e ISSN: 2584-2854
Volume: 03

Issue:04 April 2025
Page No: 1182 — 1193

International Research Journal on Advanced Engineering
and Management
https://goldncloudpublications.com
https://doi.org/10.47392/IRJAEM.2025.0194

Deep Insights into Plant Health: Precision Plant Disease Detection Using
Visual and Textual Feature Extraction Methods to Overcome Agricultural

Barriers
Jinesh Melvin Y I, Pranali Baviskar?, Aparna Warrier®, Shraddha Singh?, Shagufta Varsi®

12345pillai College of Engineering, New Panvel, Maharashtra — 410206, India

Email ID: yijmelvin@mes.ac.in

Abstract

This project aims to improve crop health monitoring through an integrated visual and textual feature
extraction approach for the accurate detection of leaf diseases. By leveraging the Internet of Everything (IoE),
the system enables real-time connectivity between agricultural assets and a mobile phone application. Visual
data from field cameras capture high-resolution images of crop leaves, which undergo preprocessing and
segmentation. Convolutional Neural Networks (CNNs) are employed to extract visual features indicative of
disease patterns. In parallel, textual data from agricultural databases, expert reports, and farmer testimonials
are processed using Natural Language Processing (NLP) techniques to extract relevant textual features
describing disease symptoms and environmental conditions. The extracted visual and textual features are
fused using multimodal deep learning models, which are trained on labeled datasets to identify specific leaf
diseases accurately. The models' predictions are then integrated into loE-enabled decision support systems.
This system facilitates early detection, enabling timely intervention and minimizing crop losses. Continuous
monitoring and updates enhance the system's accuracy over time, benefiting sustainable agriculture practices.
Keywords: Crop health monitoring, Computer Vision, Convolutional Neural Networks, Deep Learning, Leaf
disease detection, Integrated visual and textual feature extraction, Internet of Everything (IoE), Real-time
connectivity, Agricultural assets, Mobile phone application, Field cameras.

1. Introduction

Maintaining crop health and maximizing agricultural
productivity hinge on the effective detection of plant
diseases, a challenge that is traditionally addressed
through  visual inspection. However, these
conventional methods are often encumbered by their
reliance on manual labor, are time-intensive, and are
prone to inaccuracies stemming from subjective
assessments. The inherent limitations of these
approaches result in delayed interventions and
significant financial repercussions due to widespread
crop damage and diminished yields. Factors such as
fluctuating environmental conditions, variations in
plant physiology, and the sheer scale of contemporary
farming practices further exacerbate the difficulties in
achieving precise and timely diagnosis, underscoring
the imperative for automated, early-detection

systems to mitigate losses and refine agricultural
methodologies. This paper introduces an innovative
multimodal strategy designed to overcome the
shortcomings of unimodal plant disease detection
techniques by synergistically integrating visual and
textual data to enhance both accuracy and robustness.
By harmonizing visual inputs, such as leaf imagery,
with textual inputs, including expert annotations and
agricultural reports, this system leverages the distinct
advantages of each modality to improve the precision
of disease identification and categorization. Existing
research in plant disease detection predominantly
concentrates on either visual or textual analysis in
isolation. Visual methodologies commonly employ
image processing techniques and advanced deep
learning algorithms to analyze leaf characteristics,
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such as variations in color and texture. Conversely,
textual methodologies harness natural language
processing (NLP) to discern disease patterns from
extensive reports and datasets. Although these
unimodal approaches have demonstrated promise,
they often falter in intricate scenarios where visual
manifestations are subtle, or textual data provides
essential contextual understanding. To rigorously
assess the efficacy of our multimodal system, we
adopted a comprehensive evaluation framework.
Initially, we assembled a unique dataset comprising
plant disease images paired with corresponding
textual descriptions. We then developed a
sophisticated multimodal deep learning model that
integrates convolutional neural networks (CNNs) for
extracting visual features and recurrent neural
networks (RNNSs) for processing textual information.
The model underwent thorough training and
validation using a cross-validation protocol. The
performance of our multimodal system was
benchmarked against state-of-the-art unimodal
methods (visual-only and text-only) using established
metrics such as accuracy, precision, recall, and F1-
score. The empirical results of our evaluation
unequivocally demonstrate that our multimodal
system surpasses unimodal approaches across all
performance metrics. Specifically, the multimodal
system achieved a noteworthy average accuracy of
95%, signifying a substantial 5-10% improvement
over the most effective unimodal method. These
findings underscore the tangible benefits of fusing
visual and textual data for achieving more accurate
and dependable plant disease detection. In
summation, the superior performance of our
multimodal system underscores the intrinsic value of
synthesizing diverse data modalities for plant disease
detection. The outcomes suggest that effectively
leveraging both visual and textual information can
pave the way for more efficacious, timely, and
reliable disease identification, thereby facilitating
prompt interventions and minimizing economic
losses within the agricultural sector. Future research
endeavors will prioritize expanding the breadth of the
dataset and investigating advanced fusion
methodologies to further enhance performance and
broaden applicability within real-world agricultural
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settings.

