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Abstract 

GraphQL is a highly flexible query language utilized for flexible API construction. It offers excellent benefits 

over conventional APIs because of its flexible nature and strong queries. It provides numerous benefits, but 

because of its dynamic nature and absence of built-in mechanisms, it is vulnerable to very critical attacks like 

injection attacks, denial of service (DoS) attacks, broken authentication and authorization, request forgery, 

schema introspection, and bad exception handling. By studying in detail, this paper discloses how the 

GraphQL APIs can be attacked by an attacker using a variety of attacks. The paper explains real-world attack 

methods with diagrams and examples, such as how to detect GraphQL, overloading the server with complex 

queries, injecting the malicious code, brute-forcing credentials, and forging requests on the client and server 

sides. 
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1. Introduction

GraphQL is a query language and for API, and a 

server-side runtime developed at Facebook in 2012 

and subsequently open-sourced in 2015 [1] [2]. It is 

schema-based with a single endpoint. It is language-

agnostic and database-agnostic. Services are 

described using GraphQL by declaring types and 

fields [3]. The client can declare the query based on 

their need and requirement. It has the greatest benefit 

of being strongly typed in schema, being a server-to-

client contract. The schema declares what data exists 

and how it is structured. GraphQL is an alternative to 

the traditional REST approach. REST APIs are a 

popular architectural style for building web services 

that emphasize stateless communication and 

consistent HTTP methods across endpoints. Though 

popular, many research articles mention serious 

drawbacks to REST. For example, because REST 

relies on distinct endpoints for distinct resources, it 

can lead to over-fetching—downloading too much—

or under-fetching, necessitating clients to make 

additional requests for full data, especially in the 

context of complex or nested data structures [4]. 

Additionally, the static response formats of REST 

APIs restrict flexibility; any changes in data needs 

may necessitate client- and server-side adjustments, 

thereby decelerating development cycles [5]. Other 

research further indicates that though REST's 

statelessness allows it to scale, it also complicates 

session management and stateful interactions, 

typically requiring additional mechanisms for 

effective authentication and caching [6]. Finally, in 

extremely dynamic application contexts where data 

needs frequently change, REST's contract rigidity 

may hinder client-server communication efficiency 

compared to more flexible paradigms, prompting 

developers to seek other alternatives such as 

GraphQL [7]. The figure 1 shows the problem of 

over-fetching and under-fetching of the REST API 

and the flexibility of GraphQL. Here from the REST 

API, we get all the data from the endpoint, but in 

GraphQL we can ask for the exact data we need in the 

request. The adoption of GraphQL is increasing, and 

more and more companies are using it for rapid data 

querying and API management. Airbnb, Shopify, and 

Netflix use it to reduce the server load. Securing such 

deployments is a highest priority. According to the 
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State of GraphQL Security 2024 survey of more than 

13000 GraphQL APIs, 33% are highly critical and 

72% are vulnerable to medium-level vulnerabilities. 

More than 4000 APIs expose sensitive data [9]. Since 

it enables dynamic queries to retrieve targeted data, 

as opposed to the traditional REST APIs, this 

flexibility presents unique security vulnerabilities. 

Some of the major threats to GraphQL are unintended 

data exposure, injection attacks, and denial-of-service 

(DoS) exposure [10]. Hackers typically attack 

misconfigured GraphQL endpoints [11], which 

demands reconnaissance and security testing as 

central components of API defence systems. 

 

 
Figure 1 Data fetching with REST vs GraphQL 

[8] 

 

2. Related work 

Early research by Harting and Perez [2] provided an 

initial analysis of GraphQL, exploring its language 

features and potential applications. Their work 

established a foundational understanding of 

GraphQL’s capabilities and limitations. Studies such 

as Fehari and Aleks [11] in Black Hat GraphQL: 

Attacking Next Generation APIs highlight 

vulnerabilities like query depth and complexity 

attacks, which can exhaust server resources and 

trigger denial-of-service (DoS) conditions. 

Similarly, McFadden et al. [12] developed 

WENDIGO, a deep reinforcement learning tool that 

identifies exploitable query patterns in GraphQL 

APIs, further emphasizing the risk of DoS attacks. 

These works point to the necessity of 

countermeasures like rate-limiting and query cost 

analysis to thwart such threats. Beyond GraphQL-

specific issues, general web security concerns also 

apply, with research like Alsalamah et al. [13] 

stressing input validation to block SQL injection in 

resolvers, and Nagarjun and Ahamad [14] 

advocating output encoding to prevent cross-site 

scripting (XSS) in GraphQL responses. Prevention 

methods proposed in the literature offer practical 

solutions to these security challenges. Thota [15] 

recommends integrating Open Policy Agent (OPA) 

for fine-grained authorization, ensuring that only 

authorized users can access sensitive GraphQL 

schema operations and data. This is complemented 

by adapting established web security practices, such 

as sanitizing inputs to avoid injection vulnerabilities 

and encoding outputs to mitigate risks, tailored to 

GraphQL’s unique structure. 

