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Abstract

GraphQL is a highly flexible query language utilized for flexible API construction. It offers excellent benefits
over conventional APIs because of its flexible nature and strong queries. It provides numerous benefits, but
because of its dynamic nature and absence of built-in mechanisms, it is vulnerable to very critical attacks like
injection attacks, denial of service (DoS) attacks, broken authentication and authorization, request forgery,
schema introspection, and bad exception handling. By studying in detail, this paper discloses how the
GraphQL APIs can be attacked by an attacker using a variety of attacks. The paper explains real-world attack
methods with diagrams and examples, such as how to detect GraphQL, overloading the server with complex
queries, injecting the malicious code, brute-forcing credentials, and forging requests on the client and server
sides.
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1. Introduction

GraphQL is a query language and for API, and a
server-side runtime developed at Facebook in 2012
and subsequently open-sourced in 2015 [1] [2]. It is
schema-based with a single endpoint. It is language-
agnostic and database-agnostic. Services are
described using GraphQL by declaring types and
fields [3]. The client can declare the query based on
their need and requirement. It has the greatest benefit
of being strongly typed in schema, being a server-to-
client contract. The schema declares what data exists
and how it is structured. GraphQL is an alternative to
the traditional REST approach. REST APIs are a
popular architectural style for building web services
that emphasize stateless communication and
consistent HTTP methods across endpoints. Though
popular, many research articles mention serious
drawbacks to REST. For example, because REST
relies on distinct endpoints for distinct resources, it
can lead to over-fetching—downloading too much—
or under-fetching, necessitating clients to make
additional requests for full data, especially in the
context of complex or nested data structures [4].
Additionally, the static response formats of REST

APIs restrict flexibility; any changes in data needs
may necessitate client- and server-side adjustments,
thereby decelerating development cycles [5]. Other
research further indicates that though REST's
statelessness allows it to scale, it also complicates
session management and stateful interactions,
typically requiring additional mechanisms for
effective authentication and caching [6]. Finally, in
extremely dynamic application contexts where data
needs frequently change, REST's contract rigidity
may hinder client-server communication efficiency
compared to more flexible paradigms, prompting
developers to seek other alternatives such as
GraphQL [7]. The figure 1 shows the problem of
over-fetching and under-fetching of the REST API
and the flexibility of GraphQL. Here from the REST
API, we get all the data from the endpoint, but in
GraphQL we can ask for the exact data we need in the
request. The adoption of GraphQL is increasing, and
more and more companies are using it for rapid data
querying and API management. Airbnb, Shopify, and
Netflix use it to reduce the server load. Securing such
deployments is a highest priority. According to the
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State of GraphQL Security 2024 survey of more than
13000 GraphQL APIs, 33% are highly critical and
72% are vulnerable to medium-level vulnerabilities.
More than 4000 APIs expose sensitive data [9]. Since
it enables dynamic queries to retrieve targeted data,
as opposed to the traditional REST APIs, this
flexibility presents unique security vulnerabilities.
Some of the major threats to GraphQL are unintended
data exposure, injection attacks, and denial-of-service
(DoS) exposure [10]. Hackers typically attack
misconfigured GraphQL endpoints [11], which
demands reconnaissance and security testing as
central components of API defence systems.

a. REST - requests and responses

b. GraphQL - requests and responses

query {
getlser(id: “foySt6hibF) {
id

Jusers/id name
ts
St title
Bhibf

GraphQL API

Figure 1 Data fetching with REST vs GraphQL
[8]

2. Related work

Early research by Harting and Perez [2] provided an
initial analysis of GraphQL, exploring its language
features and potential applications. Their work
established a foundational understanding of
GraphQL’s capabilities and limitations. Studies such
as Fehari and Aleks [11] in Black Hat GraphQL.:
Attacking Next Generation APIs highlight
vulnerabilities like query depth and complexity
attacks, which can exhaust server resources and
trigger  denial-of-service  (DoS)  conditions.
Similarly, McFadden et al. [12] developed
WENDIGO, a deep reinforcement learning tool that
identifies exploitable query patterns in GraphQL
APIs, further emphasizing the risk of DoS attacks.
These works point to the necessity of
countermeasures like rate-limiting and query cost
analysis to thwart such threats. Beyond GraphQL-
specific issues, general web security concerns also

apply, with research like Alsalamah et al. [13]
stressing input validation to block SQL injection in
resolvers, and Nagarjun and Ahamad [14]
advocating output encoding to prevent cross-site
scripting (XSS) in GraphQL responses. Prevention
methods proposed in the literature offer practical
solutions to these security challenges. Thota [15]
recommends integrating Open Policy Agent (OPA)
for fine-grained authorization, ensuring that only
authorized users can access sensitive GraphQL
schema operations and data. This is complemented
by adapting established web security practices, such
as sanitizing inputs to avoid injection vulnerabilities
and encoding outputs to mitigate risks, tailored to
GraphQL’s unique structure.

