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Abstract

Reliable and meticulously maintained roadway infrastructure is essential for ensuring both ensuring safety
and operational prowess in transportation; nevertheless, even the slightest surface flaws and structural
shortcomings can swiftly morph into substantial safety threats and lead to increased repair costs if not
addressed promptly. To address these limitations, this research introduces an automated detection framework
that leverages deep learning—more specifically, Convolutional Neural Networks (CNNs)—to systematically
identify and categorize road surface anomalies. The framework is constructed utilizing a heterogeneous
dataset of road imagery, which equips it with the capability to differentiate cracks based on their severity and
classification. Its efficacy is further enhanced through preprocessing techniques such as image augmentation
and normalization. Designed for real-time implementation, the system can be operationalized on mobile and
drone platforms to facilitate comprehensive monitoring efforts. Experimental findings indicate notable
advancements in detection precision and a decrease in false positive rates, thereby bolstering more efficient
maintenance strategies and fostering sustainable infrastructure management. Future investigations may
integrate additional sensor modalities, including LiDAR and thermal imaging, to improve the accuracy of
detection even further.
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1. Introduction

Modern transportation systems depend on a sturdy
road network that not only fuels economic progress
but also protects public welfare. Well-maintained
roads facilitate smooth travel, cut down on vehicle
operating costs, and decrease accident risks.
However, over time, factors such as weather
exposure, heavy traffic, and natural wear cause road
surfaces to deteriorate. Road surface cracks are a
common maintenance challenge that, if left untreated,
can undermine the integrity of the roadway, drive up
repair costs, and significantly endanger the safety of
commuters. Traditionally, detecting road cracks has
involved manual inspections by engineers and
maintenance crews using visual evaluations and

specialized instruments. Due to their intensive time
requirements, reliance on manual labor, and
susceptibility to human error, these methods fall short
in effectively monitoring extensive road networks.
With advancements in technology, automated
detection systems have emerged as a more accurate
and cost-effective alternative [2]. Deep learning,
particularly through the application of Convolutional
Neural Networks (CNNs), has significantly
transformed the field of computer vision, emerging as
a robust method for the automated detection of CNNs
possess the ability to isolate fine image details,
enabling them to reliably distinguish between areas
affected by road cracks and those that remain
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undamaged. This research harnesses deep learning to
develop an intelligent system capable of real-time
crack detection and classification, thereby reducing
the dependence on manual inspections. However, the
system still faces challenges. For example, shadows,
occlusions, uneven surfaces, and background noise
can occasionally result in detection errors. Moreover,
developing reliable deep learning models relies on
the availability of extensive, accurately labeled
datasets—a resource that is not always easy to secure.
Future improvements may include integrating
additional sensor modalities, such as LiDAR and
thermal imaging, as well as leveraging adaptive
learning techniques to further enhance model
performance [1].

Crack Incidents

w
S
I=3
=3

2500

2000

1500

1000

Number of Reported Crack Incidents

w
=3
=3

0 Y J sl AT

2016 2018 2020 2022

Year

Figure 1 Increase in Road Crack Incidents
Over the Years

2. Proposed Method

Given an image of pavement, the goal of a crack
detection task is to identify whether a certain pixel
belongs to a crack.To overcome this issue, the
method leverages a Convolutional Neural Network
(ConvNet) that is trained using meticulously
annotated image patches. This allows the network to
reliably determine whether each patch includes the
relevant features. For clarity, image patches are
categorized as "positive™ if they contain cracks and
as "negative" if they do not. In this study, every patch
is examined and categorized based on these
established criteria. As positive if its center is a crack
pixel or is located close to one; otherwise, it is
marked as negative [3].
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Figure 2 Illustration of the Architecture of the
Proposed ConvNet

