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Abstract

This project presents a cutting-edge tomato harvesting robot that combines advanced image processing and
robotic manipulation to optimize the harvesting process. Manual tomato harvesting is labour-intensive and
requires a significant workforce, especially during peak seasons. Labor shortages and rising wages increase
production costs, making automation a more viable alternative. Human pickers may vary in their selection
criteria, leading to inconsistent quality and harvesting of unripe tomatoes. Improper handling can cause
bruising or mechanical damage, reducing the market value of tomatoes. Farmers struggle to track and
optimize harvesting schedules, often leading to wastage or missed ripe tomatoes. An automated system with
deep learning-based classification ensures uniform selection based on ripeness. A robotic system with a
customized soft end-effector minimizes damage by ensuring gentle gripping and precise detachment. This
robot uses a YOLOv8 model to detect tomatoes and determine if they are ripe, unripe or partially ripe. MiDaS
depth estimation helps measure the exact position of tomatoes in 3D space for precise picking. A 6-DOF
robotic arm moves towards the detected tomato using inverse kinematics for accuracy. A soft-gripper gently
holds the tomato, while a scissor detaches it from the vine without damage. The robot moves on a track-based
system, ensuring stable and smooth navigation in farms and greenhouses. The results demonstrate that the
autonomous tomato harvesting robot is a feasible and effective solution for modern agriculture. By combining
deep learning, computer vision and robotic automation, this system enhances yield efficiency, reduces post-
harvest losses and promotes sustainable farming.
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1. Introduction

Agriculture is a vital industry facing challenges such
as labor shortages, rising costs, harvesting
inefficiencies and post-harvest crop losses. Among
various crops, tomatoes require careful handling due
to their delicate nature, making manual harvesting
labor-intensive and prone to inefficiencies. To
address these challenges, this project focuses on
developing an intelligent tomato harvesting robot that
leverages advanced robotics and artificial
intelligence to enhance productivity and precision.
The robot employs high-resolution cameras and
sophisticated image processing algorithms to detect
and classify ripe tomatoes. The system analyzes

multiple parameters such as color, texture and size to
ensure only mature, healthy tomatoes are harvested.
Deep learning models trained on large datasets enable
the robot to improve its accuracy over time, ensuring
optimal picking decisions. Instead of traditional
wheeled or legged locomotion, the robot utilizes a
track-based mobility system, which provides stable
movement across uneven or muddy terrain, better
traction in dense vegetation and improved
adaptability to different field conditions. This
enhances reliability, allowing the robot to operate
effectively in both greenhouse and open-field
environments without requiring complex terrain
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mapping. A robotic arm equipped with soft, adaptive
grippers ensures damage-free tomato harvesting. The
arm is designed with multiple degrees of freedom for
precise movement and automated positioning to
efficiently pick tomatoes from various plant heights
and angles. Its human-like dexterity enables selective
harvesting while minimizing contact with non-target
areas. The robot features real-time decision-making
capabilities, allowing it to adapt to changing
environmental conditions, prioritize harvesting based
on ripeness levels and optimize picking sequences. It
can also communicate with a central system for
remote monitoring and control. These intelligent
features maximize efficiency, reduce waste and
enhance overall productivity. To further optimize the
harvesting process, the robot can be integrated into
smart farming ecosystems through loT connectivity
for real-time data transmission, cloud-based analytics
to improve decision-making and Al-driven predictive
maintenance for uninterrupted operation. These
advancements make the system scalable and
adaptable for different agricultural setups. By
automating the harvesting process, the tomato
harvesting robot reduces labor dependency, increases
efficiency and minimizes crop losses. It ensures only
ripe, healthy tomatoes are harvested, improving
quality control and market value. The system also
supports sustainable farming practices by lowering
operational costs and optimizing resource utilization.
Through the integration of robotics, Al and advanced
image processing, this project presents a
transformative solution for modern agriculture,
paving the way for more precise, efficient and
sustainable harvesting practices. [1]

2. Related Work

There are two types of research related to our project
carried out by many researchers. Those are robotic
manipulation and tomato detection.