2. Existing System

Traditional methods for plant disease detection rely
on manual inspection, which is time-consuming,
subjective, and often inaccurate due to human error.
These conventional approaches require agricultural
experts to analyze leaf discoloration, lesions, or
texture changes visually, making early detection
challenging. Delayed diagnosis can lead to disease
progression, ultimately affecting crop yield and food
security. To address these limitations, deep learning
and loT-based automated systems have emerged as
promising solutions. Figure 1 shows Existing System
Architecture.
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Figure 1 Existing System Architecture

Table 1 Dataset Used (Existing System)

Dataset Users Item Interaction
Plant 81,282 54.303 96,750
Village

One such approach, detailed in the existing research,
introduces a Multi-Model Fusion Network (MMF-
Net) that integrates Convolutional Neural Networks
(CNNs) with loT-enabled sensor networks to
enhance the detection of corn leaf diseases. Table 1
shows Dataset Used (Existing system). This system
combines three independent deep learning sub-
networks for disease classification:
e RL-Block (ResNeXt-Inspired Model) -
Extracts coarse-grained visual features from
leaf images, capturing spatial patterns and
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lesion formations.

e PL-Block 1 (VGG-16-Based Model) -
Enhances fine-grained feature extraction by
expanding the perceptual area, identifying
subtle disease symptoms.

e PL-Block 2 (AlexNet-Based Model) -
Incorporates real-world environmental
parameters such as temperature, humidity, soil
moisture, and air pressure, enabling context-
aware disease classification [6-9].

These extracted features are fused at the decision
level using ensemble learning techniques,
significantly improving accuracy. The majority
voting scheme is applied to determine the final
classification, achieving an accuracy of 99.23% in
recognizing corn leaf diseases such as blight,
common rust, and gray leaf spot.

2.1 Limitations of the Existing System

While MMF-Net demonstrates high accuracy and
efficient disease classification, it has certain
limitations:

e Dependence on Environmental Conditions —
IoT sensor data can vary due to fluctuating
climate  factors, potentially  affecting
classification consistency.

e Dataset Limitations — The model relies on
specific datasets, such as Plant Village, which
may not fully represent real-world agricultural
conditions.

e Scalability Concerns — Implementing a CNN-
based 10T system on a large-scale agricultural
setup requires significant infrastructure and
computational power.

e Limited Multimodal Integration — Although
MMF-Net incorporates numerical
environmental data, it does not utilize textual
insights from agricultural databases, expert
reports, or farmer testimonials, which can
provide additional context for disease
diagnosis.

