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Abstract 

This project aims to improve crop health monitoring through an integrated visual and textual feature 

extraction approach for the accurate detection of leaf diseases. By leveraging the Internet of Everything (IoE), 

the system enables real-time connectivity between agricultural assets and a mobile phone application. Visual 

data from field cameras capture high-resolution images of crop leaves, which undergo preprocessing and 

segmentation. Convolutional Neural Networks (CNNs) are employed to extract visual features indicative of 

disease patterns. In parallel, textual data from agricultural databases, expert reports, and farmer testimonials 

are processed using Natural Language Processing (NLP) techniques to extract relevant textual features 

describing disease symptoms and environmental conditions. The extracted visual and textual features are 

fused using multimodal deep learning models, which are trained on labeled datasets to identify specific leaf 

diseases accurately. The models' predictions are then integrated into IoE-enabled decision support systems. 

This system facilitates early detection, enabling timely intervention and minimizing crop losses. Continuous 

monitoring and updates enhance the system's accuracy over time, benefiting sustainable agriculture practices. 

Keywords: Crop health monitoring, Computer Vision, Convolutional Neural Networks, Deep Learning, Leaf 

disease detection, Integrated visual and textual feature extraction, Internet of Everything (IoE), Real-time 

connectivity, Agricultural assets, Mobile phone application, Field cameras.

 

1. Introduction 

Maintaining crop health and maximizing agricultural 

productivity hinge on the effective detection of plant 

diseases, a challenge that is traditionally addressed 

through visual inspection. However, these 

conventional methods are often encumbered by their 

reliance on manual labor, are time-intensive, and are 

prone to inaccuracies stemming from subjective 

assessments. The inherent limitations of these 

approaches result in delayed interventions and 

significant financial repercussions due to widespread 

crop damage and diminished yields. Factors such as 

fluctuating environmental conditions, variations in 

plant physiology, and the sheer scale of contemporary 

farming practices further exacerbate the difficulties in 

achieving precise and timely diagnosis, underscoring 

the imperative for automated, early-detection 

systems to mitigate losses and refine agricultural 

methodologies. This paper introduces an innovative 

multimodal strategy designed to overcome the 

shortcomings of unimodal plant disease detection 

techniques by synergistically integrating visual and 

textual data to enhance both accuracy and robustness. 

By harmonizing visual inputs, such as leaf imagery, 

with textual inputs, including expert annotations and 

agricultural reports, this system leverages the distinct 

advantages of each modality to improve the precision 

of disease identification and categorization. Existing 

research in plant disease detection predominantly 

concentrates on either visual or textual analysis in 

isolation. Visual methodologies commonly employ 

image processing techniques and advanced deep 

learning algorithms to analyze leaf characteristics, 
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such as variations in color and texture. Conversely, 

textual methodologies harness natural language 

processing (NLP) to discern disease patterns from 

extensive reports and datasets. Although these 

unimodal approaches have demonstrated promise, 

they often falter in intricate scenarios where visual 

manifestations are subtle, or textual data provides 

essential contextual understanding. To rigorously 

assess the efficacy of our multimodal system, we 

adopted a comprehensive evaluation framework. 

Initially, we assembled a unique dataset comprising 

plant disease images paired with corresponding 

textual descriptions. We then developed a 

sophisticated multimodal deep learning model that 

integrates convolutional neural networks (CNNs) for 

extracting visual features and recurrent neural 

networks (RNNs) for processing textual information. 

The model underwent thorough training and 

validation using a cross-validation protocol. The 

performance of our multimodal system was 

benchmarked against state-of-the-art unimodal 

methods (visual-only and text-only) using established 

metrics such as accuracy, precision, recall, and F1-

score. The empirical results of our evaluation 

unequivocally demonstrate that our multimodal 

system surpasses unimodal approaches across all 

performance metrics. Specifically, the multimodal 

system achieved a noteworthy average accuracy of 

95%, signifying a substantial 5-10% improvement 

over the most effective unimodal method. These 

findings underscore the tangible benefits of fusing 

visual and textual data for achieving more accurate 

and dependable plant disease detection. In 

summation, the superior performance of our 

multimodal system underscores the intrinsic value of 

synthesizing diverse data modalities for plant disease 

detection. The outcomes suggest that effectively 

leveraging both visual and textual information can 

pave the way for more efficacious, timely, and 

reliable disease identification, thereby facilitating 

prompt interventions and minimizing economic 

losses within the agricultural sector. Future research 

endeavors will prioritize expanding the breadth of the 

dataset and investigating advanced fusion 

methodologies to further enhance performance and 

broaden applicability within real-world agricultural 

settings. 

