e ISSN: 2584-2854
Volume: 03
Issue:04 April 2025
Page No: 1086-1088

International Research Journal on Advanced Engineering
and Management
https://goldncloudpublications.com
https://doi.org/10.47392/IRJAEM.2025.0178

Integration of Artificial Intelligence into Software Component Reuse: An

Overview of Software Intelligence

J. Umal, V. Arun Kumar?, R. Karthikeyan?®, V. Lavanya?, P. Priyadharshini®

LAssistant Professor, Department of CSE, Jai Shriram Engineering College, Tirupur, Tamil Nadu, India.
2345UG Student, Department of CSE, Jai Shriram Engineering College, Tirupur, Tamil Nadu, India.

Email ID: umainformationtech@gmail.com?, arunkumarkumar4331@gmail.com?,
karthikramesh2103@gmail.com?®, lavanyalavy811@gmail.com*, priyaselvan40@gmail.com®

Abstract

Artificial Intelligence (Al) is transforming software component reuse by enhancing automation, efficiency, and
intelligent retrieval of reusable software artifacts. Traditional reuse methods face challenges in retrieving,
classifying, and recommending components due to the complexity of software repositories. Al-driven
techniques such as machine learning (ML), natural language processing (NLP), and knowledge graphs help
overcome these limitations by enabling intelligent categorization and recommendation. Software Intelligence
(S1) enhances reuse by employing data mining techniques to extract patterns from large repositories. A
centralized Al-powered repository improves component discovery, allowing developers to find and integrate
relevant components efficiently. NLP enhances semantic understanding, enabling better classification and
retrieval of software components. However, Al-driven software reuse presents challenges, including data
quality, interoperability, and Al model integration. Future research should focus on improving automation
through deep learning, refining repository structures, and optimizing recommendation systems. Ethical
concerns, such as bias in Al recommendations and intellectual property rights, must also be addressed.
Keywords: Artificial Intelligence (Al); Component Reuse; Data Mining; Machine Learning (ML); Software
Intelligence (SI)

1. Introduction

Software development is a time- consuming and
complex process, often requiring developers to write
code from scratch or modify existing solutions.
Software reuse a practice where existing software
components, libraries, and modules are used to build
new applications addresses this challenge by
improving efficiency, reducing costs, and
maintaining software quality. Traditional software
reuse mechanisms rely on manual searches,
repository indexing, and keyword-based retrieval,
which often lead to inefficiencies such as difficulty in
finding the right component, lack of metadata, and
inconsistencies in classification. The integration of
Al provides innovative solutions by enabling
automated component discovery, intelligent
classification, and personalized recommendations.
Al techniques such as ML, NLP, and data mining can
analyze large-scale software repositories to extract
meaningful insights, classify reusable components,

and recommend relevant modules based on past
usage patterns. It explores the role of Al in software
component reuse, emphasizing the creation of a
central repository enhanced with Al-driven data
mining techniques. The repository acts as a structured
storage system where reusable software components
are systematically cataloged, analyzed, and
recommended for efficient software development.
The repository acts as a structured storage system
where reusable software = components are
systematically cataloged, analyzed, and
recommended for efficient software development.
The integration of Al provides innovative solutions
by enabling automated component discovery,
intelligent classification, and personalized
recommendations. Intense survey is conducted on
various Artificial Intelligence algorithms applied to
measure reusability of the extracted component.
From the survey [1] it is concluded that Components

OPEN aAccsss IRIAEM

1086

about:blank
mailto:umainformationtech@gmail.com1

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 03
Issue:04 April 2025
Page No: 1086-1088

https://doi.org/10.47392/IRJAEM.2025.0178

Based Development fits best for modern applications
as it supports object-oriented paradigm. Besides, the
existing Artificial intelligence approaches lack is
efficient prediction of reusable module.
2. Software Intelligence in Software Component

Reuse

2.1. Definition

Intelligence

Software Intelligence (SI) refers to the application of
Al techniques to analyse, classify, and recommend
software components. It plays a critical role in
software reuse by improving component
discoverability, assessing component quality, and
identifying relationships between software artifacts.
[2]

2.2. Al Techniques in Software Intelligence
S| leverages various Al techniques to enhance
software reuse:

and Role of Software

e Machine Learning (ML): Predicts
component relevance based on past usage
patterns.

e Natural Language Processing (NLP):

Enhances the searchability of software
components by understanding code
documentation and comments.

e Deep Learning: Automates feature
extraction from large repositories and
improves component retrieval through neural
networks.

e Real-world examples of software intelligence
include GitHub, Copilot and OpenAl Codex,
which use Al to suggest reusable code
snippets based on natural language
descriptions.