3. Common Security Challenges in GraphQL 

3.1. Reconnaissance  

It is the first step of attack and it starts with 

information gathering. To detect GraphQL in a 

penetration testing engagement, it is crucial to be 

familiar with various implementations of GraphQL 

servers, which could vary depending on the 

programming language used and may have varied 

vulnerabilities or configurations. Detection could 

either be performed manually, which might be time-

consuming while scanning for multiple hosts, or 

automatically based on web scanning tools. 

Automated scanning tools provide more efficiency 

and scalability as they scan multiple hosts 

simultaneously based on the use of threaded 

processes. In addition, such tools support input from 

external files, such as hostname lists, making them 

efficient for large-scale scanning operations. 

Scanners like Nmap and specialized GraphQL 

scanners, such as Graphw00f, are used for 

reconnaissance activities for penetration testing [11]. 

Such scanners have inherent logic to detect web 

interfaces and can be used as part of scripting 

languages such as Bash or Python to scan hundreds 

of IP addresses or subdomains [11]. In hunting for 

identifying GraphQL APIs, a possible first step 

could be to query against the default endpoint 

/graphql; however, we must be aware that 

developers do have the ability to set custom 

endpoints. Typical-looking alternatives are 

versioned paths of the form /v1/graphql, /v2/graphql, 
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or /v3/graphql. Beyond this, tools such as GraphQL 

Playground or GraphiQL Explorer tend to have 

endpoints like /graphiql or /playground, which 

similarly may be subject to versioning GraphQL 

always responds with the same structure: successful 

queries will have a data field, but errors will have an 

errors field. This provides a simple test for 

identifying GraphQL servers by sending both well-

formed and ill-formed queries, then inspecting the 

resulting responses. The different endpoints may 

have different security settings; they therefore 

deserve separate testing. 

 

Table 1 GraphQL Server Implementations and 

their Programming Languages [11] 

GraphQL Server Language 

Apollo Server JavaScript 

Yoga TypeScript 

GraphQL Java Java 

Ariadne Python 

GraphQL-Ruby Ruby 

Hot Chocolate C# 

graphql-php PHP 

graphql-kotlin Kotlin 

graphql-go Go 

Juniper Rust 

HyperGraphQL Java 

 

Assume you need to look for GraphQL-running 

servers on a large network, but the servers 

themselves don't necessarily return a standard web 

page in HTML or plain signals. Rather, they 

primarily return data through an API. One of the 

secrets to locating them is to look for a standard error 

message returned by most GraphQL servers when 

they are presented with a simple GET request with 

no valid query. In most instances, if you do a GET 

on a GraphQL endpoint (e.g., /graphql), you can 

observe an error response of, "Must provide query 

string." 

 

 
Figure 2 GraphQL Server Response from Post 

Request 

In the figure 2, we can see that the server returns the 

response with the basic POST request without any 

tool. After setting the parameter, it shows the 

response in the last line. 

{ 

     "data": { 

     "typename": "Query" 

   } 

} 

GraphQL network scanners such as Nmap and 

Graphw00f help attackers discover API structures to 

analyse potential issues during reconnaissance 

attacks [11]. Altair GraphQL Client stands out due 

to its Postman-like operation but with features 

designed exclusively for GraphQL testing. Through 

Altair security experts can enter and execute queries 

to analyse API outcomes and locate security 

weaknesses in real-time. The crucial role of Altair 

during reconnaissance stems from its real-time 

feedback to see how an endpoint responds to tests 

and reveals any mismatches or irregular patterns 

where vulnerabilities might exist. Through Altair 

tests and GraphQL Voyager users receive a diagram 

view of their API design which shows how different 

types, fields and mutations depend on each other 

[16]. An attacker can easily detect the entire API 

architecture when interdependencies are displayed 

although this organization seems challenging [16]. 

Eyewitness helps reconnaissance work by recording 

all web interfaces that attackers can access including 

GraphiQL and GraphQL Playground, in addition to 

gathering client-side data. Burp Suite's InQL plugin 

automatically analyses GraphQL endpoints during 

web application testing while InQL tool works with 

the software in passive mode [17]. 

3.2. Injection Attacks 

Injection vulnerabilities appear when applications 

accept untrusted input data which results in 

dangerous commands or queries being interpreted 

during either server or client operations [13]. The 

extensive classification of attacks infiltrates 

numerous parts of network frameworks from 

operating systems through browsers to databases 

together with external third-party programs. The 

failure to conduct proper security checks creates 

conditions where harmful input can execute such 
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violations which result in severe security issues. 