2.2 Need for an Enhanced System

Given these limitations, an advanced multimodal
approach is required—one that integrates textual and
visual data to improve disease classification. By
incorporating Natural Language Processing (NLP)
techniques alongside CNN-based image processing,

the system can leverage both visual symptoms and
textual disease descriptions for more robust and
accurate classification. Furthermore, real-time loE
connectivity can enhance the scalability and
adaptability of disease detection systems, ensuring
practical deployment in diverse agricultural settings.
3. Related Work

Several researchers have explored diverse
methodologies for plant disease detection, leveraging
advancements in deep learning, 10T, and machine
learning. Hasibul Islam Peyal et al. [1] proposed a
lightweight 2D CNN-based plant disease
classification system, demonstrating promising
accuracy in detecting dual-crop diseases. However,
their reliance on high-quality datasets and model
complexity poses challenges for scalability.
Similarly, Jyoti Dinkar Bhosale et al. [2] applied
machine learning algorithms for leaf disease
detection, achieving high accuracy, but their deep
learning-based approach required specialized
expertise for maintenance and fine-tuning. Other
studies, such as that of Shaik Thaseentaj and S.
Sudhakar llango [3], have focused on region-specific
crop disease detection using deep CNNSs, achieving
remarkable accuracy. However, the computational
intensity of training deep CNN models limits their
practical implementation in real-time applications. In
contrast, Rubina Rashid et al. [4] integrated IoT with
deep learning multi-models for early disease
detection in corn plants, enabling proactive measures
for crop health management. While their approach
improved early intervention, its long-term
adaptability required continuous system updates to
handle evolving environmental factors. Additionally,
multi-modal learning has been explored by
researchers like Johnson Kolluri et al. [5], who fused
visual and textual data to enhance plant disease
classification. While fusion techniques improved
accuracy, they also introduced significant
computational demands and the risk of overfitting.
Similarly, C. Ashwini and V. Sellam [8] implemented
a hybrid 3D-CNN and LSTM approach, enhancing
spatial-temporal analysis but increasing model
complexity and resource requirements. Our research
builds upon these studies by integrating both visual
and textual feature extraction through a multimodal
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deep learning framework. Unlike prior works that
predominantly focused on either image-based
classification or text-based agricultural insights, our
system fuses high-resolution imagery with textual
data from agricultural databases, expert reports, and
farmer testimonials. This fusion enhances disease
identification accuracy and provides contextualized
insights for better decision-making. Moreover, by
integrating the model into an loE-enabled decision
support system, our approach facilitates real-time
disease detection and proactive intervention,
addressing limitations such as data dependency,
computational complexity, and model adaptability
observed in prior studies.

4. System Design

Mobile Input: Farmers capture images with mobile or drone

l

Camera Processing: Images sent for preprocessing

l

Preprocessing: Noise removal, resizing

\v
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Figure 2 Proposed Architecture

The proposed system integrates visual and textual
feature extraction for improved plant disease
detection using deep learning, natural language
processing (NLP), and the Internet of Everything
(IoE). This section provides a comprehensive
explanation of the system’s architecture, key
components, and data processing pipeline. Figure 2
shows Proposed Architecture.
4.1 System Architecture
The system follows a multimodal deep learning
approach, where visual symptoms (image-based
features) and textual information  (expert
descriptions, environmental factors) are combined to
improve plant disease classification accuracy [10].
The architecture consists of the following modules:
4.2 Data Acquisition Layer
This layer is responsible for collecting both visual
and textual data related to plant diseases.
4.2.1 Visual Data Collection
High-resolution images of crop leaves are captured
using field cameras and mobile phone applications.
The dataset consists of:
e 50,000 images from the Plant Village dataset.
e 20,000 real-world field images collected via
mobile applications.
e 5000 farmer reports from agricultural
research papers.
Images are collected under various lighting
conditions and angles to ensure a diverse dataset.
Sources:
e Field cameras installed on agricultural sites
for continuous monitoring.
e Mobile phone applications allowing farmers
to manually upload images.
4.2.2 Textual Data Collection
Text-based data is gathered from multiple sources:

e Agricultural research databases (scientific
literature, agronomy reports).

e Farmer testimonials and expert reports
(descriptions  of  observed plant
symptoms).

e Government and NGO guidelines for plant
disease diagnosis and treatment.