3. Common Security Challenges in GraphQL

3.1. Reconnaissance

It is the first step of attack and it starts with
information gathering. To detect GraphQL in a
penetration testing engagement, it is crucial to be
familiar with various implementations of GraphQL
servers, which could vary depending on the
programming language used and may have varied
vulnerabilities or configurations. Detection could
either be performed manually, which might be time-
consuming while scanning for multiple hosts, or
automatically based on web scanning tools.
Automated scanning tools provide more efficiency
and scalability as they scan multiple hosts
simultaneously based on the use of threaded
processes. In addition, such tools support input from
external files, such as hostname lists, making them
efficient for large-scale scanning operations.
Scanners like Nmap and specialized GraphQL
scanners, such as GraphwOOf, are used for
reconnaissance activities for penetration testing [11].
Such scanners have inherent logic to detect web
interfaces and can be used as part of scripting
languages such as Bash or Python to scan hundreds
of IP addresses or subdomains [11]. In hunting for
identifying GraphQL APIs, a possible first step
could be to query against the default endpoint
/graphgl; however, we must be aware that
developers do have the ability to set custom
endpoints.  Typical-looking  alternatives  are
versioned paths of the form /v1/graphql, /v2/graphql,
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or /v3/graphgl. Beyond this, tools such as GraphQL
Playground or GraphiQL Explorer tend to have
endpoints like /graphigl or /playground, which
similarly may be subject to versioning GraphQL
always responds with the same structure: successful
queries will have a data field, but errors will have an
errors field. This provides a simple test for
identifying GraphQL servers by sending both well-
formed and ill-formed queries, then inspecting the
resulting responses. The different endpoints may
have different security settings; they therefore
deserve separate testing.

Table 1 GraphQL Server Implementations and
their Programming Languages [11]

GraphQL Server Language
Apollo Server JavaScript
Yoga TypeScript
GraphQL Java Java
Ariadne Python
GraphQL-Ruby Ruby
Hot Chocolate C#
graphgl-php PHP
graphgl-kotlin Kotlin
graphqgl-go Go
Juniper Rust
HyperGraphQL Java

Assume you need to look for GraphQL-running
servers on a large network, but the servers
themselves don't necessarily return a standard web
page in HTML or plain signals. Rather, they
primarily return data through an API. One of the
secrets to locating them is to look for a standard error
message returned by most GraphQL servers when
they are presented with a simple GET request with
no valid query. In most instances, if you do a GET
on a GraphQL endpoint (e.g., /graphgl), you can
observe an error response of, "Must provide query
string.”

:~$ curl -X POST -H "Content

-Type: application/json" --data '{ "query": "{ _ typename }" }' http://lo
calhost:8000/graphgl

{"data":{"__typename":"Query"}}

= |

Figure 2 GraphQL Server Response from Post
Request

In the figure 2, we can see that the server returns the
response with the basic POST request without any
tool. After setting the parameter, it shows the
response in the last line.
{

"data": {

""typename'': "Query"

}

}

GraphQL network scanners such as Nmap and
GraphwO0O0f help attackers discover API structures to
analyse potential issues during reconnaissance
attacks [11]. Altair GraphQL Client stands out due
to its Postman-like operation but with features
designed exclusively for GraphQL testing. Through
Altair security experts can enter and execute queries
to analyse API outcomes and locate security
weaknesses in real-time. The crucial role of Altair
during reconnaissance stems from its real-time
feedback to see how an endpoint responds to tests
and reveals any mismatches or irregular patterns
where vulnerabilities might exist. Through Altair
tests and GraphQL Voyager users receive a diagram
view of their API design which shows how different
types, fields and mutations depend on each other
[16]. An attacker can easily detect the entire API
architecture when interdependencies are displayed
although this organization seems challenging [16].
Eyewitness helps reconnaissance work by recording
all web interfaces that attackers can access including
GraphiQL and GraphQL Playground, in addition to
gathering client-side data. Burp Suite's InQL plugin
automatically analyses GraphQL endpoints during
web application testing while InQL tool works with
the software in passive mode [17].
3.2. Injection Attacks