Several different mechanisms exist through which 

applications create unintentional injection 

vulnerabilities. The introduction of security lapses 

through these weak practices includes skipping 

security checks on data entry and employing flawed 

parser libraries and direct transmission of unverified 

data. Vulnerabilities emerge from displaying 

unmodified user input back to the client that has not 

gone through any transformation. When clients have 

access to manipulate GraphQL API data through 

query arguments as well as mutations and 

subscriptions and query filters these vulnerabilities 

become issues. The vulnerability risk can be reduced 

by performing proper input validation and 

sanitization yet total removal of injection flaws 

proves difficult because apps need user input. 

GraphQL uses mutations for basic CRUD operations 

[3]. Mutations are already defined in the schema and 

used to perform any actions like creating a user 

account, logging in, or storing some data. With 

mutations, it performs any CRUD tasks; that's why 

the input point of the mutation needs to be handled 

carefully. The following mutation checks the login 

credentials of the user entered in the email and 

password field; if it is correct, then it will return a 

token; otherwise, it will return an error. 

mutation { 

loginUser(email: "user@example.com",   

password: "123456"){  

token 

  } 

 } 

Here we don't know the database behind the server, 

like if it is SQL or NoSQL, so the attacker tries to 

insert multiple queries that affect the database. 

mutation { 

loginUser(email:"user@example.com”,       

password:"123456";DROP TABLE users;--"){ 

  token 

 } 

 } 

The database will execute this query directly if the 

server doesn't have sanitation or any other robust 

security mechanisms. The following query only 

accepts the limit argument, which is an integer value, 

but if we can't handle it properly and the attacker 

sends malicious input like -1 or any other input, then 

the behaviour may be unpredictable, and it may 

return all users. 

query { 

users(limit: 100) { 

 id 

 } 

 } 

GraphQL's richness in querying data introduces an 

additional layer of complexity in guarding 

applications against cross-site scripting (XSS) 

attacks [14]. In a GraphQL system, XSS attacks can 

occur when user data—query or mutation 

parameters, for example—is not sanitized prior to 

being placed in resulting data returned to a client 

[14]. Not validating opens up the possibility of an 

attacker injecting code containing malicious 

JavaScript that can execute immediately (reflected 

XSS) or is deferred until when data is actually being 

loaded from a datastore (stored XSS). Beyond this, 

GraphQL clients that render user-provided content 

with inadequate encoding expose themselves 

particularly to DOM-based XSS that only happens 

on the client-side of the browser's logic [14]. Impacts 

can include unauthorized access to data such as 

session cookies, personal data, and auth tokens, 

which makes it of critical necessity to enforce strong 

input validation, output encoding, and safe client-

side script practices for GraphQL-based 

applications. (Figure 3) 

 

 
Figure 3 Common Server Architectures Among 

Organizations [11] 
 

The figure 3 shows the public and internal servers. 

The public server may be secure due to validation, 

but the internal server accepts any request directly 

from the public server. It is dangerous since, if the 

public server is compromised, it can then hijack the 
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other internal servers; hence all servers must be 

secured in their own way. The attacker first tries to 

execute the query to check for the server 

vulnerability to which the server immediately 

responds like so: 

 query { 

  mutation(message:    

"<script>alert('hello!');</script>) 

 } 

The response is either displayed in some threat 

notification or gives an alert box on the web page. 

The malicious payload is stored in a database or 

some other storage area, where it persists and is 

shown to any user viewing the affected content. 

 mutation { 

 updateUser(data:      

"<script>fetch('http://example.com/users? 

cookie=' + document.cookie)</script>") 

 } 

It is meant to update user details, but instead the 

attacker injects a malicious script designed to steal 

user cookies. 

3.3. Denial of Service (Dos) Attack 

It is a common attack where the attackers exploit the 

server's resources using various methods like field 

duplication, circular queries, or directive 

overloading to increase the workload of the server 

and cause CPU and memory exhaustion [11]. This 

will lead to financial losses and damage the 

reputations. GraphQL is extremely flexible, with no 

fixed depth per query; thus, multiple queries can 

occur against the database. This is called the N + 1 

query problem [12]. It calls multiple successive calls 

from the database in highly complicated and deeply 

nested queries to such an extent that performance is 

considerably hampered on the server side. 

Type car { 

Id: ID! 

Name: String!  

Parts: [car]! 