Named Entity Recognition (NER) is implemented
using spaCy’s pre-trained agricultural domain model
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for accurate term extraction.
4.3 Data Preprocessing Layer
Before analysis, both visual and textual data undergo
preprocessing to improve system efficiency and
accuracy.
4.3.1 Visual Data Preprocessing

e Image Resizing: Standardizing image
dimensions to 224x224 pixels for model
compatibility.

e Normalization: Adjusting pixel intensity
values using min-max scaling to enhance
clarity.

e Segmentation: Identifying and isolating
diseased leaf regions using Mask R-CNN,
trained on annotated images with optimized
loU (Intersection over Union) thresholds.

e Noise Removal: Eliminating unnecessary
background  elements using  Gaussian
smoothing and morphological operations.

e Data Augmentation: Random contrast
adjustments, flipping, and Gaussian noise
addition to improve robustness against real-
world image quality variations.

4.3.2 Textual Data Preprocessing

e Text Cleaning: Removing special characters,
numbers, and irrelevant symbols.

e Tokenization: Breaking text into words or
phrases using NLTK’s word tokenizer.

e Stemming & Lemmatization: Converting
words to their root forms for consistency.

e Named Entity Recognition (NER):
Identifying key agricultural terms such as plant
names, disease symptoms, and environmental
factors.

e Stopword Removal: Filtering out irrelevant
words to retain disease-specific terms.

4.4 Feature Extraction Layer

After preprocessing, key features are extracted from
both data types.
4.4.1 Visual Feature Extraction

e Convolutional Neural Networks (CNNs):
Extract disease-related features such as color
changes, lesions, and texture variations.

e Mask R-CNN and Faster R-CNN: Used for
object detection and precise segmentation of
diseased leaf regions.

e Deep Feature Analysis: The model recognizes
complex patterns indicating bacterial, fungal,
or viral infections.

4.4.2 Textual Feature Extraction

e TF-IDF (Term Frequency-Inverse
Document Frequency): Identifies important
disease-related terms in reports.

e Text Classification: Categorizes disease-
related descriptions into fungal, bacterial, or
viral infections using transformer-based
models (BERT, RoBERT?a).

e Semantic Analysis: NLP models understand
disease symptoms and their correlation with
environmental factors.

4.5 Multimodal Fusion & Deep Learning Model
Once features are extracted, visual and textual data
are combined to improve detection accuracy.

4.5.1 Fusion Techniques

Early Fusion:

e Combines raw features from both modalities
before passing them into the model.

e Helps the model learn relationships between
visual symptoms and text descriptions.

Late Fusion:

e Processes images and text separately before
merging their results.

e More suitable when different sources provide
independent insights.

Hybrid Fusion:

e Uses both early and late fusion for flexibility.

e CNN-extracted features are concatenated
with TF-IDF vectorizer textual features
before passing through a transformer-based
fusion network.

e The transformer applies self-attention
mechanisms to prioritize disease-specific
textual descriptions over generic agricultural
reports.

4.5.2 Disease Classification

The multimodal deep learning model (CNN + NLP-
based Transformer) classifies plant diseases based
on:

e Visual patterns: Leaf spots, color changes.

e Text descriptions: Symptoms, weather
conditions.

The system outputs a confidence score derived from
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the SoftMax probability distribution of the model’s
final layer, with a threshold of 0.7 for positive
identification.

4.6 Decision Support & I0E Integration
After classification, the system provides real-time
decision support to farmers.

e The model is deployed on a cloud-based

platform accessible via mobile or web
applications.

e Farmers receive real-time alerts about crop
diseases.

Decision Support System (DSS):

e Provides personalized recommendations for
disease treatment.

e Suggests preventive measures based on
historical disease patterns.

loT-Enabled Monitoring:

e |oT-based sensors and alerts notify farmers of
potential disease outbreaks, allowing timely
intervention.

e Automated treatment suggestions help in
timely intervention, minimizing crop losses.