Injection vulnerabilities appear when applications
accept untrusted input data which results in
dangerous commands or queries being interpreted
during either server or client operations [13]. The
extensive classification of attacks infiltrates
numerous parts of network frameworks from
operating systems through browsers to databases
together with external third-party programs. The
failure to conduct proper security checks creates
conditions where harmful input can execute such
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violations which result in severe security issues.
Several different mechanisms exist through which
applications  create  unintentional  injection
vulnerabilities. The introduction of security lapses
through these weak practices includes skipping
security checks on data entry and employing flawed
parser libraries and direct transmission of unverified
data. Vulnerabilities emerge from displaying
unmodified user input back to the client that has not
gone through any transformation. When clients have
access to manipulate GraphQL API data through
query arguments as well as mutations and
subscriptions and query filters these vulnerabilities
become issues. The vulnerability risk can be reduced
by performing proper input validation and
sanitization yet total removal of injection flaws
proves difficult because apps need user input.
GraphQL uses mutations for basic CRUD operations
[3]. Mutations are already defined in the schema and
used to perform any actions like creating a user
account, logging in, or storing some data. With
mutations, it performs any CRUD tasks; that's why
the input point of the mutation needs to be handled
carefully. The following mutation checks the login
credentials of the user entered in the email and
password field; if it is correct, then it will return a
token; otherwise, it will return an error.

mutation {

loginUser(email: "'user@example.com™,
password: ""123456"){

token

}
}

Here we don't know the database behind the server,

like if it is SQL or NoSQL, so the attacker tries to

insert multiple queries that affect the database.

mutation {

loginUser(email: " user@example.com”,

password:"'123456";DROP TABLE users;--""){
token

}
}

The database will execute this query directly if the
server doesn't have sanitation or any other robust
security mechanisms. The following query only
accepts the limit argument, which is an integer value,

but if we can't handle it properly and the attacker
sends malicious input like -1 or any other input, then
the behaviour may be unpredictable, and it may
return all users.

query {

users(limit: 100) {

id

}

}

GraphQL's richness in querying data introduces an
additional layer of complexity in guarding
applications against cross-site scripting (XSS)
attacks [14]. In a GraphQL system, XSS attacks can
occur when user data—query or mutation
parameters, for example—is not sanitized prior to
being placed in resulting data returned to a client
[14]. Not validating opens up the possibility of an
attacker injecting code containing malicious
JavaScript that can execute immediately (reflected
XSS) or is deferred until when data is actually being
loaded from a datastore (stored XSS). Beyond this,
GraphQL clients that render user-provided content
with inadequate encoding expose themselves
particularly to DOM-based XSS that only happens
on the client-side of the browser's logic [14]. Impacts
can include unauthorized access to data such as
session cookies, personal data, and auth tokens,
which makes it of critical necessity to enforce strong
input validation, output encoding, and safe client-
side script practices for  GraphQL-based
applications. (Figure 3)

[rrisism]

Internal Server Database

Attacker

Trust Boundary Public Server

Figure 3 Common Server Architectures Among
Organizations [11]

The figure 3 shows the public and internal servers.
The public server may be secure due to validation,
but the internal server accepts any request directly
from the public server. It is dangerous since, if the
public server is compromised, it can then hijack the
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other internal servers; hence all servers must be
secured in their own way. The attacker first tries to
execute the query to check for the server
vulnerability to which the server immediately
responds like so:
query {
mutation(message:
"<script>alert(*hello!");</script>)
}
The response is either displayed in some threat
notification or gives an alert box on the web page.
The malicious payload is stored in a database or
some other storage area, where it persists and is
shown to any user viewing the affected content.
mutation {
updateUser(data:
""<script>fetch(*http://example.com/users?
cookie=" + document.cookie)</script>"")
}
It is meant to update user details, but instead the
attacker injects a malicious script designed to steal
user cookies.
3.3. Denial of Service (Dos) Attack
It is a common attack where the attackers exploit the
server's resources using various methods like field
duplication, circular  queries, or directive
overloading to increase the workload of the server
and cause CPU and memory exhaustion [11]. This
will lead to financial losses and damage the
reputations. GraphQL is extremely flexible, with no
fixed depth per query; thus, multiple queries can
occur against the database. This is called the N + 1
query problem [12]. It calls multiple successive calls
from the database in highly complicated and deeply
nested queries to such an extent that performance is
considerably hampered on the server side.
Type car {
Id: ID!
Name: String!
Parts: [car]!
}
In this case, the car type as defined in the schema
returns a name relation (of user type). If any person
tried the following query, it would create an infinite
loop-and it would iterate through the queries
recursively. Such query types are referred to as