2.1. Robotic Manipulation

Shiu et al. propose a system for autonomous fruit
harvesting using a robotic arm, integrating a vision-
based approach with a manipulation model. The
system uses RGB-D cameras to detect ripe fruits and
estimate their positions accurately. The manipulation
model guides the robot arm's trajectory for fruit
harvesting. Experimental results show the system can

harvest fruits effectively without causing damage [1].
Kim et al. introduce a robotic arm equipped with a
vision system for autonomous tomato harvesting,
combining a vision system with a picking algorithm
to identify ripe tomatoes and remove them from
vines. The system's accuracy and ability to handle the
fruit carefully were demonstrated in experiments,
showing great promise for future automation in
agriculture [2]. Zhao et al. explore a multi-modal
approach to autonomous tomato harvesting,
combining RGB images and 3D depth data to detect
ripe tomatoes in cluttered environments. The system,
integrated with a robotic arm, can pick tomatoes with
high precision and efficiency, reducing manual labor
and improving the harvesting process. Jun et al.
describe a tomato harvesting robot that integrates 3D
perception, manipulation and an end-effector to
automate the harvesting process. The system's
effectiveness is demonstrated through testing,
showing its capability for autonomous and efficient
tomato harvesting [9].
2.2. Tomato Detection

Wu et al. developed a vision-guided robotic system
for tomato harvesting that uses machine learning
algorithms to identify ripe tomatoes and robotic arms
to pick them. The system uses support vector
machines (SVM) and convolutional neural networks
(CNN) to process images of tomatoes, achieving high
classification accuracy. This system performs
excellently in controlled environments and real-
world agricultural settings, offering a promising
solution for automating the tomato harvesting process
while minimizing damage [3]. Liu et al
proposed a deep learning-based approach for
classifying the ripeness of tomatoes using image
processing techniques. They used convolutional
neural networks (CNN) to analyze the color and
texture of tomatoes, determining ripeness levels with
high accuracy. This model works well in varying
environmental conditions, reducing waste and
improving efficiency in agricultural operations [4].
Yang et al. presented a deep learning-based system
for real-time detection of ripe tomatoes, training
models on a large dataset of tomato images. This
system can accurately detect ripe tomatoes under
varying lighting and background conditions,
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integrating with a robotic manipulator to
autonomously harvest the tomatoes [5]. Lee et al.
investigated the use of a hybrid deep-learning model
for real-time tomato detection in agricultural settings,
combining traditional image processing techniques
with deep neural networks [6]. Song et al.
proposed TDPPL-Net, a lightweight real-time tomato
detection and localization system optimized for low-
cost industrial personal computers (IPCs). The
system achieves an impressive 93.36 Mean Average
Precision (mAP) accuracy and 31.41 FPS speed,
making it suitable for complex agricultural
environments [7]. Huang et al. introduced a fuzzy
Mask R-CNN model for automatically identifying the
ripeness of cherry tomatoes, achieving 98% accuracy
in predicting ripeness [8].

2.3. Hardware Components
The tomato harvesting robot is powered by a
Raspberry Pi with 8GB RAM, ensuring smooth
processing for real-time operations. It uses an RGB
camera module for tomato detection and depth
estimation. The L298N motor driver controls four
12V DC motors for mobility, while six MG995 metal
servos operate the robotic arm for precise tomato
picking. The system integrates computer vision with
YOLOv8 to detect ripe tomatoes and execute
accurate grasping, making the harvesting process
efficient and autonomous. [2]

2.4. Software Components
The tomato harvesting robot operates using
Raspberry Pi OS, with YOLOVS for real-time tomato
detection and MiDasS for depth estimation. OpenCV
is used for image processing, while TensorFlow
supports deep learning tasks. Scikit-learn helps with
any additional machine learning-based classification.
pigpio and PCA9685 manage servo control, while
PWM & GPIO libraries handle motor operations. The
system integrates deep learning, image processing
and motor control to enable precise and efficient
tomato harvesting. [3]

