

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0203

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1235 – 1247

 IRJAEM 1235

A Comprehensive Study of GraphQL Security Challenges

Vidhin Patel1, Meet Chaudhary2, Parth Patel3, Jitendra B Upadhyay4
1,2,3UG - B.V. Patel Institute of Computer Science, Uka Tarsadia University, Bardoli, Gujarat, India.
4Assistant Professor - Shrimad Rajchandra Institute of Management and Computer Application, Uka Tarsadia

University, Bardoli, Gujarat, India.

Email ID: patelvidhin.utu@gmail.com1, meet.chaudhary004@gmail.com2, parthmpatel.m@gmail.com3,

jbupadhyay@utu.ac.in4

Abstract

GraphQL is a highly flexible query language utilized for flexible API construction. It offers excellent benefits

over conventional APIs because of its flexible nature and strong queries. It provides numerous benefits, but

because of its dynamic nature and absence of built-in mechanisms, it is vulnerable to very critical attacks like

injection attacks, denial of service (DoS) attacks, broken authentication and authorization, request forgery,

schema introspection, and bad exception handling. By studying in detail, this paper discloses how the

GraphQL APIs can be attacked by an attacker using a variety of attacks. The paper explains real-world attack

methods with diagrams and examples, such as how to detect GraphQL, overloading the server with complex

queries, injecting the malicious code, brute-forcing credentials, and forging requests on the client and server

sides.

Keywords: GraphQL, Security Vulnerabilities, API Security, Denial of Service (DoS), Injection Attacks,

Authentication and Authorization Bypass, Request Forgery, Introspection.

1. Introduction

GraphQL is a query language and for API, and a

server-side runtime developed at Facebook in 2012

and subsequently open-sourced in 2015 [1] [2]. It is

schema-based with a single endpoint. It is language-

agnostic and database-agnostic. Services are

described using GraphQL by declaring types and

fields [3]. The client can declare the query based on

their need and requirement. It has the greatest benefit

of being strongly typed in schema, being a server-to-

client contract. The schema declares what data exists

and how it is structured. GraphQL is an alternative to

the traditional REST approach. REST APIs are a

popular architectural style for building web services

that emphasize stateless communication and

consistent HTTP methods across endpoints. Though

popular, many research articles mention serious

drawbacks to REST. For example, because REST

relies on distinct endpoints for distinct resources, it

can lead to over-fetching—downloading too much—

or under-fetching, necessitating clients to make

additional requests for full data, especially in the

context of complex or nested data structures [4].

Additionally, the static response formats of REST

APIs restrict flexibility; any changes in data needs

may necessitate client- and server-side adjustments,

thereby decelerating development cycles [5]. Other

research further indicates that though REST's

statelessness allows it to scale, it also complicates

session management and stateful interactions,

typically requiring additional mechanisms for

effective authentication and caching [6]. Finally, in

extremely dynamic application contexts where data

needs frequently change, REST's contract rigidity

may hinder client-server communication efficiency

compared to more flexible paradigms, prompting

developers to seek other alternatives such as

GraphQL [7]. The figure 1 shows the problem of

over-fetching and under-fetching of the REST API

and the flexibility of GraphQL. Here from the REST

API, we get all the data from the endpoint, but in

GraphQL we can ask for the exact data we need in the

request. The adoption of GraphQL is increasing, and

more and more companies are using it for rapid data

querying and API management. Airbnb, Shopify, and

Netflix use it to reduce the server load. Securing such

deployments is a highest priority. According to the

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0203

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1235 – 1247

 IRJAEM 1236

State of GraphQL Security 2024 survey of more than

13000 GraphQL APIs, 33% are highly critical and

72% are vulnerable to medium-level vulnerabilities.

More than 4000 APIs expose sensitive data [9]. Since

it enables dynamic queries to retrieve targeted data,

as opposed to the traditional REST APIs, this

flexibility presents unique security vulnerabilities.

Some of the major threats to GraphQL are unintended

data exposure, injection attacks, and denial-of-service

(DoS) exposure [10]. Hackers typically attack

misconfigured GraphQL endpoints [11], which

demands reconnaissance and security testing as

central components of API defence systems.