circular queries.
query {
user{
name
user{
name
user{
name
user{
name
user{
name

Circular queries are initiated by bidirectional
relations in the GraphQL schema that end up leading
to resource exhaustion [11]. In each recursive
reference of interconnected types, attackers can
carry out a deep nesting of queries that compel the
server to resolve extremely large constructs
exponentially growing in size. To mention but a few,
each nesting increment will format the number of
objects or fields that the server has to process,
thereby overloading the CPU and memaory space for
processing. Inherent weaknesses stem from this
flexibility of GraphQL, which generalizes complex
requests for data from a client without any inherent
measure to suppress abusive query patterns, thereby
exposing the servers to denial-of-service
attacks.Attacks using cyclical dependencies are gaps
a hacker opens up from analysing the schema,
usually by using tools to visualize such relationships
or detect recursive kinds of fragments. Testing
essentially is done by increasing the depth of the
query to determine how much degradation is
occurring to the performance of the server. This
consists of formulating recursive queries that will
"walk" through matched types, thereby forcing the
server to complete endless loops of resolution.
Parallel execution of such queries imposes a
multiplicative effect that will have the server
resource depletion happen at a faster rate, thereby
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leading to the server crashing. Good defence
practices include the following: depth and
complexity limit on queries, cost estimation based
on the attribution of computational weights to the
higher-risk domains, and paginating returned data in
the case of limiting returned data. Schema
obfuscation eliminates introspection, and rate
limiting prevents denial-of-service attacks in the
form of repeated attacks. Schema audits need to be
done by developers in order to uncover circular
patterns and introduce proper controls to the
photosystem to counteract the flexibility of
GraphQL with defensibility in a denial-of-service
scenario. Attackers carry out alias overloading by
leveraging the ability to alias that allows clients to
alias fields from one request to, hence overloading
expensive resolver functions and leading to server
overload with an attacker performing a query
involving several aliased fields for a single data type.
The GraphQL server considers every alias as an
independent execution context and then creates
multiple instances of the root resolver process [11].
For example, an attacker might issue a query like:
query {

userl: users(id: "101") { data }

user2: users(id: "101") { data }

user3: users(id: "101") { data }

/I ... and so on for dozens or even 6 hundreds of
aliases

}

Though all the received data points are the same, the
individual calls to every alias invoke respective
resolvers that run heavy tasks such as intricate
queries and logical operations. The vulnerability of
server resource exhaustion rises with poor
limitations on query depth and complexity as this
duplication of workload spreads server resources,
leading to eventual performance degradation or
complete system crash. GraphQL servers, however,
can become an easy target for denial-of-service
attacks due to powerful and possibly maliciously
crafted queries, on which proposals of various
mechanisms are laid. The mechanism for cost
attribution lies in performing a query cost analysis
whereby every field in the schema is assigned a
"cost" that is proportional to the resources required

by that field per unit of time. For example, each
could be CPU cycles, 1/0 accesses, memory, or
network transmission. This cost may either be static,
approximated by query structure examination before
it actually gets executed, or dynamic, such as
measuring the actual response on execution [12]. On
a request for a query, the server will measure the
aggregate cost, compared to the set threshold, and if
that cost is in excess of this threshold, it can
terminate the request and deny access to the system
for resource-constrained queries by the user. The
second line of defence is designed by the credit-
based rate-limiting mechanism in which clients are
assigned fixed credits (say, 1,000 credits per query)
and queries consume credits based on their expected
cost [11]. Thus, the more expensive a query is, the
more credits it spends, which restricts the number of
such queries that a client can issue in a given time
frame. This kind of defence stops unfair usage and
prevents one client from hogging server resources,
as there could be concurrent expensive queries.
Other than that, the GraphQL spec itself is
apparently liberal with respect to aliases and field
duplication, so much that that itself may be exploited
by the attackers to inflate query costs. In order to
prevent this, middleware can be placed in front of the
application to perform checks on incoming queries
for correctness, count generators for alias or
duplicate fields, and impose limits to practically
abort this misuse. (Figure 4)