2.5. Simulation
The simulation of a tomato harvesting robot in ROS
has been successfully implemented, integrating
multiple components for a complete system. Using
URDF and Xacro, the robot’s mechanical structure,
including its robotic arm and end-effector, has been

modeled. In Gazebo, a virtual farm environment with
tomato plants has been created for realistic testing.
For perception, YOLOV8 has been integrated for real-
time tomato detection, along with MiDaS for depth
estimation, enabling precise grasping. Motion
planning has been implemented using Movelt! to
efficiently control the robotic arm’s movements.
Additionally, ROS nodes handle control and
navigation, ensuring smooth operation. This
simulation provides a reliable platform for testing and
refining the robot’s performance before real-world
deployment. The 3D model of the robot shown in
(Figure 1)

Figure 1 Robot 3D Model

2.6. Environment Setup

The glasshouse serves as the main structure where the
robot operates, providing a controlled environment
for tomato cultivation. Inside the glasshouse,
individual tomato plants are placed in tomato plant
pots, simulating real farming conditions. In the
Gazebo framework, the "world" refers to a
comprehensive environment encompassing objects,
global parameters and physics features, with default
settings predefined by Gazebo. This world consists of
both static and dynamic elements. Static objects, such
as support frames, lighting systems and greenhouse
structures, are defined by their visual and collision
geometry. In contrast, dynamic objects, including
robotic harvesters and conveyor systems, not only
have visual and collision geometry but also possess
inertia information, which influences their mobility
and interactions within the environment. FIG 2
represents the glasshouse for the simulation
environment. (Figure 2) [4]
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Figuré 2 Glasshouse in Gazebo

2.7. Tomato Model

Each tomato plant consists of several components:
the stem, which serves as the main structure
supporting the leaves; the leaves, which are modeled
to resemble real tomato plant foliage for accurate
simulation; and the fruits, representing tomatoes at
different growth stages, as shown in Figure 1. In the
Gazebo universe, objects can be created using various
methods, including 3D modeling tools, conventional
geometric shapes, or importing from the model
database. The environment consists of various
objects, including the greenhouse landscape,
supporting stands, tomato plants at different growth
stages, ripe and unripe tomatoes, stems and leaves, all
contributing to a realistic farming simulation. FIG 3
represents the tomato leaves and FIG 4 represents the
tomato design. (Figure 3)

Figure 4 Tomato Design in Blender

3. Methodology
The robot’s working has split into three major
sections. These are Track Based Movement System,
Tomato Detection, Grasping of Tomato from the
plant.

3.1. Track-Based Movement System
The tomato harvesting robot operates on a track-
based locomotion system to ensure precise navigation
within the controlled agricultural environment.
Instead of conventional autonomous navigation, the
system follows a predefined track, guaranteeing
systematic traversal along crop rows. The track-based
mechanism eliminates the need for complex
localization algorithms, thereby  reducing
computational overhead and enhancing operational
reliability. Movement is actuated using high-torque
DC motors equipped with quadrature encoders for
real-time velocity and position feedback. An
electromechanical control unit regulates motor speed
and ensures synchronized movement. The system
optimizes power efficiency, minimizes mechanical
drift and facilitates consistent harvesting cycles.
Block diagram of the proposed system shown in
(Figure 5) [5]