 } 

In this case, the car type as defined in the schema 

returns a name relation (of user type). If any person 

tried the following query, it would create an infinite 

loop-and it would iterate through the queries 

recursively. Such query types are referred to as 

circular queries. 

  query { 

      user{ 

         name 

          user{ 

             name 

              user{ 

                  name 

                  user{ 

                      name 

                         user{ 

                             name 

                     }    

                 } 

            } 

        } 

     } 

 } 

Circular queries are initiated by bidirectional 

relations in the GraphQL schema that end up leading 

to resource exhaustion [11]. In each recursive 

reference of interconnected types, attackers can 

carry out a deep nesting of queries that compel the 

server to resolve extremely large constructs 

exponentially growing in size. To mention but a few, 

each nesting increment will format the number of 

objects or fields that the server has to process, 

thereby overloading the CPU and memory space for 

processing. Inherent weaknesses stem from this 

flexibility of GraphQL, which generalizes complex 

requests for data from a client without any inherent 

measure to suppress abusive query patterns, thereby 

exposing the servers to denial-of-service 

attacks.Attacks using cyclical dependencies are gaps 

a hacker opens up from analysing the schema, 

usually by using tools to visualize such relationships 

or detect recursive kinds of fragments. Testing 

essentially is done by increasing the depth of the 

query to determine how much degradation is 

occurring to the performance of the server. This 

consists of formulating recursive queries that will 

"walk" through matched types, thereby forcing the 

server to complete endless loops of resolution. 

Parallel execution of such queries imposes a 

multiplicative effect that will have the server 

resource depletion happen at a faster rate, thereby 
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leading to the server crashing. Good defence 

practices include the following: depth and 

complexity limit on queries, cost estimation based 

on the attribution of computational weights to the 

higher-risk domains, and paginating returned data in 

the case of limiting returned data. Schema 

obfuscation eliminates introspection, and rate 

limiting prevents denial-of-service attacks in the 

form of repeated attacks. Schema audits need to be 

done by developers in order to uncover circular 

patterns and introduce proper controls to the 

photosystem to counteract the flexibility of 

GraphQL with defensibility in a denial-of-service 

scenario. Attackers carry out alias overloading by 

leveraging the ability to alias that allows clients to 

alias fields from one request to, hence overloading 

expensive resolver functions and leading to server 

overload with an attacker performing a query 

involving several aliased fields for a single data type. 

The GraphQL server considers every alias as an 

independent execution context and then creates 

multiple instances of the root resolver process [11]. 

For example, an attacker might issue a query like: 

query { 

user1: users(id: "101") { data } 

user2: users(id: "101") { data } 

user3: users(id: "101") { data } 

 // ... and so on for dozens or even    6   hundreds of 

aliases 

 } 

Though all the received data points are the same, the 

individual calls to every alias invoke respective 

resolvers that run heavy tasks such as intricate 

queries and logical operations. The vulnerability of 

server resource exhaustion rises with poor 

limitations on query depth and complexity as this 

duplication of workload spreads server resources, 

leading to eventual performance degradation or 

complete system crash. GraphQL servers, however, 

can become an easy target for denial-of-service 

attacks due to powerful and possibly maliciously 

crafted queries, on which proposals of various 

mechanisms are laid. The mechanism for cost 

attribution lies in performing a query cost analysis 

whereby every field in the schema is assigned a 

"cost" that is proportional to the resources required 

by that field per unit of time. For example, each 

could be CPU cycles, I/O accesses, memory, or 

network transmission. This cost may either be static, 

approximated by query structure examination before 

it actually gets executed, or dynamic, such as 

measuring the actual response on execution [12]. On 

a request for a query, the server will measure the 

aggregate cost, compared to the set threshold, and if 

that cost is in excess of this threshold, it can 

terminate the request and deny access to the system 

for resource-constrained queries by the user. The 

second line of defence is designed by the credit-

based rate-limiting mechanism in which clients are 

assigned fixed credits (say, 1,000 credits per query) 

and queries consume credits based on their expected 

cost [11]. Thus, the more expensive a query is, the 

more credits it spends, which restricts the number of 

such queries that a client can issue in a given time 

frame. This kind of defence stops unfair usage and 

prevents one client from hogging server resources, 

as there could be concurrent expensive queries. 

Other than that, the GraphQL spec itself is 

apparently liberal with respect to aliases and field 

duplication, so much that that itself may be exploited 

by the attackers to inflate query costs. In order to 

prevent this, middleware can be placed in front of the 

application to perform checks on incoming queries 

for correctness, count generators for alias or 

duplicate fields, and impose limits to practically 

abort this misuse. (Figure 4) 

 

 
Figure 4 GraphQL Query Cost Exploitation 

 

Here, if you even impose a maximum cost per query, 

the attacker sends multiple requests exactly or less 

than the limit, and here the query cost fails, so we 

need the rate-limiting approach that specifies the 

cost of a query from any client within an hour. 