Max cost = 1000

1000 1000 1000

= e @%

Query Cost Database

GraphQL Server

Figure 4 GraphQL Query Cost Exploitation

Here, if you even impose a maximum cost per query,
the attacker sends multiple requests exactly or less
than the limit, and here the query cost fails, so we
need the rate-limiting approach that specifies the
cost of a query from any client within an hour.
Moreover, WENDIGO proposes a deep
reinforcement learning approach to automatically
discover GraphQL queries that can induce denial-of-
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service (DoS) attacks. Instead of flooding the server
with traffic, it strategically mutates query templates
using a DRL agent with Proximal Policy
Optimization, guided by rich feedback from a pre-
trained transformer on HTTP responses. Evaluated
on a vulnerable GraphQL application, WENDIGO
efficiently uncovers queries that significantly
increase server load with very few requests,
outperforming traditional fuzzing techniques [12].
3.4. Authentication and Authorization Bypass
Authentication and authorization have become the
base architecture of security. The GraphQL API
contains in-band authentication and authorization
[11] that perform user authentication along with
permission management tasks. The implementation
of these techniques creates additional vulnerability
areas due to complex logic duplication thus making
the system more susceptible to attacks. The
management of out-of-band authentication and
authorization controls shifts to an external service
such as an API gateway so GraphQL API remains
separate from these activities. Out of the best
practice options this model ensures authentication
functions at the gateway level and authorization
remains in the business logic tier between GraphQL
and persistence layers. Secure implementation of
these mechanisms proves challenging during initial
construction except when using established
framework structures. Any system must implement
strict security implements. GraphQL does not carry
an in-built mechanism for authentication and
authorization, thus leaving the responsibility to the
developers to assume its implementation from its
immediate logic. Such additional work undertaken
by developers opens room for errors that attackers
exploit to bypass security, gain access to sensitive
information, or perform forbidden actions. Since
GraphQL does not come with standard security
procedures right out of the box, developers use
different techniques, which can generally be
classified into in-band and out-of-band. In-band
techniques build authentication and authorization
right into the GraphQL API, handling logins,
signups, and permissions through custom queries
and, most commonly using HTTP headers
[15]authorization: <token> or special fields such as

ID, to fetch user data. Out-of-band techniques allow
an external system-such as an APl gateway, or
identity provider-to handle these functions, and
leave GraphQL APIs to be responsible for data
delivery upon receipt of verified credentials. Other
approaches are schema directives, such as @auth,
middleware checking requests, and libraries such as
GraphQL Shield for enforcing rules, with varying
trade-offs in complexity and security [11]. The very
flexibility of GraphQL may lend itself to weaknesses
that an attacker could exploit to bypass security. For
example, brute-force attacks might implement query
batching for submitting numerous logins attempts in
a single request and so evade the rate limit,
especially for certain tools, like CrackQL [18].
Token forging occurs when an API does not properly
check the JSON Web tokens (JWT), thus allowing
for token creation from the side of the attacker, who
can assign privileges at will [19]. Authorization
bypass takes place when inconsistent or
misconfigured rules allow an attacker to access data
via that are not sufficiently protected, commonly
revealed by means of introspection queries that
expose the API's underlying schema. Injection
attacks modify the query variables so as to bypass
the security checks, while the introspection exploits
use the very schema that these introspection attacks
expose in order to find and exploit the weak link. All
of these methods could result in a major breach of
constitutional rights to privacy of information and
integrity of the system. There are several ways to
bypass the authentication in the GraphQL and the
very basic is brute forcing the passwords. The
attacker injects the following types of queries until it
completes the attack.

1 mutation {

2 tryl: login(username: "admin”,

password: "admin") {

3 token

4}

5

6 ....#Nnumber of query
7

8 tryN: login(username: "user",
password: "user123") {
9 token
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Here, using some advanced tools like CrackQL [18],
the attacker executes multiple queries using aliases;
therefore, it sends a large number of queries in a
single HTTP request. CrackQL uses CSV files and
templates for word lists, making it efficient for
attacking [18]. In some systems, they use JWT
tokens so the authentication mechanisms are
different; therefore, attackers can steal the auth token
or session token of other users using XSS attacks and
then execute that token directly on the server. The
attacker used a forged token, and it will throw the
user's data as a form of error.