2. Existing System 

Traditional methods for plant disease detection rely 

on manual inspection, which is time-consuming, 

subjective, and often inaccurate due to human error. 

These conventional approaches require agricultural 

experts to analyze leaf discoloration, lesions, or 

texture changes visually, making early detection 

challenging. Delayed diagnosis can lead to disease 

progression, ultimately affecting crop yield and food 

security. To address these limitations, deep learning 

and IoT-based automated systems have emerged as 

promising solutions. Figure 1 shows Existing System 

Architecture. 

 
Figure 1 Existing System Architecture 

 

Table 1 Dataset Used (Existing System) 

Dataset Users Item Interaction 

Plant 

Village 
81,282 54,303 96,750 

 

One such approach, detailed in the existing research, 

introduces a Multi-Model Fusion Network (MMF-

Net) that integrates Convolutional Neural Networks 

(CNNs) with IoT-enabled sensor networks to 

enhance the detection of corn leaf diseases. Table 1 

shows Dataset Used (Existing system). This system 

combines three independent deep learning sub-

networks for disease classification: 

 RL-Block (ResNeXt-Inspired Model) – 

Extracts coarse-grained visual features from 

leaf images, capturing spatial patterns and 
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lesion formations. 

 PL-Block 1 (VGG-16-Based Model) – 

Enhances fine-grained feature extraction by 

expanding the perceptual area, identifying 

subtle disease symptoms. 

 PL-Block 2 (AlexNet-Based Model) – 

Incorporates real-world environmental 

parameters such as temperature, humidity, soil 

moisture, and air pressure, enabling context-

aware disease classification [6-9]. 

These extracted features are fused at the decision 

level using ensemble learning techniques, 

significantly improving accuracy. The majority 

voting scheme is applied to determine the final 

classification, achieving an accuracy of 99.23% in 

recognizing corn leaf diseases such as blight, 

common rust, and gray leaf spot. 

2.1 Limitations of the Existing System 

While MMF-Net demonstrates high accuracy and 

efficient disease classification, it has certain 

limitations: 

 Dependence on Environmental Conditions – 
IoT sensor data can vary due to fluctuating 

climate factors, potentially affecting 

classification consistency. 

 Dataset Limitations – The model relies on 

specific datasets, such as Plant Village, which 

may not fully represent real-world agricultural 

conditions. 

 Scalability Concerns – Implementing a CNN-

based IoT system on a large-scale agricultural 

setup requires significant infrastructure and 

computational power. 

 Limited Multimodal Integration – Although 

MMF-Net incorporates numerical 

environmental data, it does not utilize textual 

insights from agricultural databases, expert 

reports, or farmer testimonials, which can 

provide additional context for disease 

diagnosis. 

2.2 Need for an Enhanced System 

Given these limitations, an advanced multimodal 

approach is required—one that integrates textual and 

visual data to improve disease classification. By 

incorporating Natural Language Processing (NLP) 

techniques alongside CNN-based image processing, 

the system can leverage both visual symptoms and 

textual disease descriptions for more robust and 

accurate classification. Furthermore, real-time IoE 

connectivity can enhance the scalability and 

adaptability of disease detection systems, ensuring 

practical deployment in diverse agricultural settings. 

3. Related Work 
Several researchers have explored diverse 

methodologies for plant disease detection, leveraging 

advancements in deep learning, IoT, and machine 

learning. Hasibul Islam Peyal et al. [1] proposed a 

lightweight 2D CNN-based plant disease 

classification system, demonstrating promising 

accuracy in detecting dual-crop diseases. However, 

their reliance on high-quality datasets and model 

complexity poses challenges for scalability. 