4.7 Continuous Learning & System Updates

The model continuously updates itself using new data
to improve accuracy over time.

e Retraining Cycles: The system is retrained
periodically using newly labeled data from user
feedback and real-world testing.

e Crowdsourced Farmer Inputs: Farmers and
agricultural  experts  provide real-world
feedback, refining disease classifications.

e Federated Learning: Future updates will
integrate federated learning techniques to
enhance model performance using on-device
learning while preserving privacy.

5. System Implementation

The implementation of an intelligent plant disease
detection system integrates multimodal deep learning
techniques, leveraging both visual and textual data
for accurate diagnosis. This section outlines the
various stages of system implementation, focusing on
data acquisition, preprocessing, feature extraction,
multimodal deep learning models, and decision
support systems [11-12]. The proposed system
ensures efficient disease identification by fusing
Convolutional Neural Networks (CNNs) for

image-based feature extraction and Natural
Language Processing (NLP) techniques for text-
based feature extraction. By combining these
approaches, the system enhances accuracy and
provides a real-time, lo0E-enabled decision support
mechanism for farmers.
5.1 Data Acquisition
Accurate plant disease detection begins with
acquiring high-resolution image data and textual
information from various sources. The system
incorporates the following data collection strategies:
5.1.1 Visual Data Collection

e High-resolution field cameras capture detailed
images of crop leaves in different
environmental conditions.

e The dataset comprises images sourced from
publicly available repositories such as Plant
Village and PlantDoc, ensuring a diverse set
of disease manifestations.

e To enhance real-time monitoring, loT-enabled
cameras continuously feed image data into the
system. Figure 3 shows Summary of Plant
Village Dataset.

Figure 3 Summary of Plant Village Dataset

5.1.2 Textual Data Collection
e Textual data is collected from agricultural
databases, expert reports, and farmer
testimonials, detailing disease symptoms and
environmental conditions.
e Natural language inputs from farmer feedback
systems and agricultural research papers
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contribute to a comprehensive understanding of 5.3 Feature Extraction
disease characteristics. Figure 4 shows Textual = The system extracts meaningful features from both
Feature Extraction of Potato Leaves. visual and textual data to support disease

classification.
5.3.1 Visual Feature Extraction
e CNN-based architectures (Mask R-CNN,
Faster R-CNN with ResNet-101) extract
hierarchical visual features from segmented
leaf images [13].
e 2 ; e Features such as color variations, lesion

I. Potato carly general 2. Potato early serious 3. Potato healthy patterns, and texture anomalies are identified
as disease indicators.

e Deep learning filters adapt dynamically to
disease-specific characteristics during model
training. Figure 5 shows Comparison of
Models.

4. Potato late general 5. Potato late serious

Figure 4 Textual Feature Extraction of Potato Comparison of Modes
Leaves =

W Average F-measure

5.2 Data Preprocessing
Preprocessing ensures that both visual and textual
data are standardized, noise-free, and structured
for feature extraction.
5.2.1 Preprocessing of Visual Data
e Image resizing and  normalization
standardize image dimensions and intensity

levels.

e Segmentation using Mask R-CNN isolates
the diseased leaf regions from the background. o Pomedietion o

e lllumination correction and histogram Figure 5 Comparison of Models
equalization improve image clarity under
different lighting conditions [14]. 5.3.2 Textual Feature Extraction

e Data augmentation techniques, such as e TF-IDF (Term Frequency-Inverse
flipping, rotation, and contrast adjustments, are Document Frequency) identifies the most
applied to enhance model generalization. relevant words in agricultural texts.