1 query {

2 data(token:"
eyJhbGciOiJIUzIINilIsINR5cCI61kpXVCJ9.eyJzd
WIiOilxMjMONTY30DkwliwibmFtZSI61kpvaG4
gRGIlliwiaWF0ljoxNTE2MjM5MDIyfQ.SfIKxwR
JSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c™)

{

3 id
4  email
5 role
6 }

7}

If the server doesn’t validate this token, it will return
the user’s data with a forged admin role.
Authorization validates the access control of the
data, but sometimes the developer forgets to
implement robust validation and verifications on the
resolvers. The attacker asks for the data in the form
of nested queries, and if the validations are not
proper, then it will lead to data leaks and privacy
issues. In the following query, the posts of the user
with 1D 101 will be fetched, but here anyone can
fetch the data, if the server does not validate the
query, then it will return all comments, whether they
are private or hidden, on all posts from all users.

1 query {

2 users (id: 101) {
3  posts {

4 comments {
S) content

6 }

7}

8 }

9}

The second one, alias bypassing, is a vulnerability
that takes advantage of the way GraphQL enables
clients to alias fields in a query, possibly tricking an
API into skipping security checks if such security
checks are poorly implemented; i.e., if an API limits
access to a sensitive field named getuserdata but only
checks the alias passed in the query and not the
actual resolver being invoked, an attacker could pass
in a query where the alias safe data conceals the true
nature of the field being invoked, thus circumventing
the security measures in place—this is one such
example of the imperative need for complete AST
inspection and resolver-level security checks to
ensure field-level permissions are enforced
irrespective of any aliasing in effect.

1 query {

2 safedata: getuserdata {

3 secret

4 %}

5}

A third problem is a lack of authorization in
mutations. This is when access control in a GraphQL
APl is too lenient, so that any authenticated user can
perform risky modifications. Where, for instance, a
mutation for changing user roles or for deleting
critical records checks only that a user is
authenticated, not that they are an administrator, an
attacker can use the mutation to promote themselves
or delete data they are not entitled to. This is not only
risky to the integrity of the data in the system, but it
exposes the application to misuse and unauthorized
modification of its state. In the following mutation,
the server will execute the query, but if it fails to
verify the right to delete the data, then it will delete
the account of the user.

1 mutation {

2 deleteuser(id: 101)

3}

In GraphQL, subscriptions allow for real-time
exchange of data. [20] They are web socket-based.
Use of subscriptions has been a contentious issue
because they help handle real-time streams of data,
which usually involve special authorization
procedures distinct from those involved in queries or
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mutations. If the subscription model does not
rigorously guarantee that the requesting user has the
necessary permissions to get live updates, it can
allow an attacker to subscribe to updates or changes
intended for another user. For example, in a system
that provides live orders or status updates, the lack
of proper authorization checks can allow a malicious
user to subscribe to notifications about orders not
intended for them, thus causing unauthorized
exposure of real-time data. This security
vulnerability can result in severe privacy breaches
and compromise the integrity of real-time
communications. In the following query, if the
server doesn't verify the access right, then an attacker
can subscribe to it, and every time the user changes
his email, a notification is sent to the attacker about
the new email address.

1 subscription {

2 userupdates(id: 101) {

3  email

4 %}

5}

To further inhibit authentication bypasses in
GraphQL, account lockout implementation after a
certain number of failed logins should be instituted
to deter brute-force attacks. For instance, if an
account is locked for 15 minutes after 10 failed
attempts, the attackers will be forced to slow down
or stop their attempts. Additionally, when strong
password practices are deployed—ranging from
minimum length of passwords, variety in character
types (e.g., upper case, lower case, numbers,
symbols), and disallowance of default passwords—
the possibility of credential guessing will be
avoided. Passwords should be hashed by developers
with strong algorithms such as bcrypt or Argon2 so
that even if the database is hacked [11], the stolen
passwords become useless. Logging and monitoring
login attempts can, however, greatly improve
security, helping discover such suspicious activities
as repeated attempts from a single IP address and
allowing proactive steps such as blocking the IP or
alerting admin staff. To make authorization stronger
in GraphQL, developers ought to apply a contextual
role-based access control system, where permissions
are dynamically allocated on user context [15], e.g.,

department or project affiliation. This enables some
needed granularity—for instance, a manager can
view only data that is relevant to the manager's
department. One very needed solution is schema
validation that denies unauthorized fields' queries,
which are typically maximum depth-limited to
enable checks. Developers can kill two birds with
one stone through tools such as graphgl-depth-limit,
which enable one to limit query depth, and graphql-
validation-complexity, which assigns complexity
scores to queries and thus limits fade attempts. Last,
such logging and auditing on authorization decisions
will uncover and reveal attempts made in bypassing
remotely to investigate, demonstrating some
improvement in such security policies.