Similarly, Jyoti Dinkar Bhosale et al. [2] applied 

machine learning algorithms for leaf disease 

detection, achieving high accuracy, but their deep 

learning-based approach required specialized 

expertise for maintenance and fine-tuning. Other 

studies, such as that of Shaik Thaseentaj and S. 

Sudhakar Ilango [3], have focused on region-specific 

crop disease detection using deep CNNs, achieving 

remarkable accuracy. However, the computational 

intensity of training deep CNN models limits their 

practical implementation in real-time applications. In 

contrast, Rubina Rashid et al. [4] integrated IoT with 

deep learning multi-models for early disease 

detection in corn plants, enabling proactive measures 

for crop health management. While their approach 

improved early intervention, its long-term 

adaptability required continuous system updates to 

handle evolving environmental factors. Additionally, 

multi-modal learning has been explored by 

researchers like Johnson Kolluri et al. [5], who fused 

visual and textual data to enhance plant disease 

classification. While fusion techniques improved 

accuracy, they also introduced significant 

computational demands and the risk of overfitting. 

Similarly, C. Ashwini and V. Sellam [8] implemented 

a hybrid 3D-CNN and LSTM approach, enhancing 

spatial-temporal analysis but increasing model 

complexity and resource requirements. Our research 

builds upon these studies by integrating both visual 

and textual feature extraction through a multimodal 
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deep learning framework. Unlike prior works that 

predominantly focused on either image-based 

classification or text-based agricultural insights, our 

system fuses high-resolution imagery with textual 

data from agricultural databases, expert reports, and 

farmer testimonials. This fusion enhances disease 

identification accuracy and provides contextualized 

insights for better decision-making. Moreover, by 

integrating the model into an IoE-enabled decision 

support system, our approach facilitates real-time 

disease detection and proactive intervention, 

addressing limitations such as data dependency, 

computational complexity, and model adaptability 

observed in prior studies. 

4. System Design  

 

 
Figure 2 Proposed Architecture 

 

The proposed system integrates visual and textual 

feature extraction for improved plant disease 

detection using deep learning, natural language 

processing (NLP), and the Internet of Everything 

(IoE). This section provides a comprehensive 

explanation of the system’s architecture, key 

components, and data processing pipeline. Figure 2 

shows Proposed Architecture. 

4.1  System Architecture 

The system follows a multimodal deep learning 

approach, where visual symptoms (image-based 

features) and textual information (expert 

descriptions, environmental factors) are combined to 

improve plant disease classification accuracy [10]. 

The architecture consists of the following modules: 

4.2 Data Acquisition Layer 
This layer is responsible for collecting both visual 

and textual data related to plant diseases. 

4.2.1 Visual Data Collection 

High-resolution images of crop leaves are captured 

using field cameras and mobile phone applications. 

The dataset consists of: 

 50,000 images from the Plant Village dataset. 

 20,000 real-world field images collected via 

mobile applications. 

 5,000 farmer reports from agricultural 

research papers. 

Images are collected under various lighting 

conditions and angles to ensure a diverse dataset. 

Sources: 

 Field cameras installed on agricultural sites 

for continuous monitoring. 

 Mobile phone applications allowing farmers 

to manually upload images. 

4.2.2 Textual Data Collection 

Text-based data is gathered from multiple sources: 

 Agricultural research databases (scientific 

literature, agronomy reports). 

 Farmer testimonials and expert reports 

(descriptions of observed plant 

symptoms). 

 Government and NGO guidelines for plant 

disease diagnosis and treatment. 

Named Entity Recognition (NER) is implemented 

using spaCy’s pre-trained agricultural domain model 
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for accurate term extraction. 

4.3 Data Preprocessing Layer 

Before analysis, both visual and textual data undergo 

preprocessing to improve system efficiency and 

accuracy. 

4.3.1 Visual Data Preprocessing 

 Image Resizing: Standardizing image 

dimensions to 224×224 pixels for model 

compatibility. 

 Normalization: Adjusting pixel intensity 

values using min-max scaling to enhance 

clarity. 

