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Abstract 

This project presents a cutting-edge tomato harvesting robot that combines advanced image processing and 

robotic manipulation to optimize the harvesting process. Manual tomato harvesting is labour-intensive and 

requires a significant workforce, especially during peak seasons. Labor shortages and rising wages increase 

production costs, making automation a more viable alternative. Human pickers may vary in their selection 

criteria, leading to inconsistent quality and harvesting of unripe tomatoes. Improper handling can cause 

bruising or mechanical damage, reducing the market value of tomatoes. Farmers struggle to track and 

optimize harvesting schedules, often leading to wastage or missed ripe tomatoes. An automated system with 

deep learning-based classification ensures uniform selection based on ripeness. A robotic system with a 

customized soft end-effector minimizes damage by ensuring gentle gripping and precise detachment. This 

robot uses a YOLOv8 model to detect tomatoes and determine if they are ripe, unripe or partially ripe. MiDaS 

depth estimation helps measure the exact position of tomatoes in 3D space for precise picking. A 6-DOF 

robotic arm moves towards the detected tomato using inverse kinematics for accuracy. A soft-gripper gently 

holds the tomato, while a scissor detaches it from the vine without damage. The robot moves on a track-based 

system, ensuring stable and smooth navigation in farms and greenhouses. The results demonstrate that the 

autonomous tomato harvesting robot is a feasible and effective solution for modern agriculture. By combining 

deep learning, computer vision and robotic automation, this system enhances yield efficiency, reduces post-

harvest losses and promotes sustainable farming. 
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1. Introduction

Agriculture is a vital industry facing challenges such 

as labor shortages, rising costs, harvesting 

inefficiencies and post-harvest crop losses. Among 

various crops, tomatoes require careful handling due 

to their delicate nature, making manual harvesting 

labor-intensive and prone to inefficiencies. To 

address these challenges, this project focuses on 

developing an intelligent tomato harvesting robot that 

leverages advanced robotics and artificial 

intelligence to enhance productivity and precision.  

The robot employs high-resolution cameras and 

sophisticated image processing algorithms to detect 

and classify ripe tomatoes. The system analyzes 

multiple parameters such as color, texture and size to 

ensure only mature, healthy tomatoes are harvested. 

Deep learning models trained on large datasets enable 

the robot to improve its accuracy over time, ensuring 

optimal picking decisions.  Instead of traditional 

wheeled or legged locomotion, the robot utilizes a 

track-based mobility system, which provides stable 

movement across uneven or muddy terrain, better 

traction in dense vegetation and improved 

adaptability to different field conditions. This 

enhances reliability, allowing the robot to operate 

effectively in both greenhouse and open-field 

environments without requiring complex terrain 
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mapping.  A robotic arm equipped with soft, adaptive 

grippers ensures damage-free tomato harvesting. The 

arm is designed with multiple degrees of freedom for 

precise movement and automated positioning to 

efficiently pick tomatoes from various plant heights 

and angles. Its human-like dexterity enables selective 

harvesting while minimizing contact with non-target 

areas.  The robot features real-time decision-making 

capabilities, allowing it to adapt to changing 

environmental conditions, prioritize harvesting based 

on ripeness levels and optimize picking sequences. It 

can also communicate with a central system for 

remote monitoring and control. These intelligent 

features maximize efficiency, reduce waste and 

enhance overall productivity.  To further optimize the 

harvesting process, the robot can be integrated into 

smart farming ecosystems through IoT connectivity 

for real-time data transmission, cloud-based analytics 

to improve decision-making and AI-driven predictive 

maintenance for uninterrupted operation. These 

advancements make the system scalable and 

adaptable for different agricultural setups.  By 

automating the harvesting process, the tomato 

harvesting robot reduces labor dependency, increases 

efficiency and minimizes crop losses. It ensures only 

ripe, healthy tomatoes are harvested, improving 

quality control and market value. The system also 

supports sustainable farming practices by lowering 

operational costs and optimizing resource utilization. 

Through the integration of robotics, AI and advanced 

image processing, this project presents a 

transformative solution for modern agriculture, 

paving the way for more precise, efficient and 

sustainable harvesting practices. [1] 

2. Related Work 

There are two types of research related to our project 

carried out by many researchers. Those are robotic 

manipulation and tomato detection. 