Moreover, WENDIGO proposes a deep 

reinforcement learning approach to automatically 

discover GraphQL queries that can induce denial-of-
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service (DoS) attacks. Instead of flooding the server 

with traffic, it strategically mutates query templates 

using a DRL agent with Proximal Policy 

Optimization, guided by rich feedback from a pre-

trained transformer on HTTP responses. Evaluated 

on a vulnerable GraphQL application, WENDIGO 

efficiently uncovers queries that significantly 

increase server load with very few requests, 

outperforming traditional fuzzing techniques [12]. 

3.4. Authentication and Authorization Bypass 

Authentication and authorization have become the 

base architecture of security. The GraphQL API 

contains in-band authentication and authorization 

[11] that perform user authentication along with 

permission management tasks. The implementation 

of these techniques creates additional vulnerability 

areas due to complex logic duplication thus making 

the system more susceptible to attacks. The 

management of out-of-band authentication and 

authorization controls shifts to an external service 

such as an API gateway so GraphQL API remains 

separate from these activities. Out of the best 

practice options this model ensures authentication 

functions at the gateway level and authorization 

remains in the business logic tier between GraphQL 

and persistence layers. Secure implementation of 

these mechanisms proves challenging during initial 

construction except when using established 

framework structures. Any system must implement 

strict security implements. GraphQL does not carry 

an in-built mechanism for authentication and 

authorization, thus leaving the responsibility to the 

developers to assume its implementation from its 

immediate logic. Such additional work undertaken 

by developers opens room for errors that attackers 

exploit to bypass security, gain access to sensitive 

information, or perform forbidden actions. Since 

GraphQL does not come with standard security 

procedures right out of the box, developers use 

different techniques, which can generally be 

classified into in-band and out-of-band. In-band 

techniques build authentication and authorization 

right into the GraphQL API, handling logins, 

signups, and permissions through custom queries 

and, most commonly using HTTP headers 

[15]authorization: <token> or special fields such as 

ID, to fetch user data. Out-of-band techniques allow 

an external system-such as an API gateway, or 

identity provider-to handle these functions, and 

leave GraphQL APIs to be responsible for data 

delivery upon receipt of verified credentials. Other 

approaches are schema directives, such as @auth, 

middleware checking requests, and libraries such as 

GraphQL Shield for enforcing rules, with varying 

trade-offs in complexity and security [11]. The very 

flexibility of GraphQL may lend itself to weaknesses 

that an attacker could exploit to bypass security. For 

example, brute-force attacks might implement query 

batching for submitting numerous logins attempts in 

a single request and so evade the rate limit, 

especially for certain tools, like CrackQL [18]. 

Token forging occurs when an API does not properly 

check the JSON Web tokens (JWT), thus allowing 

for token creation from the side of the attacker, who 

can assign privileges at will [19]. Authorization 

bypass takes place when inconsistent or 

misconfigured rules allow an attacker to access data 

via that are not sufficiently protected, commonly 

revealed by means of introspection queries that 

expose the API's underlying schema. Injection 

attacks modify the query variables so as to bypass 

the security checks, while the introspection exploits 

use the very schema that these introspection attacks 

expose in order to find and exploit the weak link. All 

of these methods could result in a major breach of 

constitutional rights to privacy of information and 

integrity of the system. There are several ways to 

bypass the authentication in the GraphQL and the 

very basic is brute forcing the passwords. The 

attacker injects the following types of queries until it 

completes the attack. 

 1 mutation { 

 2 try1: login(username: "admin",         

password: "admin") { 

 3     token 

 4   } 

 5   

 6   . . . . # N number of query 

 7   

 8 tryN: login(username: "user",   

password: "user123") { 

 9     token 
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10   } 

11 } 

Here, using some advanced tools like CrackQL [18], 

the attacker executes multiple queries using aliases; 

therefore, it sends a large number of queries in a 

single HTTP request. CrackQL uses CSV files and 

templates for word lists, making it efficient for 

attacking [18]. In some systems, they use JWT 

tokens so the authentication mechanisms are 

different; therefore, attackers can steal the auth token 

or session token of other users using XSS attacks and 

then execute that token directly on the server. The 

attacker used a forged token, and it will throw the 

user's data as a form of error.  

1 query { 

2   data(token:" 

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzd

WIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4

gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwR

JSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c") 

{ 

3     id 

4     email 

5     role 

6   } 

7 } 

If the server doesn’t validate this token, it will return 

the user’s data with a forged admin role. 