 Segmentation: Identifying and isolating 

diseased leaf regions using Mask R-CNN, 

trained on annotated images with optimized 

IoU (Intersection over Union) thresholds. 

 Noise Removal: Eliminating unnecessary 

background elements using Gaussian 

smoothing and morphological operations. 

 Data Augmentation: Random contrast 

adjustments, flipping, and Gaussian noise 

addition to improve robustness against real-

world image quality variations. 

4.3.2 Textual Data Preprocessing 

 Text Cleaning: Removing special characters, 

numbers, and irrelevant symbols. 

 Tokenization: Breaking text into words or 

phrases using NLTK’s word tokenizer. 

 Stemming & Lemmatization: Converting 

words to their root forms for consistency. 

 Named Entity Recognition (NER): 
Identifying key agricultural terms such as plant 

names, disease symptoms, and environmental 

factors. 

 Stopword Removal: Filtering out irrelevant 

words to retain disease-specific terms. 

4.4 Feature Extraction Layer 

After preprocessing, key features are extracted from 

both data types. 

4.4.1 Visual Feature Extraction 

 Convolutional Neural Networks (CNNs): 
Extract disease-related features such as color 

changes, lesions, and texture variations. 

 Mask R-CNN and Faster R-CNN: Used for 

object detection and precise segmentation of 

diseased leaf regions. 

 Deep Feature Analysis: The model recognizes 

complex patterns indicating bacterial, fungal, 

or viral infections. 

4.4.2 Textual Feature Extraction 

 TF-IDF (Term Frequency-Inverse 

Document Frequency): Identifies important 

disease-related terms in reports. 

 Text Classification: Categorizes disease-

related descriptions into fungal, bacterial, or 

viral infections using transformer-based 

models (BERT, RoBERTa). 

 Semantic Analysis: NLP models understand 

disease symptoms and their correlation with 

environmental factors. 

4.5 Multimodal Fusion & Deep Learning Model 

Once features are extracted, visual and textual data 

are combined to improve detection accuracy. 

4.5.1  Fusion Techniques 

Early Fusion: 

 Combines raw features from both modalities 

before passing them into the model. 

 Helps the model learn relationships between 

visual symptoms and text descriptions. 

Late Fusion: 

 Processes images and text separately before 

merging their results. 

 More suitable when different sources provide 

independent insights. 

Hybrid Fusion: 

 Uses both early and late fusion for flexibility. 

 CNN-extracted features are concatenated 

with TF-IDF vectorizer textual features 

before passing through a transformer-based 

fusion network. 

 The transformer applies self-attention 

mechanisms to prioritize disease-specific 

textual descriptions over generic agricultural 

reports. 

4.5.2 Disease Classification 

The multimodal deep learning model (CNN + NLP-

based Transformer) classifies plant diseases based 

on: 

 Visual patterns: Leaf spots, color changes. 

 Text descriptions: Symptoms, weather 

conditions. 

The system outputs a confidence score derived from 
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the SoftMax probability distribution of the model’s 

final layer, with a threshold of 0.7 for positive 

identification. 

4.6 Decision Support & IoE Integration 

After classification, the system provides real-time 

decision support to farmers. 

 The model is deployed on a cloud-based 

platform accessible via mobile or web 

applications. 

 Farmers receive real-time alerts about crop 

diseases. 

Decision Support System (DSS): 

 Provides personalized recommendations for 

disease treatment. 

 Suggests preventive measures based on 

historical disease patterns. 

IoT-Enabled Monitoring: 

 IoT-based sensors and alerts notify farmers of 

potential disease outbreaks, allowing timely 

intervention. 

 Automated treatment suggestions help in 

timely intervention, minimizing crop losses. 

4.7 Continuous Learning & System Updates 

The model continuously updates itself using new data 

to improve accuracy over time. 

 Retraining Cycles: The system is retrained 

periodically using newly labeled data from user 

feedback and real-world testing. 

 Crowdsourced Farmer Inputs: Farmers and 

agricultural experts provide real-world 

feedback, refining disease classifications. 

 Federated Learning: Future updates will 

integrate federated learning techniques to 

enhance model performance using on-device 

learning while preserving privacy. 