3. Central Repository for Software Reuse

3.1. Structure and Functionality

e A central repository serves as a structured
storage system where software
components are systematically organized
for reuse. Al-enhanced repositories offer
several features:

e Metadata-driven search: Al extracts
metadata (e.g., function names,
dependencies, and compatibility) to
improve search accuracy. Automated
classification. ML models categorize

components based on their functionality
and usability.

e Recommendation systems: Al- driven
models suggest relevant components
based on past usage patterns and
developer preferences.

3.2. Centralized vs. Decentralized Repositories

e Centralized repositories (e.g., Maven,
npm, PyPl) store components in a single
location, ensuring easy access but
requiring robust security and scalability
measures.

e Decentralized repositories (e.q.,
blockchain-based software reuse
platforms) provide transparency and
security but require significant
computational resources.

3.3. Repository Design Considerations

¢ Indexing mechanisms to improve search
efficiency.

e Version control to manage updates and
prevent conflicts.

e Access control and security to
preventunauthorized modifications.

4. Data Mining Techniques for Component Reuse
4.1. Clustering

e Groups similar software components
based on attributes like functionality and
structure.

e Example: K-means clustering to
categorize reusable Python libraries.

4.2. Association Rule Mining

o Identifies frequently used component
combinations.

e Example: "If a project includes Library A,
it often includes Library B."

4.3. Text Mining

e Extracts meaningful patterns from code
documentation and comments.

e Example: NLP-based sentiment
analysis to assess code quality.

4.4. Anomaly Detection

o Identifies outliers in software components
(e.g., insecure or outdated libraries).

e Example: Al-driven security analysis to
detect vulnerable dependencies.

OPEN aAccsss IRIAEM

1087

about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 03
Issue:04 April 2025
Page No: 1086-1088

https://doi.org/10.47392/IRJAEM.2025.0178

A typical data mining workflow in software reuse
involves:
o Data collection from repositories.
e Preprocessing to clean and normalize
data.
e Feature extraction for
categorization.
e Model training and evaluation.
e Deployment of Al models for real- time
recommendations.
5. Al-Driven Approaches in Software Reuse

component

5.1. Machine Learning for Software
Reuse

ML models enhance software reuse by:
e Predicting relevant components

based on historical usage.
e Automating classification to
manual effort. [3]
5.2. Natural Language Processing (NLP)
e Extracts semantic meaning
documentation and code comments.
e Improves search accuracy through intent
recognition.
5.3. Knowledge Graphs
e Establish relationships between software
components, aiding in dependency
resolution.
e Example: Graph-based search engines for
component retrieval.
5.4. Large Language Models (LLMs) for
Software Reuse
e Al models like GPT-4 assist in generating
reusable code snippets based on natural
language queries
e Example: Al-assisted programming in
IDEs (e.g., GitHub Copilot).
6. Challenges and Future Directions
6.1. Challenges
e Data Quality: Inconsistent metadata
affects component classification.
e Computational Overhead: Al models
require significant processing power.
e Security Risks: Protecting repositories
from malicious modifications.
e Ethical Considerations: Ensuring fair

reduce

from

use and proper licensing of Al- generated
code.
6.2 Future Directions

e Explainable Al to improve transparency
in component recommendations.

e Cross-platform compatibility to support
different programming languages.

e Integration with DevOps workflows for
real-time software reuse automation.

e Federated learning for decentralized Al-
driven repositories.

Conclusion

The integration of Al into software reuse
revolutionizes software engineering by enhancing
retrieval efficiency, classification, and
recommendation quality. A central repository

enriched with Al-driven insights enables intelligent

software reuse, leading to improved productivity and

maintainability. Future advancements in Al will

further refine automation in software reuse systems,

ensuring more efficient and sustainable software

development practices.

References

[1]. Data Mining Tools and Techniques for

Mining Software Repositories: A Systematic
Review Authors: Ausaf Ahmad, Syed Asad
Alam, and Syed Tauhid Zuhori Published in:
Proceedings of the InternationalConference
on Computational Intelligence and Data
Science (ICCIDS 2018)

[2]. Intelligent Software Engineering: The
Significance of Artificial Intelligence
Techniques in Enhancing Software

Development Lifecycle Processes Authors:
Vaishnavi Kulkarni, Anurag Kolhe, and Jay
Kulkarni

[3]. Published in: Proceedings of the 21st
International Conference on Intelligent
Systems Design and Applications (ISDA
2021) An Approach to Data Mining of
Software Repositories in Terms of
Quantitative Indicators of the Development
Published in: Proceedings of the Sixth
International Scientific Conference
“Intelligent Information Technologies for
Industry” (IITT°22)

OPEN aAccsss IRIAEM

1088

about:blank