3.5. Request Forgery
There are two principal request forgery attack types
that are used to compromise the GraphQL server,
and they are CSRF (Cross-Site Request Forgery) and
SSRF (Server-Side Request Forgery). In CSRF [11],
an ill-intentioned code is inserted into the user's
browser, using HTML or JavaScript for the sole
purpose of executing the GraphQL query directly.
The basic intention of such an attack is to hijack the
session information of the users along with their
cookies. If the victim's browser gets infected, the
browser initiates a request to the endpoint, thus
gaining access to cookies as well as website data.
Using this ability, user data could be edited, altered,
or erased. Under the framework of CSRF, two
exploitation processes are used, one being the POST
method, and the other method is the GET method
[21]. In POST-based methods, it sends the POST
request to the server. For the following query, it
sends the post request to delete the user account in
the form using the POST method [21], and the input
is hidden and the name is a query, so the server
executes it as a query, and it deletes the victim's
account as per the token found in the cookie.
1 <form id="csrf"
action="https://example.com/graphqgl"
method="POST">
2 <input type="hidden" name="query"
value="mutation { deleteuseraccount { success}
3>
3 </form>
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4 <script>
document.getElementByld(‘csrf').submit();

6 </script>

In GET-based methods, it is used to retrieve the data,
but sometimes the mutations are not protected by
POST requests, and with the GET request [21], it
manipulates the mutations. This is dangerous
because anyone can send the GET request and
manipulate the data. In the following query, it will
force the browser to send a request, and it will
execute the delete mutation.

1 <img
src="https://example.com/graphql?query=mutation
%20%7B%20deleteuser(id%3A123)%20%7B%20s
uccess%20%7D%20%7D" alt=""/>

To effectively counter cross-site request forgery
(CSRF), a multi-layered strategy must be put into
effect: initially, the SameSite attribute should be set
on cookies, to ensure that they are sent only in
appropriate contexts; whereas SameSite=Strict
restricts  cookies to same-origin  requests,
SameSite=Lax sends cookies with GET requests that
were not initiated from scripts, thereby attempting to
minimize cross-site leakage; one must configure this
attribute explicitly, because modern browsers will
default to Lax if not specified, definitely not be
sufficient for all cases. Implementing anti-CSRF
tokens would lend an additional, much-needed
protection against CSRF [11], with each request
bearing a unique, cryptographically secure token,
which is instead issued by the server per request and
sent inside the request using custom headers like X-
CSRF-TOKEN or parameters like csrf-token, as
opposed to static throughout a session [11]; this,
nonetheless, limits the ability of attackers to guess or
reuse tokens considerably. Besides that, by ensuring
that all operations affecting state, including
GraphQL mutations, are invoked only through
POST requests and not through GET requests, this
will mitigate the attacks exploiting CSRF through
GET requests, given that GET requests can easily be
instigated through the use of image tags or hidden
form submission methods. Finally, one continuously
keeps vigilance against ways of bypassing tokens
through null values, token reuse, or weak token
generation algorithms that can seriously weaken all

of the CSRF countermeasures; routine security
audits and updates in the cookie and token
management practices will be a vital cog in the
wheel for keeping the whole defence against an
attack robust. An SSRF in the GraphQL framework
is a very serious security lapse that often allows
attackers to exploit certain weaknesses [22] in a
poorly architected GraphQL server to send strange
requests to either external or internal systems. This
is triggered by the fact that user inputs, such as URLs
or endpoints, may not have undergone stringent
validation or be adequately sanitized, thus leaving
the resolvers that contact extranet services open to
attack. This kind of attack can be immensely deadly
simply because, in so many cases, the high flexibility
of query and mutation almost opens the door for
hardcoded Bahama functions to fetch information
and/or requests from external sources or internal
microservices. Some creative work on a query, in
general, would allow such an attacker to induce the
server to execute a command on behalf of the
attacker—thus  bypassing firewalls, obtaining
sensitive internal data that would not, thus, have
been achieved, or sterilizing portions of the network.
Therefore, it is very important to strengthen input
validation, increase access control, and reconsider
any resolver fetching of data that would lead to the
vulnerability to SSRF in the case of GraphQL
applications.