5. System Implementation  

The implementation of an intelligent plant disease 

detection system integrates multimodal deep learning 

techniques, leveraging both visual and textual data 

for accurate diagnosis. This section outlines the 

various stages of system implementation, focusing on 

data acquisition, preprocessing, feature extraction, 

multimodal deep learning models, and decision 

support systems [11-12]. The proposed system 

ensures efficient disease identification by fusing 

Convolutional Neural Networks (CNNs) for 

image-based feature extraction and Natural 

Language Processing (NLP) techniques for text-

based feature extraction. By combining these 

approaches, the system enhances accuracy and 

provides a real-time, IoE-enabled decision support 

mechanism for farmers. 
5.1  Data Acquisition 

Accurate plant disease detection begins with 

acquiring high-resolution image data and textual 

information from various sources. The system 

incorporates the following data collection strategies: 

5.1.1 Visual Data Collection 

 High-resolution field cameras capture detailed 

images of crop leaves in different 

environmental conditions. 

 The dataset comprises images sourced from 

publicly available repositories such as Plant 

Village and PlantDoc, ensuring a diverse set 

of disease manifestations. 

 To enhance real-time monitoring, IoT-enabled 

cameras continuously feed image data into the 

system. Figure 3 shows Summary of Plant 

Village Dataset. 

 

 
Figure 3 Summary of Plant Village Dataset 

 

5.1.2 Textual Data Collection 

 Textual data is collected from agricultural 

databases, expert reports, and farmer 

testimonials, detailing disease symptoms and 

environmental conditions. 

 Natural language inputs from farmer feedback 

systems and agricultural research papers 
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contribute to a comprehensive understanding of 

disease characteristics. Figure 4 shows Textual 

Feature Extraction of Potato Leaves. 

 

 
Figure 4 Textual Feature Extraction of Potato 

Leaves 
 

5.2 Data Preprocessing 
Preprocessing ensures that both visual and textual 

data are standardized, noise-free, and structured 

for feature extraction. 

5.2.1 Preprocessing of Visual Data 

 Image resizing and normalization 
standardize image dimensions and intensity 

levels. 

 Segmentation using Mask R-CNN isolates 

the diseased leaf regions from the background. 

 Illumination correction and histogram 

equalization improve image clarity under 

different lighting conditions [14]. 

 Data augmentation techniques, such as 

flipping, rotation, and contrast adjustments, are 

applied to enhance model generalization. 

5.2.2  Preprocessing of Textual Data 

 Text cleaning and tokenization break down 

raw textual data into structured formats. 

 Named Entity Recognition (NER) identifies 

key disease names, symptoms, and 

environmental factors. 

 Lemmatization and stemming standardize 

words to their base forms for uniformity. 

 Stopword removal filters out irrelevant words 

to retain disease-specific terms. 

5.3 Feature Extraction 

The system extracts meaningful features from both 

visual and textual data to support disease 

classification. 

5.3.1 Visual Feature Extraction 

 CNN-based architectures (Mask R-CNN, 

Faster R-CNN with ResNet-101) extract 

hierarchical visual features from segmented 

leaf images [13]. 

 Features such as color variations, lesion 

patterns, and texture anomalies are identified 

as disease indicators. 

 Deep learning filters adapt dynamically to 

disease-specific characteristics during model 

training. Figure 5 shows Comparison of 

Models. 

 

 
Figure 5 Comparison of Models 

 

5.3.2 Textual Feature Extraction 

 TF-IDF (Term Frequency-Inverse 

Document Frequency) identifies the most 

relevant words in agricultural texts. 

 Transformer-based models (BERT, 

ROBERTA) enhance contextual 

understanding of disease descriptions. 

 Supervised learning models (SVM, 

Decision Trees) classify disease-related 

text into predefined categories. 

5.4 Multimodal Deep Learning Model 

The integration of visual and textual features is 

achieved through multimodal deep learning 

techniques. 
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5.4.1 Fusion Strategies 

 Early Fusion: Combines visual and textual 

features at the feature extraction level, 

allowing the model to learn joint 

representations. 

