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Abstract 

Reliable and meticulously maintained roadway infrastructure is essential for ensuring both ensuring safety 

and operational prowess in transportation; nevertheless, even the slightest surface flaws and structural 

shortcomings can swiftly morph into substantial safety threats and lead to increased repair costs if not 

addressed promptly. To address these limitations, this research introduces an automated detection framework 

that leverages deep learning—more specifically, Convolutional Neural Networks (CNNs)—to systematically 

identify and categorize road surface anomalies. The framework is constructed utilizing a heterogeneous 

dataset of road imagery, which equips it with the capability to differentiate cracks based on their severity and 

classification. Its efficacy is further enhanced through preprocessing techniques such as image augmentation 

and normalization. Designed for real-time implementation, the system can be operationalized on mobile and 

drone platforms to facilitate comprehensive monitoring efforts. Experimental findings indicate notable 

advancements in detection precision and a decrease in false positive rates, thereby bolstering more efficient 

maintenance strategies and fostering sustainable infrastructure management. Future investigations may 

integrate additional sensor modalities, including LiDAR and thermal imaging, to improve the accuracy of 

detection even further. 
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1. Introduction 

Modern transportation systems depend on a sturdy 

road network that not only fuels economic progress 

but also protects public welfare. Well-maintained 

roads facilitate smooth travel, cut down on vehicle 

operating costs, and decrease accident risks. 

However, over time, factors such as weather 

exposure, heavy traffic, and natural wear cause road 

surfaces to deteriorate. Road surface cracks are a 

common maintenance challenge that, if left untreated, 

can undermine the integrity of the roadway, drive up 

repair costs, and significantly endanger the safety of 

commuters. Traditionally, detecting road cracks has 

involved manual inspections by engineers and 

maintenance crews using visual evaluations and 

specialized instruments. Due to their intensive time 

requirements, reliance on manual labor, and 

susceptibility to human error, these methods fall short 

in effectively monitoring extensive road networks. 

With advancements in technology, automated 

detection systems have emerged as a more accurate 

and cost-effective alternative [2]. Deep learning, 

particularly through the application of Convolutional 

Neural Networks (CNNs), has significantly 

transformed the field of computer vision, emerging as 

a robust method for the automated detection of CNNs 

possess the ability to isolate fine image details, 

enabling them to reliably distinguish between areas 

affected by road cracks and those that remain 

about:blank
mailto:bhargavi.padakanti@cmrec.ac.in1
mailto:swathi.gajula@cmrec.ac.in2
mailto:mchandana545@gmail.com3


 

International Research Journal on Advanced Engineering 

and Management 

https://goldncloudpublications.com 

https://doi.org/10.47392/IRJAEM.2025.0171 

e ISSN: 2584-2854 

Volume: 03 

Issue: 04 April 2025 

Page No: 1050 - 1054 

 

   

                        IRJAEM 1051 

 

undamaged. This research harnesses deep learning to 

develop an intelligent system capable of real-time 

crack detection and classification, thereby reducing 

the dependence on manual inspections. However, the 

system still faces challenges. For example, shadows, 

occlusions, uneven surfaces, and background noise 

can occasionally result in detection errors. Moreover, 

developing reliable deep learning models relies on 

the availability of extensive, accurately labeled 

datasets—a resource that is not always easy to secure. 

Future improvements may include integrating 

additional sensor modalities, such as LiDAR and 

thermal imaging, as well as leveraging adaptive 

learning techniques to further enhance model 

performance [1]. 

 

 
Figure 1 Increase in Road Crack Incidents 

Over the Years 

 

2. Proposed Method  

Given an image of pavement, the goal of a crack 

detection task is to identify whether a certain pixel 

belongs to a crack.To overcome this issue, the 

method leverages a Convolutional Neural Network 

(ConvNet) that is trained using meticulously 

annotated image patches. This allows the network to 

reliably determine whether each patch includes the 

relevant features. For clarity, image patches are 

categorized as "positive" if they contain cracks and 

as "negative" if they do not. In this study, every patch 

is examined and categorized based on these 

established criteria. As positive if its center is a crack 

pixel or is located close to one; otherwise, it is 

marked as negative [3].   

