (AR) and virtual reality (VR) for training, welding control systems and sensors, artificial intelligence (AI) and machine learning, computer numerical control (CNC) in welding, welding monitoring and data collection systems, drones and remote monitoring and smart welding PPE	
Environmental considerations	Air emissions and fumes, energy consumption, waste and scrap material, noise pollution, hazardous material disposal, sustainable welding materials, carbon footprint, eco-friendly welding technologies, environmental regulations and compliance	
Performance tracking and reporting	Weld quality, production rate, downtime, and defect rates should be monitored regularly. Performance data can be collected through manual checks, automated systems, or both. Regularly reporting this data allows management to review the effectiveness of welding operations and identify areas for improvement.	

e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 1021 - 1028

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0167

Conclusion

successfully explored project has emphasized critical safety measures required to failures prevent catastrophic during welding operations on pressure pipes. The findings highlight the importance of thorough pre-welding safety protocols, effective use of personal protective equipment (PPE), adherence to established welding procedures, and the implementation of post-welding safety checks to mitigate risks. The Pre-Welding Safety Protocols serve as the foundation of any welding operation. The ensuring that welding areas are free from flammable materials, all equipment is properly checked, and gas systems are secure, the chances of an explosive event are minimized. Coupled with the PPE standards, which safeguard workers from exposure to hazardous fumes, high temperatures, and potential burns, the risk is further reduced. The application of proper Welding Procedures is vital in ensuring that the welding process is conducted under controlled conditions, with correct parameters to avoid overheating, overpressurization, or other risks that may lead to pipe failure. Incorporating Post-Welding Safety Protocols, including proper cooling procedures and detailed inspection of the welded joints, ensures any weld defects or potential weaknesses are identified and rectified. Emergency Procedures and Response are critical to managing and containing accidents, with a well-structured response plan crucial for minimizing harm during a potential incident. Lastly, the focus on Continuous Monitoring and Improvement ensures safety measures evolve with changing technologies, work environments, and new threats. Regular audits, feedback loops, and training sessions keep the welding workforce prepared to handle emerging challenges effectively. The implementing comprehensive safety protocols across all stages of the welding operation, the risk of pressure pipe explosions can be significantly minimized, ensuring worker safety and operational efficiency.

References

[1]. Zhenchao Wang, Bin Wang, Aimin Xiang, Di Jiao, (2024) Comparative study on the performance of butt fusion-welding processes for nuclear safety class large-diameter thick-

- walled PE pipes, https://doi.org/10.1016/j .net.2024.05.024
- [2]. Bolaji Ismail Olalere, Joachim Gidiagba, (2023) review of advanced welding and testing for safety in offshore oil and gas, DOI:10.26480/macem.02 .2023.37.43
- [3]. Jixiao Mo, Guoqing Zhang, Jiangyun Zhang, Chou Mo, (2024) Effect of cold welding on the inconsistencies and thermal safety of battery modules based on a constructed discharge model, https://doi.org/10.1016/j.apen ergy.2024.124570
- [4]. Xingkeng Shen, Ying Dai, Xinmin Chen, (2024) Fatigue performance testing and life prediction of welded fuel pipes, https://doi.org/10.1016/j.ijfatigue.2024.1084 53
- [5]. Zhang Shuxin, Xie Faqin, Li Xianming, Luo Jinheng, (2022) Failure analysis of the leakage in girth weld of bimetal composite pipe,https://doi.org/10.1016/j.engfailanal.202 2.106917
- [6]. Jun Cao, Weifeng Ma, Guiliang Pang, Ke Wang, (2021) Failure analysis on girth weld cracking of underground tee pipe, https://doi.org/10.1016/j.ijpvp.2021.10437
- [7]. Xinyan Xu, Qingzhu Liang, Changhong Peng, (2022) Failure probability evaluation for a weld of the heat pipe in the Mega-Power heat pipe cooled reactor, https://doi.org/10.1016/j.anucene.2022.1093
- [8]. Mingya Chen, Lei Lin, Dahua Du, Shuai Zhou, (2021) Safety assessment of the small welded pipe system by the test and FEA, https://doi.org/10.1016/j.ijpvp.2021.104523
- [9]. Zilong Xia, Yichang Huang, Jiru Zhong, (2023) Cracking failure analysis on a high-frequency electric resistance welding pipe in buried fire waterpipeline, https://doi.org/10.1016/j.engfailanal.2023.107072
- [10]. T.F. Yan, G.Z. Wanga, K. Wang, F.Z. Xuan, (2021) Limit loads of dissimilar metal welded joints for joining safe end to pipe-nozzle of nuclear pressurevessel,https://doi.org/10.1016/j.ijpvp.2021.104554

e ISSN: 2584-2854 Volume: 03 Issue:03 March 2025 Page No: 1021 - 1028

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0167

- [11]. Zilong Xia, Yichang Huang, Jiru Zhong, (2023) Cracking failure analysis on a high-frequency electric resistance welding pipe in buried fire water pipeline, https://doi.org/10.1016/j.engfailanal.2023.107072
- [12]. J.S. Kim, Young-Jin Oh, Sun-Woong Choi,(2019) Investigation on the thermal butt fusion performance of buried high density polyethylene piping in nuclear power plant, Nucl. Eng. Technol. 51 (2019) 1142–1153.
- [13]. J.S. Kim, L. Yeongju, O. Young-Jin, (2015) Investigation of bending fatigue behaviors of thermal butt fusion in safety class III high-density polyethylene buried piping in nuclear power plants, Transact. Korean Soc. Pressure Vessels Piping 11 (2) (2015) 40–44
- [14]. H.S. Lai, N.N. Tun, S.H. Kil, K.B. Yoon, (2016) Effect of defects on the burst failure of butt fusion welded polyethylene pipes, J. Mech. Sci. Technol. 30 (5) (2016) 1973– 1981.
- [15]. S. Deveci, N. Antony, S. Nugroho, B. Eryigit, (2019) Effect of carbon black distribution on the properties of polyethylene pipes part 2: degradation of butt fusion joint integrity, Polym. Degrad. Stabil. 162 (2019) 138–147.
- [16]. O. Young-Jin, P.H. Bae, H. Shin, (2013) Butt-fusing processes and qualifications of high density polythylene pipe for nuclear power plant application, J. Welding Join. 31 (6) (2013) 1–7.
- [17]. H. Hashizume, S. Ito, S. Takami, A. Sagara, (2005) Joint performance of HTc superconductor for remountable magnet system, Fusion Sci. Technol. 47 (4) (2005) 901–905.
- [18]. T. Kim, S. Deveci, I. Yang, B. Stakenborghs, S. Choi, (2022) Visual, non- destructive, and destructive investigations of polyethylene pipes with inhomogeneous carbon black distribution for assessing degradation of structural integrity, Polymers 14 (5) (2022).