2.1 Data preparation
We assembled a dataset of over 500 pavement
images, each with a resolution of 3264 x 2448
pixels, captured on the Temple University campus
using a smartphone. Multiple annotators provided
labels for each image. To strike a balance between
computational efficiency and detection accuracy,
each sample consists of a 99x99pixel image patch
with 3 channels (RGB), derived through the
following sampling method: A patch is designated
as positive if its center lies within 5 pixels of the
crack’s centroid; otherwise, it is deemed negative.
To reduce redundancy among training samples, it's
essential to keep the overlap between two positive
patches (P1 and P2) minimal. This overlap is
quantified by the ratio O = area(P1 N P2) / area(P1
U P2), which should remain low. In this study, we
maintain a distance of d = 0.75w between the
centers of adjacent patches, where w denotes the
width of each patch. For negative patches, adjacent
patches must not overlap at all. At each patch center
¢, candidate patches are rotated by a random angle
a, which is selected from a range between 0° and
360°. This technique is crucial for augmenting the
number of crack samples, especially since such
patches constitute a small fraction of the collected
images. From this sampling process, we use
640,000 samples for training, 160,000 samples for
cross-validation of the ConvNet, and 200,000
samples for testing. The number of crack and non-
crack patches is balanced across all three datasets.
From this sampling process, we use 640,000
samples for training, 160,000 samples for cross-
validation of the ConvNet, and 200,000 samples for
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testing. The number of crack and non-crack patches
is balanced across all three datasets. Figure 2 shows
Illustration of the architecture of the proposed
ConvNet.

2.2 ConvNet Architecture
Figure 1 illustrates the ConvNet architecture, where
"conv" denotes the convolutional layers, "mp"
indicates the maxpooling layers, and "fc" represents
the fully-connected layers [4]. Essentially, the
network functions as a hierarchical feature extractor
by converting raw pixel values from All
convolutional filter kernels are learned in a
supervised fashion using a labeled dataset [5]. Each
convolutional layer of the ConvNet applies
maxpooling operations to condense feature responses
from adjacent pixels, allowing the network to identify
features that are invariant to the spatial location of
objects within the images. Finally, fully connected
layers perform the classification. Due to the exclusive
nature of the crack detection issue (either crack or no
crack), a softmax layer serves as the final layer of the
ConvNet, which calculates the probability of each
class based on the given input patch. Let the training
dataset be denoted as S = {x(i), y(i)} fori=1, 2, ...,
m, where m is the total number of image patches, x(i)
represents the i-th image patch, and y(i) is its
corresponding label. its associated label from the set
{0,1}. indicates its class. If y(i) = 1, then x(i) is a
positive patch; otherwise, it is negative. Let z(i)j
denote the output of unit j in the last layer for x(i).
The probability that the label y(i) of x(i) is j can be
expressed as:

¢ (1) 1)y e
ply™ =jlz;") = U

2ii=1"

(1)

The associated cost function is given by:

%
:_/'}lo:_', -T‘k (2)
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here k = 2, m is the total number of patches, and
(\mathbf{1}{\cdot}) is the indicator function.

2.3 ConvNet Training

The goal of training a ConvNet is to diversify the
training data, thereby reducing the risk of overfitting.
To accomplish this, a dropout layer is inserted
between two fully connected layers, randomly setting
each neuron's output to zero with a 50% chance to
avoid overly complex co-adaptations. The training
process is significantly accelerated by using graphics
processing units (GPUs). Moreover, using rectified
linear units (ReLU) as the activation function boosts
computational efficiency, surpassing traditional
functions like the hyperbolic tangent (tanh) and
sigmoid during both training and evaluation. The
network is optimized via stochastic gradient descent
(SGD) with a batch size of 48, a momentum of 0.9,
and a weight decay of 0.0005. Typically, fewer than
20 epochs are needed to reach a minimum on the
validation set. Processing a Testing Image When
processing a test image, the ConvNet calculates a
probability for each pixel to reflect the likelihood that
it represents a crack, resulting in a detailed
probability map of the entire image. Drawing on
methodologies from previous studies, the probability
assigned to a specific pixel can be calculated by
taking the average of the probabilities {P1,...,PN}
from each patch generated by applying random
rotations around that pixel, c. This is expressed as:

plel{Pile),..., Px(c)})

