

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0178

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1086-1088

 IRJAEM 1086

Integration of Artificial Intelligence into Software Component Reuse: An

Overview of Software Intelligence

J. Uma1, V. Arun Kumar2, R. Karthikeyan3, V. Lavanya4, P. Priyadharshini5
1Assistant Professor, Department of CSE, Jai Shriram Engineering College, Tirupur, Tamil Nadu, India.
2,3,4,5UG Student, Department of CSE, Jai Shriram Engineering College, Tirupur, Tamil Nadu, India.

Email ID: umainformationtech@gmail.com1, arunkumarkumar4331@gmail.com2,

karthikramesh2103@gmail.com3, lavanyalavy811@gmail.com4, priyaselvan40@gmail.com5

Abstract

Artificial Intelligence (AI) is transforming software component reuse by enhancing automation, efficiency, and

intelligent retrieval of reusable software artifacts. Traditional reuse methods face challenges in retrieving,

classifying, and recommending components due to the complexity of software repositories. AI-driven

techniques such as machine learning (ML), natural language processing (NLP), and knowledge graphs help

overcome these limitations by enabling intelligent categorization and recommendation. Software Intelligence

(SI) enhances reuse by employing data mining techniques to extract patterns from large repositories. A

centralized AI-powered repository improves component discovery, allowing developers to find and integrate

relevant components efficiently. NLP enhances semantic understanding, enabling better classification and

retrieval of software components. However, AI-driven software reuse presents challenges, including data

quality, interoperability, and AI model integration. Future research should focus on improving automation

through deep learning, refining repository structures, and optimizing recommendation systems. Ethical

concerns, such as bias in AI recommendations and intellectual property rights, must also be addressed.

Keywords: Artificial Intelligence (AI); Component Reuse; Data Mining; Machine Learning (ML); Software

Intelligence (SI)

1. Introduction

Software development is a time- consuming and

complex process, often requiring developers to write

code from scratch or modify existing solutions.

Software reuse a practice where existing software

components, libraries, and modules are used to build

new applications addresses this challenge by

improving efficiency, reducing costs, and

maintaining software quality. Traditional software

reuse mechanisms rely on manual searches,

repository indexing, and keyword-based retrieval,

which often lead to inefficiencies such as difficulty in

finding the right component, lack of metadata, and

inconsistencies in classification. The integration of

AI provides innovative solutions by enabling

automated component discovery, intelligent

classification, and personalized recommendations.

AI techniques such as ML, NLP, and data mining can

analyze large-scale software repositories to extract

meaningful insights, classify reusable components,

and recommend relevant modules based on past

usage patterns. It explores the role of AI in software

component reuse, emphasizing the creation of a

central repository enhanced with AI-driven data

mining techniques. The repository acts as a structured

storage system where reusable software components

are systematically cataloged, analyzed, and

recommended for efficient software development.

The repository acts as a structured storage system

where reusable software components are

systematically cataloged, analyzed, and

recommended for efficient software development.

The integration of AI provides innovative solutions

by enabling automated component discovery,

intelligent classification, and personalized

recommendations. Intense survey is conducted on

various Artificial Intelligence algorithms applied to

measure reusability of the extracted component.

From the survey [1] it is concluded that Components

about:blank
mailto:umainformationtech@gmail.com1

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0178

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1086-1088

 IRJAEM 1087

Based Development fits best for modern applications

as it supports object-oriented paradigm. Besides, the

existing Artificial intelligence approaches lack is

efficient prediction of reusable module.

2. Software Intelligence in Software Component

Reuse

2.1. Definition and Role of Software

Intelligence

Software Intelligence (SI) refers to the application of

AI techniques to analyse, classify, and recommend

software components. It plays a critical role in

software reuse by improving component

discoverability, assessing component quality, and

identifying relationships between software artifacts.

[2]

2.2. AI Techniques in Software Intelligence

SI leverages various AI techniques to enhance

software reuse:

 Machine Learning (ML): Predicts

 component relevance based on past usage

patterns.

 Natural Language Processing (NLP):
Enhances the searchability of software

components by understanding code

documentation and comments.

 Deep Learning: Automates feature

extraction from large repositories and

improves component retrieval through neural

networks.

 Real-world examples of software intelligence

include GitHub, Copilot and OpenAI Codex,

which use AI to suggest reusable code

snippets based on natural language

descriptions.