2.1. Robotic Manipulation 

Shiu et al. propose a system for autonomous fruit 

harvesting using a robotic arm, integrating a vision-

based approach with a manipulation model. The 

system uses RGB-D cameras to detect ripe fruits and 

estimate their positions accurately. The manipulation 

model guides the robot arm's trajectory for fruit 

harvesting. Experimental results show the system can 

harvest fruits effectively without causing damage [1]. 

Kim et al. introduce a robotic arm equipped with a 

vision system for autonomous tomato harvesting, 

combining a vision system with a picking algorithm 

to identify ripe tomatoes and remove them from 

vines. The system's accuracy and ability to handle the 

fruit carefully were demonstrated in experiments, 

showing great promise for future automation in 

agriculture [2]. Zhao et al. explore a multi-modal 

approach to autonomous tomato harvesting, 

combining RGB images and 3D depth data to detect 

ripe tomatoes in cluttered environments. The system, 

integrated with a robotic arm, can pick tomatoes with 

high precision and efficiency, reducing manual labor 

and improving the harvesting process. Jun et al. 

describe a tomato harvesting robot that integrates 3D 

perception, manipulation and an end-effector to 

automate the harvesting process. The system's 

effectiveness is demonstrated through testing, 

showing its capability for autonomous and efficient 

tomato harvesting [9]. 

2.2. Tomato Detection 

Wu et al. developed a vision-guided robotic system 

for tomato harvesting that uses machine learning 

algorithms to identify ripe tomatoes and robotic arms 

to pick them. The system uses support vector 

machines (SVM) and convolutional neural networks 

(CNN) to process images of tomatoes, achieving high 

classification accuracy. This system performs 

excellently in controlled environments and real-

world agricultural settings, offering a promising 

solution for automating the tomato harvesting process 

while minimizing damage [3].  Liu et al. 

proposed a deep learning-based approach for 

classifying the ripeness of tomatoes using image 

processing techniques. They used convolutional 

neural networks (CNN) to analyze the color and 

texture of tomatoes, determining ripeness levels with 

high accuracy. This model works well in varying 

environmental conditions, reducing waste and 

improving efficiency in agricultural operations [4].  

Yang et al. presented a deep learning-based system 

for real-time detection of ripe tomatoes, training 

models on a large dataset of tomato images. This 

system can accurately detect ripe tomatoes under 

varying lighting and background conditions, 
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integrating with a robotic manipulator to 

autonomously harvest the tomatoes [5]. Lee et al. 

investigated the use of a hybrid deep-learning model 

for real-time tomato detection in agricultural settings, 

combining traditional image processing techniques 

with deep neural networks [6].   Song et al. 

proposed TDPPL-Net, a lightweight real-time tomato 

detection and localization system optimized for low-

cost industrial personal computers (IPCs). The 

system achieves an impressive 93.36 Mean Average 

Precision (mAP) accuracy and 31.41 FPS speed, 

making it suitable for complex agricultural 

environments [7]. Huang et al. introduced a fuzzy 

Mask R-CNN model for automatically identifying the 

ripeness of cherry tomatoes, achieving 98% accuracy 

in predicting ripeness [8]. 

2.3. Hardware Components 

The tomato harvesting robot is powered by a 

Raspberry Pi with 8GB RAM, ensuring smooth 

processing for real-time operations. It uses an RGB 

camera module for tomato detection and depth 

estimation. The L298N motor driver controls four 

12V DC motors for mobility, while six MG995 metal 

servos operate the robotic arm for precise tomato 

picking. The system integrates computer vision with 

YOLOv8 to detect ripe tomatoes and execute 

accurate grasping, making the harvesting process 

efficient and autonomous. [2] 

2.4. Software Components 

The tomato harvesting robot operates using 

Raspberry Pi OS, with YOLOv8 for real-time tomato 

detection and MiDaS for depth estimation. OpenCV 

is used for image processing, while TensorFlow 

supports deep learning tasks. Scikit-learn helps with 

any additional machine learning-based classification. 

pigpio and PCA9685 manage servo control, while 

PWM & GPIO libraries handle motor operations. The 

system integrates deep learning, image processing 

and motor control to enable precise and efficient 

tomato harvesting. [3] 

2.5. Simulation 

The simulation of a tomato harvesting robot in ROS 

has been successfully implemented, integrating 

multiple components for a complete system. Using 

URDF and Xacro, the robot’s mechanical structure, 

including its robotic arm and end-effector, has been 

modeled. In Gazebo, a virtual farm environment with 

tomato plants has been created for realistic testing. 