Authorization validates the access control of the 

data, but sometimes the developer forgets to 

implement robust validation and verifications on the 

resolvers. The attacker asks for the data in the form 

of nested queries, and if the validations are not 

proper, then it will lead to data leaks and privacy 

issues. In the following query, the posts of the user 

with ID 101 will be fetched, but here anyone can 

fetch the data, if the server does not validate the 

query, then it will return all comments, whether they 

are private or hidden, on all posts from all users.  

 1 query { 

 2   users (id: 101) { 

 3     posts { 

 4       comments { 

 5         content 

 6       } 

 7     } 

 8   } 

 9 } 

The second one, alias bypassing, is a vulnerability 

that takes advantage of the way GraphQL enables 

clients to alias fields in a query, possibly tricking an 

API into skipping security checks if such security 

checks are poorly implemented; i.e., if an API limits 

access to a sensitive field named getuserdata but only 

checks the alias passed in the query and not the 

actual resolver being invoked, an attacker could pass 

in a query where the alias safe data conceals the true 

nature of the field being invoked, thus circumventing 

the security measures in place—this is one such 

example of the imperative need for complete AST 

inspection and resolver-level security checks to 

ensure field-level permissions are enforced 

irrespective of any aliasing in effect. 

1 query { 

2   safedata: getuserdata { 

3     secret 

4   } 

5 } 

A third problem is a lack of authorization in 

mutations. This is when access control in a GraphQL 

API is too lenient, so that any authenticated user can 

perform risky modifications. Where, for instance, a 

mutation for changing user roles or for deleting 

critical records checks only that a user is 

authenticated, not that they are an administrator, an 

attacker can use the mutation to promote themselves 

or delete data they are not entitled to. This is not only 

risky to the integrity of the data in the system, but it 

exposes the application to misuse and unauthorized 

modification of its state. In the following mutation, 

the server will execute the query, but if it fails to 

verify the right to delete the data, then it will delete 

the account of the user. 

1 mutation { 

2   deleteuser(id: 101) 

3 } 

In GraphQL, subscriptions allow for real-time 

exchange of data. [20] They are web socket-based. 

Use of subscriptions has been a contentious issue 

because they help handle real-time streams of data, 

which usually involve special authorization 

procedures distinct from those involved in queries or 
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mutations. If the subscription model does not 

rigorously guarantee that the requesting user has the 

necessary permissions to get live updates, it can 

allow an attacker to subscribe to updates or changes 

intended for another user. For example, in a system 

that provides live orders or status updates, the lack 

of proper authorization checks can allow a malicious 

user to subscribe to notifications about orders not 

intended for them, thus causing unauthorized 

exposure of real-time data. This security 

vulnerability can result in severe privacy breaches 

and compromise the integrity of real-time 

communications. In the following query, if the 

server doesn't verify the access right, then an attacker 

can subscribe to it, and every time the user changes 

his email, a notification is sent to the attacker about 

the new email address. 

1 subscription { 

2   userupdates(id: 101) { 

3     email 

4   } 

5 } 

To further inhibit authentication bypasses in 

GraphQL, account lockout implementation after a 

certain number of failed logins should be instituted 

to deter brute-force attacks. For instance, if an 

account is locked for 15 minutes after 10 failed 

attempts, the attackers will be forced to slow down 

or stop their attempts. Additionally, when strong 

password practices are deployed—ranging from 

minimum length of passwords, variety in character 

types (e.g., upper case, lower case, numbers, 

symbols), and disallowance of default passwords—

the possibility of credential guessing will be 

avoided. Passwords should be hashed by developers 

with strong algorithms such as bcrypt or Argon2 so 

that even if the database is hacked [11], the stolen 

passwords become useless. Logging and monitoring 

login attempts can, however, greatly improve 

security, helping discover such suspicious activities 

as repeated attempts from a single IP address and 

allowing proactive steps such as blocking the IP or 

alerting admin staff. To make authorization stronger 

in GraphQL, developers ought to apply a contextual 

role-based access control system, where permissions 

are dynamically allocated on user context [15], e.g., 

department or project affiliation. This enables some 

needed granularity—for instance, a manager can 

view only data that is relevant to the manager's 

department. One very needed solution is schema 

validation that denies unauthorized fields' queries, 

which are typically maximum depth-limited to 

enable checks. Developers can kill two birds with 

one stone through tools such as graphql-depth-limit, 

which enable one to limit query depth, and graphql-

validation-complexity, which assigns complexity 

scores to queries and thus limits fade attempts. Last, 

such logging and auditing on authorization decisions 

will uncover and reveal attempts made in bypassing 

remotely to investigate, demonstrating some 

improvement in such security policies. 