5.2.2 Preprocessing of Textual Data e Transformer-based models (BERT,

e Text cleaning and tokenization break down ROBERTA) enhance contextual
raw textual data into structured formats. understanding of disease descriptions.

e Named Entity Recognition (NER) identifies e Supervised learning models (SVM,
key  disease names, symptoms, and Decision Trees) classify disease-related
environmental factors. text into predefined categories.

e Lemmatization and stemming standardize 5.4 Multimodal Deep Learning Model
words to their base forms for uniformity. The integration of visual and textual features is

e Stopword removal filters out irrelevant words  achieved through multimodal deep learning
to retain disease-specific terms. techniques.
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5.4.1 Fusion Strategies

e Early Fusion: Combines visual and textual
features at the feature extraction level,
allowing the model to learn joint
representations.

e Late Fusion: Processes visual and textual
data independently, then merges predictions
to refine classification accuracy.

e Hybrid Fusion: Employs both CNNs for
images and Transformer-based models for
text, ensuring robust classification.

5.4.2 Model Training

e The system is trained using supervised deep
learning techniques on labeled datasets
from agricultural research institutions.

e Cross-validation ensures that the model
generalizes well to unseen data.

e The final model is optimized through
hyperparameter tuning, ensuring a balance
between accuracy and computational
efficiency.

5.5 Decision Support System

Once trained, the multimodal model is integrated into
an loE-enabled decision support system that provides
real-time disease detection insights.

5.5.1 Real-Time Prediction and
Connectivity

e The trained model processes newly

acquired visual and textual data,

generating disease classifications and
severity levels.

e Cloud-based infrastructure enables remote

access to predictions via a mobile
application.
e |oT-based sensors and alerts notify

farmers of potential disease outbreaks,
allowing timely intervention.
5.5.2 Recommendations and Intervention
Strategies

e The system suggests treatment protocols
based on historical agricultural data and
expert recommendations.

e Farmers receive personalized alerts tailored
to specific crops, disease types, and
environmental conditions.

e The system facilitates community
engagement, allowing farmers to share
disease observations and receive expert
feedback.

5.6 Continuous Learning and Model Updates

To ensure the system remains effective over time,
continuous updates and feedback mechanisms are
incorporated.

5.6.1 Adaptive Learning

e The model continuously learns from new
disease cases, improving its prediction
accuracy.

e Retraining cycles are scheduled based on
newly labeled data from user feedback.
5.6.2 User Feedback Integration

e Farmers and agricultural experts provide
real-world feedback, which refines disease
classifications.

e Crowdsourced data from  mobile
application users enhances the system’s
ability to detect emerging plant diseases.
Figure 6 shows Overall Architecture.

T

Figure 6 Overall Architecture

The proposed system successfully integrates visual
and textual data using deep learning-based
multimodal techniques, enabling real-time, highly
accurate plant disease detection [15-17]. The
combination of CNN-based visual processing and
NLP-driven textual analysis enhances diagnostic
capabilities. By leveraging I0E connectivity, the
system provides proactive decision support to
farmers, ensuring timely intervention and effective
disease management. Future advancements will
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explore scalability, multilingual support, and
enhanced interpretability for further improving
precision agriculture solutions.

6. System Evaluation

6.1 Introduction
The evaluation of the proposed plant disease
detection system is crucial for assessing its accuracy,
efficiency, and real-world applicability. This section
outlines the performance metrics, experimental
setup, comparative analysis, and validation
strategies used to measure the effectiveness of the
multimodal deep learning approach. The goal is to
ensure that the system meets the requirements of high
detection accuracy, robustness across different
environmental conditions, and real-time usability in
agricultural settings.

6.2 Evaluation Metrics
To quantitatively measure system performance, the
following evaluation metrics are employed:

6.2.1 Accuracy Metrics

e Precision (P): Measures the proportion of
correctly identified disease cases among the
total predicted cases [18].

e Recall (R): Evaluates the ability of the
model to identify all relevant disease cases.

e F1-Score: A harmonic mean of precision
and recall, balancing false positives and false
negatives.

e Overall Accuracy: The percentage of
correctly classified images and textual
inputs.

6.2.2 Robustness Metrics

e Cross-Dataset Evaluation: Testing the
model on different datasets (e.g., Plant
Village, PlantDoc) to measure
generalization.

e lllumination Variance Impact: Assessing
system accuracy under varying lighting
conditions.

e Multi-language
Evaluating textual
regional languages.
6.2.3 Efficiency Metrics
Inference Time: Measures the average time
taken by the system to process and classify
an image or text input.