For perception, YOLOv8 has been integrated for real-

time tomato detection, along with MiDaS for depth 

estimation, enabling precise grasping. Motion 

planning has been implemented using MoveIt! to 

efficiently control the robotic arm’s movements. 

Additionally, ROS nodes handle control and 

navigation, ensuring smooth operation. This 

simulation provides a reliable platform for testing and 

refining the robot’s performance before real-world 

deployment.  The 3D model of the robot shown in 

(Figure 1) 

 

 
Figure 1 Robot 3D Model 

 

2.6. Environment Setup 

The glasshouse serves as the main structure where the 

robot operates, providing a controlled environment 

for tomato cultivation. Inside the glasshouse, 

individual tomato plants are placed in tomato plant 

pots, simulating real farming conditions. In the 

Gazebo framework, the "world" refers to a 

comprehensive environment encompassing objects, 

global parameters and physics features, with default 

settings predefined by Gazebo. This world consists of 

both static and dynamic elements. Static objects, such 

as support frames, lighting systems and greenhouse 

structures, are defined by their visual and collision 

geometry. In contrast, dynamic objects, including 

robotic harvesters and conveyor systems, not only 

have visual and collision geometry but also possess 

inertia information, which influences their mobility 

and interactions within the environment. FIG 2 

represents the glasshouse for the simulation 

environment. (Figure 2) [4] 
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Figure 2 Glasshouse in Gazebo 

 

2.7. Tomato Model 

Each tomato plant consists of several components: 

the stem, which serves as the main structure 

supporting the leaves; the leaves, which are modeled 

to resemble real tomato plant foliage for accurate 

simulation; and the fruits, representing tomatoes at 

different growth stages, as shown in Figure 1. In the 

Gazebo universe, objects can be created using various 

methods, including 3D modeling tools, conventional 

geometric shapes, or importing from the model 

database. The environment consists of various 

objects, including the greenhouse landscape, 

supporting stands, tomato plants at different growth 

stages, ripe and unripe tomatoes, stems and leaves, all 

contributing to a realistic farming simulation. FIG 3 

represents the tomato leaves and FIG 4 represents the 

tomato design. (Figure 3) 

 

 
Figure 3 Tomato Leaves 

 

 

Figure 4 Tomato Design in Blender 

3. Methodology 

The robot’s working has split into three major 

sections. These are Track Based Movement System, 

Tomato Detection, Grasping of Tomato from the 

plant.  

3.1. Track-Based Movement System 

The tomato harvesting robot operates on a track-

based locomotion system to ensure precise navigation 

within the controlled agricultural environment. 

Instead of conventional autonomous navigation, the 

system follows a predefined track, guaranteeing 

systematic traversal along crop rows. The track-based 

mechanism eliminates the need for complex 

localization algorithms, thereby reducing 

computational overhead and enhancing operational 

reliability. Movement is actuated using high-torque 

DC motors equipped with quadrature encoders for 

real-time velocity and position feedback. An 

electromechanical control unit regulates motor speed 

and ensures synchronized movement. The system 

optimizes power efficiency, minimizes mechanical 

drift and facilitates consistent harvesting cycles. 

Block diagram of the proposed system shown in 

(Figure 5) [5] 

 

 
Figure 5 Block Diagram of the Proposed System 

 

3.2. Tomato Detection Through Deep 

Learning 

The tomato detection module leverages YOLOv8, a 

state-of-the-art convolutional neural network 
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optimized for real-time agricultural vision tasks. The 

robot's high-resolution RGB camera module captures 

images, which are processed through YOLOv8 for 

precise tomato localization, ripeness estimation and 

anomaly detection. Instead of traditional depth-

sensing LiDAR systems, the robot employs MiDaS 

depth prediction, which reconstructs 3D spatial 

information from monocular RGB inputs, enabling 

accurate fruit positioning. The data pipeline consists 

of image acquisition, annotation preprocessing, 

dataset augmentation and neural network training. 