3.5. Request Forgery  

There are two principal request forgery attack types 

that are used to compromise the GraphQL server, 

and they are CSRF (Cross-Site Request Forgery) and 

SSRF (Server-Side Request Forgery). In CSRF [11], 

an ill-intentioned code is inserted into the user's 

browser, using HTML or JavaScript for the sole 

purpose of executing the GraphQL query directly. 

The basic intention of such an attack is to hijack the 

session information of the users along with their 

cookies. If the victim's browser gets infected, the 

browser initiates a request to the endpoint, thus 

gaining access to cookies as well as website data. 

Using this ability, user data could be edited, altered, 

or erased. Under the framework of CSRF, two 

exploitation processes are used, one being the POST 

method, and the other method is the GET method 

[21]. In POST-based methods, it sends the POST 

request to the server. For the following query, it 

sends the post request to delete the user account in 

the form using the POST method [21], and the input 

is hidden and the name is a query, so the server 

executes it as a query, and it deletes the victim's 

account as per the token found in the cookie. 

1 <form id="csrf" 

action="https://example.com/graphql" 

method="POST"> 

2 <input type="hidden" name="query" 

value="mutation { deleteuseraccount { success} 

}"> 

3 </form> 
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4 <script> 

document.getElementById('csrf').submit(); 

6 </script> 

In GET-based methods, it is used to retrieve the data, 

but sometimes the mutations are not protected by 

POST requests, and with the GET request [21], it 

manipulates the mutations. This is dangerous 

because anyone can send the GET request and 

manipulate the data. In the following query, it will 

force the browser to send a request, and it will 

execute the delete mutation. 

1 <img 

src="https://example.com/graphql?query=mutation

%20%7B%20deleteuser(id%3A123)%20%7B%20s

uccess%20%7D%20%7D" alt=""/> 

To effectively counter cross-site request forgery 

(CSRF), a multi-layered strategy must be put into 

effect: initially, the SameSite attribute should be set 

on cookies, to ensure that they are sent only in 

appropriate contexts; whereas SameSite=Strict 

restricts cookies to same-origin requests, 

SameSite=Lax sends cookies with GET requests that 

were not initiated from scripts, thereby attempting to 

minimize cross-site leakage; one must configure this 

attribute explicitly, because modern browsers will 

default to Lax if not specified, definitely not be 

sufficient for all cases. Implementing anti-CSRF 

tokens would lend an additional, much-needed 

protection against CSRF [11], with each request 

bearing a unique, cryptographically secure token, 

which is instead issued by the server per request and 

sent inside the request using custom headers like X-

CSRF-TOKEN or parameters like csrf-token, as 

opposed to static throughout a session [11]; this, 

nonetheless, limits the ability of attackers to guess or 

reuse tokens considerably. Besides that, by ensuring 

that all operations affecting state, including 

GraphQL mutations, are invoked only through 

POST requests and not through GET requests, this 

will mitigate the attacks exploiting CSRF through 

GET requests, given that GET requests can easily be 

instigated through the use of image tags or hidden 

form submission methods. Finally, one continuously 

keeps vigilance against ways of bypassing tokens 

through null values, token reuse, or weak token 

generation algorithms that can seriously weaken all 

of the CSRF countermeasures; routine security 

audits and updates in the cookie and token 

management practices will be a vital cog in the 

wheel for keeping the whole defence against an 

attack robust. An SSRF in the GraphQL framework 

is a very serious security lapse that often allows 

attackers to exploit certain weaknesses [22] in a 

poorly architected GraphQL server to send strange 

requests to either external or internal systems. This 

is triggered by the fact that user inputs, such as URLs 

or endpoints, may not have undergone stringent 

validation or be adequately sanitized, thus leaving 

the resolvers that contact extranet services open to 

attack. This kind of attack can be immensely deadly 

simply because, in so many cases, the high flexibility 

of query and mutation almost opens the door for 

hardcoded Bahama functions to fetch information 

and/or requests from external sources or internal 

microservices. Some creative work on a query, in 

general, would allow such an attacker to induce the 

server to execute a command on behalf of the 

attacker—thus bypassing firewalls, obtaining 

sensitive internal data that would not, thus, have 

been achieved, or sterilizing portions of the network. 

Therefore, it is very important to strengthen input 

validation, increase access control, and reconsider 

any resolver fetching of data that would lead to the 

vulnerability to SSRF in the case of GraphQL 

applications. 

 1 mutation { 

 2   fetchdata( 

 3     scheme: "http", 

 4     host: "localhost", 

 5     port: 4000, 

 6     path: "/admin/config" 

 7   ) { 

 8     output 

 9   } 

10 } 

This mutation will in turn cause the server to make 

an HTTP request to localhost:4000/admin/config. In 

other words, we need to realize that services that are 

supposed to remain internal in a properly segmented 

and controlled environment, such as an 

administrative configuration endpoint, should not be 

accessible through external input. In the absence of 
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proper input validation or network segmentation, 

frequent SSRF mutations would prompt the server to 

fetch sensitive internal data. Such exposure could 

potentially disclose internal configuration details, 

internal credentials, or any sensitive information 

originally intended for internal access alone. 