Camera

A 4

6 DOF Robotic
Arm

Rasberry pi

A 4

Robot Base

Figure 5 Block Diagram of the Proposed System

3.2. Tomato  Detection
Learning

The tomato detection module leverages YOLOVS, a

state-of-the-art  convolutional neural network

Through  Deep
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optimized for real-time agricultural vision tasks. The
robot's high-resolution RGB camera module captures
images, which are processed through YOLOvV8 for
precise tomato localization, ripeness estimation and
anomaly detection. Instead of traditional depth-
sensing LiDAR systems, the robot employs MiDaS
depth prediction, which reconstructs 3D spatial
information from monocular RGB inputs, enabling
accurate fruit positioning. The data pipeline consists
of image acquisition, annotation preprocessing,
dataset augmentation and neural network training.
Images are labelled in YOLO format with bounding
box coordinates defining tomato positions. The
trained model operates efficiently on the Raspberry
Pi 8GB RAM, utilizing TensorFlow Lite and ONNX
optimizations for low-latency inference. The system
enhances automated harvesting efficiency by
identifying fruit maturity levels, disease symptoms
and occluded objects, improving yield estimation and
quality control. Tomato detection is shown in (Figure
6)

y 2 LY & o

" Figure 6 Tomato Detection

3.3. Tomato Grasping with Soft Gripper
Tomato grasping is executed by a 6-DOF robotic
manipulator controlled via six MG995 metal-geared
servo motors. The grasping framework integrates
deep learning-based object detection for tomato

localization, while MiDaS depth estimation provides
real-time 3D spatial coordinates. Inverse kinematics
algorithms compute the optimal joint configurations
to align the soft robotic gripper with the detected
fruit. The grasping workflow follows sequential
stages: approach trajectory planning, pre-grasp
adjustment, adaptive grasp execution and force-
feedback validation. A pneumatic or elastomer-based
soft gripper ensures delicate handling, mitigating
potential fruit bruising. Real-time proprioceptive
feedback from force sensors and vision-based slip
detection allows dynamic grip force modulation,
ensuring precise harvesting. (Figure 7) [7]

Tomato garden

Camera focused to

the First plant
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Is tomato
detected
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—#| nearby next plant

Depth and
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B
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last plant
' Tes

-— - —
7
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(if necessary)

Tomato plugged
and stored

.

Figure 7 Work Flow

The fusion of computer vision, real-time control
systems and intelligent grasp planning enhances
adaptability in unstructured farming environments,
leading to superior harvesting accuracy and minimal
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produce damage. Work flow of the proposed system
shown in (Figure 7) [8]
4. Results and Discussion

4.1. Results
The tomato detection system, developed using deep
learning techniques, was tested in controlled
greenhouse environments to accurately detect both
ripe and unripe tomatoes. The system achieved a
precision of 92%, a recall of 89% and a mean average
precision of 90.5%. The detection was tested under
different lighting and environmental conditions, with
minimal effect on detection performance due to the
robust training dataset.

4.2. Discussion
The system also performed well in the real-time
processing of Video streams, achieving an inference
rate of approximately 25 frames per second (FPS) on
a Raspberry Pi. The tomato detection project
demonstrates  significant  advancements  in
autonomous agricultural robots using deep learning.
However, there are several limitations, such as
occlusion issues, overlapping fruits and training
dataset limitations. Future work could include
integrating additional sensors, enhancing data
augmentation, fine-tuning the detection model with a
more diverse dataset and implementing a hybrid
model combining object detection and semantic
segmentation. By continuing to enhance the detection
system and integrating advanced multi-modal sensor
fusion, autonomous robotic harvesting could be
seamlessly realized for large-scale commercial
farming.
Conclusion
This project successfully addresses the challenges
associated with tomato harvesting, including labour
shortages, inefficiencies and the need for gentle
handling of delicate fruits. The track-based mobility
system provides stable and efficient movement across
various field conditions, eliminating the limitations
of traditional wheeled platforms. The system adapts
to changing environmental conditions by integrating
real-time decision-making algorithms, further
optimizing performance. These results confirm that
the proposed solution is a viable and scalable
approach to addressing the limitations of manual
tomato harvesting. Future work may focus on

improving system robustness, expanding adaptability
to different crop types and integrating Al-driven
predictive maintenance for enhanced reliability. With
further advancements, this technology can play a
crucial role in modernizing agricultural practices,
making them more efficient, sustainable and
economically viable. [9]
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