1 mutation {

2 fetchdata(

3 scheme: "http",

4 host: "localhost”,

5 port: 4000,

6 path: "/admin/config"

7 )

8 output

9}

10}

This mutation will in turn cause the server to make
an HTTP request to localhost:4000/admin/config. In
other words, we need to realize that services that are
supposed to remain internal in a properly segmented
and controlled environment, such as an
administrative configuration endpoint, should not be
accessible through external input. In the absence of
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proper input validation or network segmentation,
frequent SSRF mutations would prompt the server to
fetch sensitive internal data. Such exposure could
potentially disclose internal configuration details,
internal credentials, or any sensitive information
originally intended for internal access alone.
Information that would be exposed could give an
attacker some insight into the architecture behind the
system, which could then be exploited to escalate
privileges or pivot access to further internal services.
The net impact can thus start off with compromised
confidentiality and perhaps integrity, among others,
something one space ought to zealously try to
implement against. A good defence strategy against
SSRF attacks involves organizations starting with
good input sanitization through verification controls.
The whole system conducts URL normalizing [22],
followed by verification of all user-provided
addresses against an openly accepted list of safe
protocol domains and IP addresses and correct
communication methods, such as HTTPS but not
nonstandard syntax examples such as file://, ftp://,
and gopher://. [11] An attack prevention system
requires URL input scanning for concealed security
evasion techniques, such as IP address encoding or
numeral value encoding. From the perspective of
SSRF risk mitigation, network segmentation
enforcement needs to be used in order to limit
outbound requests because internal endpoints must
be segmented from public interfaces through
firewall and network ACL rules. Application proxy
servers with tight policies act as communication
intermediaries for all external requests and rate-limit
access points along with timeout configurations to
prevent denial-of-service states from being created.
As a last preventive measure, organizations must
implement regular outbound traffic monitoring and
anomaly detection through automated alerting
mechanisms that will enable them to easily discover
SSRF exploitation attempts.
3.6. Introspection

Introspection is one of the features of GraphQL,
which allows the client to ask for the whole structure
of the schema [23]. It includes the types, fields,
mutations, subscriptions, and directories [10]. This
feature is very useful in the development, but in the

production, it is a nightmare for developers. It gives
the advantage of auto-completion and playground. In
the production, it is necessary to turn off this feature.
It becomes a vulnerability when, in production, it
exposes sensitive data of fields and mutations. The
attacker will gather the data and, after mapping the
structure, they will exploit the vulnerability if found.
In the following query, it will fetch all the queries
with their names, mutations, and fields with their

types.
1 query {
__schema {
queryType {
name
}
mutationType {
name

}

types {

10 name

11 fields {

12 name

13 type {

14 name

15 }

16 }

17 }

18 }

19}

GraphQL servers use mutation for CRUD operations
and resolvers for the request completion so that if the
attacker already knows the schema, then they will
exploit any mutation or subscriptions [23]. This will
lead to the attack because the attacker is already
familiar with the structure. If we have to use this
feature in production, then we make sure that the
sensitive fields are hidden and no one can access
those fields. Most of the servers are already enabled
by default, but we can turn this off. There are several
configurations and tools available, like GraphQL
Armor and GraphQL Protect. Sometimes if the
introspection is disabled, but due to a lack of proper
exception handling, it will lead to data leakage. The
attacker sends the malicious code with a random
field or random name, and the server shows the full
message of the field, so this will lead to data leakage.
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In the following response, when the client sends the
query to fetch the user data, and if our mechanism is
improper, it will return the full error in the terminal.
1{
2 "errors": [
3 {
4 "message": "Cannot query field

\"email\" on type \"User\".",

5  "locations™: [
6 {

7 "line": 4,

8 "column™: 5
9 }

10 ]

11 }

12 ],

13 "data": null
14}

These smaller mistakes of developers lead to
breaking the query of GraphQL. It is the best and
most flexible language to solve the common
problems with REST, like over-fetching and under-
fetching. There are several flaws with GraphQL, and
we need to understand it for the best and most secure
GraphQL API development.
Conclusion
GraphQL's flexibility, efficiency, and powerful
querying capabilities make it a preferred choice for
modern API development, but its dynamic nature
also introduces significant security risks. As
GraphQL adoption continues to rise, securing these
APIs becomes paramount. These issues, if
unaddressed, can compromise data integrity, disrupt
services, and expose sensitive information to
unauthorized parties. Some issues like introspection,
injection attacks, and request forgery are easy to
prevent with just validations and security checks, but
it's hard to prevent DoS attacks and authentication
and authorization bypass because it requires robust
mechanisms.
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