 
Figure 2 Illustration of the Architecture of the 

Proposed ConvNet 

 

2.1 Data preparation   

We assembled a dataset of over 500 pavement 

images, each with a resolution of 3264 × 2448 

pixels, captured on the Temple University campus 

using a smartphone. Multiple annotators provided 

labels for each image. To strike a balance between 

computational efficiency and detection accuracy, 

each sample consists of a 99×99pixel image patch 

with 3 channels (RGB), derived through the 

following sampling method:  A patch is designated 

as positive if its center lies within 5 pixels of the 

crack's centroid; otherwise, it is deemed negative.  

To reduce redundancy among training samples, it's 

essential to keep the overlap between two positive 

patches (P1 and P2) minimal. This overlap is 

quantified by the ratio O = area(P1 ∩ P2) / area(P1 

 P2), which should remain low. In this study, we 

maintain a distance of d = 0.75w between the 

centers of adjacent patches, where w denotes the 

width of each patch. For negative patches, adjacent 

patches must not overlap at all.  At each patch center 

c, candidate patches are rotated by a random angle 

α, which is selected from a range between 0° and 

360°. This technique is crucial for augmenting the 

number of crack samples, especially since such 

patches constitute a small fraction of the collected 

images. From this sampling process, we use 

640,000 samples for training, 160,000 samples for 

cross-validation of the ConvNet, and 200,000 

samples for testing. The number of crack and non-

crack patches is balanced across all three datasets. 

From this sampling process, we use 640,000 

samples for training, 160,000 samples for cross-

validation of the ConvNet, and 200,000 samples for 
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testing. The number of crack and non-crack patches 

is balanced across all three datasets. Figure 2 shows 

Illustration of the architecture of the proposed 

ConvNet. 

2.2 ConvNet Architecture 

Figure 1 illustrates the ConvNet architecture, where 

"conv" denotes the convolutional layers, "mp" 

indicates the maxpooling layers, and "fc" represents 

the fully-connected layers [4]. Essentially, the 

network functions as a hierarchical feature extractor 

by converting raw pixel values from All 

convolutional filter kernels are learned in a 

supervised fashion using a labeled dataset [5]. Each 

convolutional layer of the ConvNet applies 

maxpooling operations to condense feature responses 

from adjacent pixels, allowing the network to identify 

features that are invariant to the spatial location of 

objects within the images. Finally, fully connected 

layers perform the classification. Due to the exclusive 

nature of the crack detection issue (either crack or no 

crack), a softmax layer serves as the final layer of the 

ConvNet, which calculates the probability of each 

class based on the given input patch. Let the training 

dataset be denoted as S = {x(i), y(i)} for i = 1, 2, …, 

m, where m is the total number of image patches, x(i) 

represents the i-th image patch, and y(i) is its 

corresponding label. its associated label from the set 

{0,1}. indicates its class. If y(i) = 1, then x(i) is a 

positive patch; otherwise, it is negative. Let z(i)j 

denote the output of unit j in the last layer for x(i). 

The probability that the label y(i) of x(i) is j can be 

expressed as:   

 
The associated cost function is given by:  

  

 
 

here k = 2, m is the total number of patches, and 

(\mathbf{1}{\cdot}) is the indicator function. 

2.3 ConvNet Training    

The goal of training a ConvNet is to diversify the 

training data, thereby reducing the risk of overfitting. 

To accomplish this, a dropout layer is inserted 

between two fully connected layers, randomly setting 

each neuron's output to zero with a 50% chance to 

avoid overly complex co-adaptations. The training 

process is significantly accelerated by using graphics 

processing units (GPUs). Moreover, using rectified 

linear units (ReLU) as the activation function boosts 

computational efficiency, surpassing traditional 

functions like the hyperbolic tangent (tanh) and 

sigmoid during both training and evaluation. The 

network is optimized via stochastic gradient descent 

(SGD) with a batch size of 48, a momentum of 0.9, 

and a weight decay of 0.0005. Typically, fewer than 

20 epochs are needed to reach a minimum on the 

validation set. Processing a Testing Image When 

processing a test image, the ConvNet calculates a 

probability for each pixel to reflect the likelihood that 

it represents a crack, resulting in a detailed 

probability map of the entire image. Drawing on 

methodologies from previous studies, the probability 

assigned to a specific pixel can be calculated by 

taking the average of the probabilities {P1,...,PN} 

from each patch generated by applying random 

rotations around that pixel, c. This is expressed as:  

 

 
 

Here, (Pi(c)) represents the ConvNet's predicted 

classification probability for the i-th patch at pixel 

c, with N fixed at 5 to maintain computational 

efficiency. The ConvNet possesses a greater 

number of degrees of freedom, which leads it to 

have high variance and low bias. Consequently, the 

count of crack patches is considerably lower than 

that of background patches in an image. This 

discrepancy may cause the ConvNet to overestimate 

the crack probability, necessitating the use of an 

appropriate threshold.  Figure 3 shows ROC Curves. 