3. Central Repository for Software Reuse

3.1. Structure and Functionality

 A central repository serves as a structured

storage system where software

components are systematically organized

for reuse. AI-enhanced repositories offer

several features:

 Metadata-driven search: AI extracts

metadata (e.g., function names,

dependencies, and compatibility) to

improve search accuracy. Automated

classification: ML models categorize

components based on their functionality

and usability.

 Recommendation systems: AI- driven

models suggest relevant components

based on past usage patterns and

developer preferences.

3.2. Centralized vs. Decentralized Repositories

 Centralized repositories (e.g., Maven,

npm, PyPI) store components in a single

location, ensuring easy access but

requiring robust security and scalability

measures.

 Decentralized repositories (e.g.,

blockchain-based software reuse

platforms) provide transparency and

security but require significant

computational resources.

3.3. Repository Design Considerations

 Indexing mechanisms to improve search

efficiency.

 Version control to manage updates and

prevent conflicts.

 Access control and security to

preventunauthorized modifications.

4. Data Mining Techniques for Component Reuse

4.1. Clustering

 Groups similar software components

based on attributes like functionality and

structure.

 Example: K-means clustering to

categorize reusable Python libraries.

4.2. Association Rule Mining

 Identifies frequently used component

combinations.

 Example: "If a project includes Library A,

it often includes Library B."

4.3. Text Mining

 Extracts meaningful patterns from code

documentation and comments.

 Example: NLP-based sentiment

analysis to assess code quality.

4.4. Anomaly Detection

 Identifies outliers in software components

(e.g., insecure or outdated libraries).

 Example: AI-driven security analysis to

detect vulnerable dependencies.

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0178

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1086-1088

 IRJAEM 1088

A typical data mining workflow in software reuse

involves:

 Data collection from repositories.

 Preprocessing to clean and normalize

data.

 Feature extraction for component

categorization.

 Model training and evaluation.

 Deployment of AI models for real- time

recommendations.

5. AI-Driven Approaches in Software Reuse

5.1. Machine Learning for Software

Reuse

ML models enhance software reuse by:

 Predicting relevant components

based on historical usage.

 Automating classification to reduce

manual effort. [3]

5.2. Natural Language Processing (NLP)

 Extracts semantic meaning from

documentation and code comments.

 Improves search accuracy through intent

recognition.

5.3. Knowledge Graphs

 Establish relationships between software

components, aiding in dependency

resolution.

 Example: Graph-based search engines for

component retrieval.

5.4. Large Language Models (LLMs) for

Software Reuse

 AI models like GPT-4 assist in generating

reusable code snippets based on natural

language queries

 Example: AI-assisted programming in

IDEs (e.g., GitHub Copilot).

6. Challenges and Future Directions

6.1. Challenges

 Data Quality: Inconsistent metadata

affects component classification.

 Computational Overhead: AI models

require significant processing power.

 Security Risks: Protecting repositories

from malicious modifications.

 Ethical Considerations: Ensuring fair

use and proper licensing of AI- generated

code.

6.2 Future Directions

 Explainable AI to improve transparency

in component recommendations.

 Cross-platform compatibility to support

different programming languages.

 Integration with DevOps workflows for

real-time software reuse automation.

 Federated learning for decentralized AI-

driven repositories.

Conclusion

The integration of AI into software reuse

revolutionizes software engineering by enhancing

retrieval efficiency, classification, and

recommendation quality. A central repository

enriched with AI-driven insights enables intelligent

software reuse, leading to improved productivity and

maintainability. Future advancements in AI will

further refine automation in software reuse systems,

ensuring more efficient and sustainable software

development practices.

References

[1]. Data Mining Tools and Techniques for

Mining Software Repositories: A Systematic

Review Authors: Ausaf Ahmad, Syed Asad

Alam, and Syed Tauhid Zuhori Published in:

Proceedings of the InternationalConference

on Computational Intelligence and Data

Science (ICCIDS 2018)

[2]. Intelligent Software Engineering: The

Significance of Artificial Intelligence

Techniques in Enhancing Software

Development Lifecycle Processes Authors:

Vaishnavi Kulkarni, Anurag Kolhe, and Jay

Kulkarni

[3]. Published in: Proceedings of the 21st

International Conference on Intelligent

Systems Design and Applications (ISDA

2021) An Approach to Data Mining of

Software Repositories in Terms of

Quantitative Indicators of the Development

Published in: Proceedings of the Sixth

International Scientific Conference

“Intelligent Information Technologies for

Industry” (IITI’22)

about:blank