 Late Fusion: Processes visual and textual 

data independently, then merges predictions 

to refine classification accuracy. 

 Hybrid Fusion: Employs both CNNs for 

images and Transformer-based models for 

text, ensuring robust classification. 

5.4.2 Model Training 

 The system is trained using supervised deep 

learning techniques on labeled datasets 

from agricultural research institutions. 

 Cross-validation ensures that the model 

generalizes well to unseen data. 

 The final model is optimized through 

hyperparameter tuning, ensuring a balance 

between accuracy and computational 

efficiency. 

5.5 Decision Support System 

Once trained, the multimodal model is integrated into 

an IoE-enabled decision support system that provides 

real-time disease detection insights. 

5.5.1 Real-Time Prediction and 

Connectivity 

 The trained model processes newly 

acquired visual and textual data, 

generating disease classifications and 

severity levels. 

 Cloud-based infrastructure enables remote 

access to predictions via a mobile 

application. 

 IoT-based sensors and alerts notify 

farmers of potential disease outbreaks, 

allowing timely intervention. 

5.5.2 Recommendations and Intervention 

Strategies 

 The system suggests treatment protocols 

based on historical agricultural data and 

expert recommendations. 

 Farmers receive personalized alerts tailored 

to specific crops, disease types, and 

environmental conditions. 

 The system facilitates community 

engagement, allowing farmers to share 

disease observations and receive expert 

feedback. 

5.6 Continuous Learning and Model Updates 

To ensure the system remains effective over time, 

continuous updates and feedback mechanisms are 

incorporated. 

5.6.1 Adaptive Learning 

 The model continuously learns from new 

disease cases, improving its prediction 

accuracy. 

 Retraining cycles are scheduled based on 

newly labeled data from user feedback. 

5.6.2 User Feedback Integration 

 Farmers and agricultural experts provide 

real-world feedback, which refines disease 

classifications. 

 Crowdsourced data from mobile 

application users enhances the system’s 

ability to detect emerging plant diseases. 

Figure 6 shows Overall Architecture. 

 
Figure 6 Overall Architecture 

 

The proposed system successfully integrates visual 

and textual data using deep learning-based 

multimodal techniques, enabling real-time, highly 

accurate plant disease detection [15-17]. The 

combination of CNN-based visual processing and 

NLP-driven textual analysis enhances diagnostic 

capabilities. By leveraging IoE connectivity, the 

system provides proactive decision support to 

farmers, ensuring timely intervention and effective 

disease management. Future advancements will 
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explore scalability, multilingual support, and 

enhanced interpretability for further improving 

precision agriculture solutions. 

6. System Evaluation 

6.1 Introduction 

The evaluation of the proposed plant disease 

detection system is crucial for assessing its accuracy, 

efficiency, and real-world applicability. This section 

outlines the performance metrics, experimental 

setup, comparative analysis, and validation 

strategies used to measure the effectiveness of the 

multimodal deep learning approach. The goal is to 

ensure that the system meets the requirements of high 

detection accuracy, robustness across different 

environmental conditions, and real-time usability in 

agricultural settings. 

6.2 Evaluation Metrics 

To quantitatively measure system performance, the 

following evaluation metrics are employed: 

6.2.1 Accuracy Metrics 

 Precision (P): Measures the proportion of 

correctly identified disease cases among the 

total predicted cases [18]. 

 Recall (R): Evaluates the ability of the 

model to identify all relevant disease cases. 

 F1-Score: A harmonic mean of precision 

and recall, balancing false positives and false 

negatives. 

 Overall Accuracy: The percentage of 

correctly classified images and textual 

inputs. 

6.2.2 Robustness Metrics 

 Cross-Dataset Evaluation: Testing the 

model on different datasets (e.g., Plant 

Village, PlantDoc) to measure 

generalization. 

 Illumination Variance Impact: Assessing 

system accuracy under varying lighting 

conditions. 

 Multi-language NLP Performance: 

Evaluating textual analysis in different 

regional languages. 

6.2.3 Efficiency Metrics 

 Inference Time: Measures the average time 

taken by the system to process and classify 

an image or text input. 