Information that would be exposed could give an 

attacker some insight into the architecture behind the 

system, which could then be exploited to escalate 

privileges or pivot access to further internal services. 

The net impact can thus start off with compromised 

confidentiality and perhaps integrity, among others, 

something one space ought to zealously try to 

implement against. A good defence strategy against 

SSRF attacks involves organizations starting with 

good input sanitization through verification controls. 

The whole system conducts URL normalizing [22], 

followed by verification of all user-provided 

addresses against an openly accepted list of safe 

protocol domains and IP addresses and correct 

communication methods, such as HTTPS but not 

nonstandard syntax examples such as file://, ftp://, 

and gopher://. [11] An attack prevention system 

requires URL input scanning for concealed security 

evasion techniques, such as IP address encoding or 

numeral value encoding. From the perspective of 

SSRF risk mitigation, network segmentation 

enforcement needs to be used in order to limit 

outbound requests because internal endpoints must 

be segmented from public interfaces through 

firewall and network ACL rules. Application proxy 

servers with tight policies act as communication 

intermediaries for all external requests and rate-limit 

access points along with timeout configurations to 

prevent denial-of-service states from being created. 

As a last preventive measure, organizations must 

implement regular outbound traffic monitoring and 

anomaly detection through automated alerting 

mechanisms that will enable them to easily discover 

SSRF exploitation attempts. 

3.6. Introspection  

Introspection is one of the features of GraphQL, 

which allows the client to ask for the whole structure 

of the schema [23]. It includes the types, fields, 

mutations, subscriptions, and directories [10]. This 

feature is very useful in the development, but in the 

production, it is a nightmare for developers. It gives 

the advantage of auto-completion and playground. In 

the production, it is necessary to turn off this feature. 

It becomes a vulnerability when, in production, it 

exposes sensitive data of fields and mutations. The 

attacker will gather the data and, after mapping the 

structure, they will exploit the vulnerability if found. 

In the following query, it will fetch all the queries 

with their names, mutations, and fields with their 

types. 

 1 query { 

 2   __schema { 

 3     queryType { 

 4       name 

 5     } 

 6     mutationType { 

 7       name 

 8     } 

 9     types { 

10       name 

11       fields { 

12         name 

13         type { 

14           name 

15         } 

16       } 

17     } 

18   } 

19 }  

GraphQL servers use mutation for CRUD operations 

and resolvers for the request completion so that if the 

attacker already knows the schema, then they will 

exploit any mutation or subscriptions [23]. This will 

lead to the attack because the attacker is already 

familiar with the structure. If we have to use this 

feature in production, then we make sure that the 

sensitive fields are hidden and no one can access 

those fields. Most of the servers are already enabled 

by default, but we can turn this off. There are several 

configurations and tools available, like GraphQL 

Armor and GraphQL Protect. Sometimes if the 

introspection is disabled, but due to a lack of proper 

exception handling, it will lead to data leakage. The 

attacker sends the malicious code with a random 

field or random name, and the server shows the full 

message of the field, so this will lead to data leakage. 
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In the following response, when the client sends the 

query to fetch the user data, and if our mechanism is 

improper, it will return the full error in the terminal. 

 1 { 

 2   "errors": [ 

 3     { 

 4       "message": "Cannot query field 

 \"email\" on type \"User\".", 

 5       "locations": [ 

 6         { 

 7           "line": 4, 

 8           "column": 5 

 9         } 

10       ] 

11     } 

12   ], 

13   "data": null 

14 } 

These smaller mistakes of developers lead to 

breaking the query of GraphQL. It is the best and 

most flexible language to solve the common 

problems with REST, like over-fetching and under-

fetching. There are several flaws with GraphQL, and 

we need to understand it for the best and most secure 

GraphQL API development. 

Conclusion 
GraphQL's flexibility, efficiency, and powerful 

querying capabilities make it a preferred choice for 

modern API development, but its dynamic nature 

also introduces significant security risks. As 

GraphQL adoption continues to rise, securing these 

APIs becomes paramount. These issues, if 

unaddressed, can compromise data integrity, disrupt 

services, and expose sensitive information to 

unauthorized parties. Some issues like introspection, 

injection attacks, and request forgery are easy to 

prevent with just validations and security checks, but 

it's hard to prevent DoS attacks and authentication 

and authorization bypass because it requires robust 

mechanisms. 
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