Define precision and recall as:   
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Then, the F1score is expressed as   

 
All experiments were conducted on a computer 

equipped with an Intel Xeon E3 1241 V3 processor 

running at 3.5GHz, 8GB of RAM, and a NVidia 

Quadro K220 GPU. We developed the convolutional 

neural network (ConvNet) using the Caffe framework 

and trained it using a 5-fold cross-validation 

approach. To evaluate our method, we compared it 

against two other techniques: support vector 

machines (SVM) and Boosting. For the SVM, we 

utilized the LIBSVM library with a Gaussian radial 

basis function (RBF) kernel. We fine-tuned the 

parameters C and γ through 5-fold cross-validation to 

ensure optimal performance. For the Boosting 

method, we employed 100 weak classifiers, each with 

a maximum depth of 5, and trained the model using 

the OpenCV toolkit. In both cases, we selected the 

parameters that resulted in the lowest test error during 

cross-validation for our final comparisons. The 

features used to train the SVM and Boosting methods 

were based on the color and texture of each image 

patch, which were associated with a binary label 

indicating whether cracked pavement was present. 

The feature vector consisted of 93 dimensions, 

including color components, histograms of textons, 

and local binary pattern (LBP) descriptors within the 

patch. A detailed breakdown of the feature vector can 

be found in Table 1. Some of these features were 

adapted from prior studies, though unlike one of 

those studies, we intentionally excluded geometric 

information. Our goal was to develop a crack 

detection method that doesn’t rely on specific 

geometric details. To assess performance, we 

generated receiver operating characteristic (ROC) 

curves, which are shown in Fig. 2, and compiled a 

summary of the results in Table 2. The findings 

clearly demonstrate that the ConvNet outperformed 

both the SVM and Boosting methods in detecting 

cracks. Figure 4 shows Detection probabilities for 

non-crack. 

 

 
Figure 4 Detection Probabilities for Non-Crack 

 

these values represent the likelihood of the ConvNet 

identifying an image as non-crack. TN indicates true 

negatives. The proposed method, relying on 

ConvNet, classifies images correctly, highlighting 

that its learned discriminative features surpass the 

performance of manually crafted features in 

articulating intricate patch contexts. Figure 5 shows 

Probability maps [6]. 

 

Figure 5 Probability Maps 
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When a window extends beyond the image 

boundary, the missing pixels are reconstructed 

through mirroring. Figure 5 illustrates the results of 

crack detection across three different scenes. Each 

row in the figure represents the original crack image, 

ground truth, probability maps generated using SVM 

and Boosting methods, and the results produced by 

the ConvNet model. In the visualization, green pixels 

indicate cracks, while blue pixels represent non-

crack areas, with brighter regions reflecting higher 

confidence levels in detection [7].  The Support 

Vector Machine (SVM) struggles to differentiate 

cracks from the background, leading to 

misclassification of some crack regions. In 

comparison, the Boosting method achieves higher 

accuracy in detecting cracks but misclassifies certain 

background patches as cracks, resulting in scattered 

green areas within the image. Unlike these methods, 

the proposed ConvNet-based approach demonstrates 

significantly better performance, accurately 

distinguishing crack patches from background 

regions while minimizing false detections.   

Conclusions  
We have developed an automated road crack 

detection system utilizing deep convolutional neural 

networks (CNNs), where the model autonomously 

learns features from manually labeled image patches 

captured using an affordable sensor, such as a 

smartphone. To the best of our knowledge, this 

research represents one of the earliest 

implementations of deep learning techniques for 

road crack detection. Moving forward, our goal is to 

enhance the efficiency and accuracy of the proposed 

detection system while developing a cost-effective, 

real-time solution for large-scale road monitoring 

and maintenance. 
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