NLP Performance:
analysis in different

e Computational Overhead: Evaluates
memory and processing power consumption
to ensure scalability on mobile devices.

e Real-Time Response: Examines latency in
generating  disease  predictions  and
notifications.

6.3 Experimental Setup
6.3.1 Data Splitting and Preprocessing

e The datasets are divided into training
(70%), validation (15%), and testing
(15%b) subsets.

e Standard preprocessing techniques,

including image normalization,
segmentation, and text cleaning, are
applied.

6.3.2 Hardware
Configuration

e Hardware: Evaluations are conducted on a
NVIDIA RTX 3050 GPU for deep learning
tasks.

e Software: The system is implemented using
TensorFlow, PyTorch, OpenCV, and
Hugging Face Transformers for NLP
models.

e Benchmarking Tools: Performance is
benchmarked using TensorBoard, Scikit-
learn, and custom validation scripts.
Figure 7 shows Result Comparison for 3
Models.

and Software

CNN Mask RONN
Figure 7 Result Comparison for 3 Models

Faster RCNN

6.4 Comparative Analysis
To validate the effectiveness of our approach, Table
2 shows a comparative study is conducted against
baseline models:
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Table 2 Comparative Study Is Conducted
Against Baseline Models

Precisi | Recal F1- | Inferenc
Model Scor | e Time
on I
e (ms)
CNN 80.6
(Baseline | 82.5% | 78.9% ' 150
%
)
Faster R- 0 o. | 86.9
CNN 88.1% | 85.7% % 200
Mask R- 0 o. | 88.7
CNN 90.3% | 87.2% % 250
Multimod | o5 500 | 91896 | 926 | 300
al Fusion %

The results highlight that the multimodal fusion
model  outperforms  single-modality  models,
demonstrating superior precision and recall at the
cost of slightly increased inference time [19].

7. Real-World Validation

To test the system in practical agricultural
environments, on-field validation is conducted:

7.1 Farmer-Based Testing

e The model is deployed via a mobile
application and tested by farmers in real-
world conditions.

e Feedback is gathered on ease of use,
accuracy, and practical usability.

e Disease classifications are cross-verified with
agricultural experts.

7.2 10T-Enabled Real-Time Evaluation

e The system’'s ability to provide timely alerts
for disease outbreaks is tested using loT-
based sensors.

e The effectiveness of automated treatment
recommendations is assessed based on expert
validation.

Conclusion

The proposed plant disease detection system
integrates multimodal deep learning, combining
visual and textual data for precise classification.
Using CNNs for image analysis and NLP for text
processing, it enhances diagnostic accuracy and
enables real-time disease detection, outperforming
single-modality models.

Key Contributions

e Improved Accuracy: Multimodal fusion
reduces false positives and negatives,
achieving an F1-score of 92.6%.

e Scalability & Real-Time Support: IoT-
based cloud integration enables instant
disease alerts and mobile accessibility.

e Robustness: Trained on diverse datasets
(Plant Village, PlantDoc) for adaptability
across various crops and conditions.

e Field Validation: Tested with farmer
feedback, providing automated treatment
recommendations to minimize crop loss.

Challenges & Future Improvements

e Image Variability: Address lighting and
occlusion issues via enhanced augmentation
techniques.

e Computational Efficiency: Optimize using
lightweight CNNs (Mobile Net, Efficient
Net) for mobile deployment.

e Multilingual NLP: Train models (mMBERT)
for better farmer interaction and developing a
speech-to-text interface.

e Adaptive Learning: Implement federated
learning for continuous model updates with
real-world data.

e Explain ability & Decision Support:
Integrate XAl techniques and refine treatment
recommendations based on user feedback.

This system marks a significant advancement in
precision agriculture, leveraging Al and loT for
scalable, real-time plant disease detection. Ongoing
research and optimizations will enhance adoption and
sustainability, benefiting farmers and stakeholders
globally [20].
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