 Computational Overhead: Evaluates 

memory and processing power consumption 

to ensure scalability on mobile devices. 

 Real-Time Response: Examines latency in 

generating disease predictions and 

notifications. 

6.3 Experimental Setup 

6.3.1 Data Splitting and Preprocessing 

 The datasets are divided into training 

(70%), validation (15%), and testing 

(15%) subsets. 

 Standard preprocessing techniques, 

including image normalization, 

segmentation, and text cleaning, are 

applied. 

6.3.2 Hardware and Software 

Configuration 

 Hardware: Evaluations are conducted on a 

NVIDIA RTX 3050 GPU for deep learning 

tasks. 

 Software: The system is implemented using 

TensorFlow, PyTorch, OpenCV, and 

Hugging Face Transformers for NLP 

models. 

 Benchmarking Tools: Performance is 

benchmarked using TensorBoard, Scikit-

learn, and custom validation scripts. 

Figure 7 shows Result Comparison for 3 

Models. 

 

 
Figure 7 Result Comparison for 3 Models 

 

6.4 Comparative Analysis 

To validate the effectiveness of our approach, Table 

2 shows a comparative study is conducted against 

baseline models: 
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Table 2 Comparative Study Is Conducted 

Against Baseline Models 

Model 
Precisi

on 

Recal

l 

F1-

Scor

e 

Inferenc

e Time 

(ms) 

CNN 

(Baseline

) 

82.5% 78.9% 
80.6

% 
150 

Faster R-

CNN 
88.1% 85.7% 

86.9

% 
200 

Mask R-

CNN 
90.3% 87.2% 

88.7

% 
250 

Multimod

al Fusion 
93.5% 91.8% 

92.6

% 
300 

 

The results highlight that the multimodal fusion 

model outperforms single-modality models, 

demonstrating superior precision and recall at the 

cost of slightly increased inference time [19]. 

7. Real-World Validation 

To test the system in practical agricultural 

environments, on-field validation is conducted: 

7.1 Farmer-Based Testing 

 The model is deployed via a mobile 

application and tested by farmers in real-

world conditions. 

 Feedback is gathered on ease of use, 

accuracy, and practical usability. 

 Disease classifications are cross-verified with 

agricultural experts. 

7.2 IoT-Enabled Real-Time Evaluation 

 The system's ability to provide timely alerts 

for disease outbreaks is tested using IoT-

based sensors. 

 The effectiveness of automated treatment 

recommendations is assessed based on expert 

validation. 

Conclusion  
The proposed plant disease detection system 

integrates multimodal deep learning, combining 

visual and textual data for precise classification. 

Using CNNs for image analysis and NLP for text 

processing, it enhances diagnostic accuracy and 

enables real-time disease detection, outperforming 

single-modality models. 

Key Contributions 

 Improved Accuracy: Multimodal fusion 

reduces false positives and negatives, 

achieving an F1-score of 92.6%. 

 Scalability & Real-Time Support: IoT-

based cloud integration enables instant 

disease alerts and mobile accessibility. 

 Robustness: Trained on diverse datasets 

(Plant Village, PlantDoc) for adaptability 

across various crops and conditions. 

 Field Validation: Tested with farmer 

feedback, providing automated treatment 

recommendations to minimize crop loss. 

Challenges & Future Improvements 

 Image Variability: Address lighting and 

occlusion issues via enhanced augmentation 

techniques. 

 Computational Efficiency: Optimize using 

lightweight CNNs (Mobile Net, Efficient 

Net) for mobile deployment. 

 Multilingual NLP: Train models (mBERT) 

for better farmer interaction and developing a 

speech-to-text interface. 

 Adaptive Learning: Implement federated 

learning for continuous model updates with 

real-world data. 

 Explain ability & Decision Support: 
Integrate XAI techniques and refine treatment 

recommendations based on user feedback. 

This system marks a significant advancement in 

precision agriculture, leveraging AI and IoT for 

scalable, real-time plant disease detection. Ongoing 

research and optimizations will enhance adoption and 

sustainability, benefiting farmers and stakeholders 

globally [20]. 
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