21 ©, 0

Here, (Pi(c)) represents the ConvNet's predicted
classification probability for the i-th patch at pixel
c, with N fixed at 5 to maintain computational
efficiency. The ConvNet possesses a greater
number of degrees of freedom, which leads it to
have high variance and low bias. Consequently, the
count of crack patches is considerably lower than
that of background patches in an image. This
discrepancy may cause the ConvNet to overestimate
the crack probability, necessitating the use of an
appropriate threshold. Figure 3 shows ROC Curves.
Define precision and recall as:
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true positive
P= ! )

true positive + false positive

true positive
R= | o

true positive + false negative

Then, the Flscore is expressed as

. 2PR
B o= PR (6)

All experiments were conducted on a computer
equipped with an Intel Xeon E3 1241 V3 processor
running at 3.5GHz, 8GB of RAM, and a NVidia
Quadro K220 GPU. We developed the convolutional
neural network (ConvNet) using the Caffe framework
and trained it using a 5-fold cross-validation
approach. To evaluate our method, we compared it
against two other techniques: support vector
machines (SVM) and Boosting. For the SVM, we
utilized the LIBSVM library with a Gaussian radial
basis function (RBF) kernel. We fine-tuned the
parameters C and y through 5-fold cross-validation to
ensure optimal performance. For the Boosting
method, we employed 100 weak classifiers, each with
a maximum depth of 5, and trained the model using
the OpenCV toolkit. In both cases, we selected the
parameters that resulted in the lowest test error during
cross-validation for our final comparisons. The
features used to train the SVM and Boosting methods
were based on the color and texture of each image
patch, which were associated with a binary label
indicating whether cracked pavement was present.
The feature vector consisted of 93 dimensions,
including color components, histograms of textons,
and local binary pattern (LBP) descriptors within the
patch. A detailed breakdown of the feature vector can
be found in Table 1. Some of these features were
adapted from prior studies, though unlike one of
those studies, we intentionally excluded geometric
information. Our goal was to develop a crack
detection method that doesn’t rely on specific

geometric details. To assess performance, we
generated receiver operating characteristic (ROC)
curves, which are shown in Fig. 2, and compiled a
summary of the results in Table 2. The findings
clearly demonstrate that the ConvNet outperformed
both the SVM and Boosting methods in detecting
cracks. Figure 4 shows Detection probabilities for
non-crack.

TN: p=76.5% TN: p=§6.2% 'I‘Np=665%1‘\1p=941%TNp=643%

Flgure 4 Detectlon Probabllltles for Non Crack

these values represent the likelihood of the ConvNet
identifying an image as non-crack. TN indicates true
negatives. The proposed method, relying on
ConvNet, classifies images correctly, highlighting
that its learned discriminative features surpass the
performance of manually crafted features in
articulating intricate patch contexts. Figure 5 shows
Probability maps [6].
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Figure 5 Probability Maps
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When a window extends beyond the image
boundary, the missing pixels are reconstructed
through mirroring. Figure 5 illustrates the results of
crack detection across three different scenes. Each
row in the figure represents the original crack image,
ground truth, probability maps generated using SVM
and Boosting methods, and the results produced by
the ConvNet model. In the visualization, green pixels
indicate cracks, while blue pixels represent non-
crack areas, with brighter regions reflecting higher
confidence levels in detection [7]. The Support
Vector Machine (SVM) struggles to differentiate
cracks from the background, leading to
misclassification of some crack regions. In
comparison, the Boosting method achieves higher
accuracy in detecting cracks but misclassifies certain
background patches as cracks, resulting in scattered
green areas within the image. Unlike these methods,
the proposed ConvNet-based approach demonstrates
significantly  better  performance, accurately
distinguishing crack patches from background
regions while minimizing false detections.
Conclusions

We have developed an automated road crack
detection system utilizing deep convolutional neural
networks (CNNs), where the model autonomously
learns features from manually labeled image patches
captured using an affordable sensor, such as a
smartphone. To the best of our knowledge, this
research  represents one of the earliest
implementations of deep learning techniques for
road crack detection. Moving forward, our goal is to
enhance the efficiency and accuracy of the proposed
detection system while developing a cost-effective,
real-time solution for large-scale road monitoring
and maintenance.
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