Images are labelled in YOLO format with bounding 

box coordinates defining tomato positions. The 

trained model operates efficiently on the Raspberry 

Pi 8GB RAM, utilizing TensorFlow Lite and ONNX 

optimizations for low-latency inference. The system 

enhances automated harvesting efficiency by 

identifying fruit maturity levels, disease symptoms 

and occluded objects, improving yield estimation and 

quality control. Tomato detection is shown in (Figure 

6) 

 

 
Figure 6 Tomato Detection 

 

3.3. Tomato Grasping with Soft Gripper 

Tomato grasping is executed by a 6-DOF robotic 

manipulator controlled via six MG995 metal-geared 

servo motors. The grasping framework integrates 

deep learning-based object detection for tomato 

localization, while MiDaS depth estimation provides 

real-time 3D spatial coordinates. Inverse kinematics 

algorithms compute the optimal joint configurations 

to align the soft robotic gripper with the detected 

fruit. The grasping workflow follows sequential 

stages: approach trajectory planning, pre-grasp 

adjustment, adaptive grasp execution and force-

feedback validation. A pneumatic or elastomer-based 

soft gripper ensures delicate handling, mitigating 

potential fruit bruising. Real-time proprioceptive 

feedback from force sensors and vision-based slip 

detection allows dynamic grip force modulation, 

ensuring precise harvesting. (Figure 7) [7] 

 

 
Figure 7 Work Flow 

 

The fusion of computer vision, real-time control 

systems and intelligent grasp planning enhances 

adaptability in unstructured farming environments, 

leading to superior harvesting accuracy and minimal 

about:blank


 

International Research Journal on Advanced Engineering 

and Management 

https://goldncloudpublications.com 

https://doi.org/10.47392/IRJAEM.2025.0183 

e ISSN: 2584-2854 

Volume: 03 

Issue:04 April 2025 

Page No: 1122-1128 

 

   

                        IRJAEM 1127 

 

produce damage. Work flow of the proposed system 

shown in (Figure 7) [8] 

4. Results and Discussion 

4.1. Results  

The tomato detection system, developed using deep 

learning techniques, was tested in controlled 

greenhouse environments to accurately detect both 

ripe and unripe tomatoes. The system achieved a 

precision of 92%, a recall of 89% and a mean average 

precision of 90.5%. The detection was tested under 

different lighting and environmental conditions, with 

minimal effect on detection performance due to the 

robust training dataset. 

4.2. Discussion 

The system also performed well in the real-time 

processing of Video streams, achieving an inference 

rate of approximately 25 frames per second (FPS) on 

a Raspberry Pi. The tomato detection project 

demonstrates significant advancements in 

autonomous agricultural robots using deep learning. 

However, there are several limitations, such as 

occlusion issues, overlapping fruits and training 

dataset limitations. Future work could include 

integrating additional sensors, enhancing data 

augmentation, fine-tuning the detection model with a 

more diverse dataset and implementing a hybrid 

model combining object detection and semantic 

segmentation. By continuing to enhance the detection 

system and integrating advanced multi-modal sensor 

fusion, autonomous robotic harvesting could be 

seamlessly realized for large-scale commercial 

farming. 

Conclusion  

This project successfully addresses the challenges 

associated with tomato harvesting, including labour 

shortages, inefficiencies and the need for gentle 

handling of delicate fruits. The track-based mobility 

system provides stable and efficient movement across 

various field conditions, eliminating the limitations 

of traditional wheeled platforms. The system adapts 

to changing environmental conditions by integrating 

real-time decision-making algorithms, further 

optimizing performance. These results confirm that 

the proposed solution is a viable and scalable 

approach to addressing the limitations of manual 

tomato harvesting. Future work may focus on 

improving system robustness, expanding adaptability 

to different crop types and integrating AI-driven 

predictive maintenance for enhanced reliability. With 

further advancements, this technology can play a 

crucial role in modernizing agricultural practices, 

making them more efficient, sustainable and 

economically viable. [9] 
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