Figure 1 Data fetching with REST vs GraphQL

[8]

2. Related work

Early research by Harting and Perez [2] provided an

initial analysis of GraphQL, exploring its language

features and potential applications. Their work

established a foundational understanding of

GraphQL’s capabilities and limitations. Studies such

as Fehari and Aleks [11] in Black Hat GraphQL:

Attacking Next Generation APIs highlight

vulnerabilities like query depth and complexity

attacks, which can exhaust server resources and

trigger denial-of-service (DoS) conditions.

Similarly, McFadden et al. [12] developed

WENDIGO, a deep reinforcement learning tool that

identifies exploitable query patterns in GraphQL

APIs, further emphasizing the risk of DoS attacks.

These works point to the necessity of

countermeasures like rate-limiting and query cost

analysis to thwart such threats. Beyond GraphQL-

specific issues, general web security concerns also

apply, with research like Alsalamah et al. [13]

stressing input validation to block SQL injection in

resolvers, and Nagarjun and Ahamad [14]

advocating output encoding to prevent cross-site

scripting (XSS) in GraphQL responses. Prevention

methods proposed in the literature offer practical

solutions to these security challenges. Thota [15]

recommends integrating Open Policy Agent (OPA)

for fine-grained authorization, ensuring that only

authorized users can access sensitive GraphQL

schema operations and data. This is complemented

by adapting established web security practices, such

as sanitizing inputs to avoid injection vulnerabilities

and encoding outputs to mitigate risks, tailored to

GraphQL’s unique structure.

3. Common Security Challenges in GraphQL

3.1. Reconnaissance

It is the first step of attack and it starts with

information gathering. To detect GraphQL in a

penetration testing engagement, it is crucial to be

familiar with various implementations of GraphQL

servers, which could vary depending on the

programming language used and may have varied

vulnerabilities or configurations. Detection could

either be performed manually, which might be time-

consuming while scanning for multiple hosts, or

automatically based on web scanning tools.

Automated scanning tools provide more efficiency

and scalability as they scan multiple hosts

simultaneously based on the use of threaded

processes. In addition, such tools support input from

external files, such as hostname lists, making them

efficient for large-scale scanning operations.

Scanners like Nmap and specialized GraphQL

scanners, such as Graphw00f, are used for

reconnaissance activities for penetration testing [11].

Such scanners have inherent logic to detect web

interfaces and can be used as part of scripting

languages such as Bash or Python to scan hundreds

of IP addresses or subdomains [11]. In hunting for

identifying GraphQL APIs, a possible first step

could be to query against the default endpoint

/graphql; however, we must be aware that

developers do have the ability to set custom

endpoints. Typical-looking alternatives are

versioned paths of the form /v1/graphql, /v2/graphql,

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0203

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1235 – 1247

 IRJAEM 1237

or /v3/graphql. Beyond this, tools such as GraphQL

Playground or GraphiQL Explorer tend to have

endpoints like /graphiql or /playground, which

similarly may be subject to versioning GraphQL

always responds with the same structure: successful

queries will have a data field, but errors will have an

errors field. This provides a simple test for

identifying GraphQL servers by sending both well-

formed and ill-formed queries, then inspecting the

resulting responses. The different endpoints may

have different security settings; they therefore

deserve separate testing.

Table 1 GraphQL Server Implementations and

their Programming Languages [11]

GraphQL Server Language

Apollo Server JavaScript

Yoga TypeScript

GraphQL Java Java

Ariadne Python

GraphQL-Ruby Ruby

Hot Chocolate C#

graphql-php PHP

graphql-kotlin Kotlin

graphql-go Go

Juniper Rust

HyperGraphQL Java

Assume you need to look for GraphQL-running

servers on a large network, but the servers

themselves don't necessarily return a standard web

page in HTML or plain signals. Rather, they

primarily return data through an API. One of the

secrets to locating them is to look for a standard error

message returned by most GraphQL servers when

they are presented with a simple GET request with

no valid query. In most instances, if you do a GET

on a GraphQL endpoint (e.g., /graphql), you can

observe an error response of, "Must provide query

string."

Figure 2 GraphQL Server Response from Post

Request

In the figure 2, we can see that the server returns the

response with the basic POST request without any

tool. After setting the parameter, it shows the

response in the last line.

{

 "data": {

 "typename": "Query"

 }

}

GraphQL network scanners such as Nmap and

Graphw00f help attackers discover API structures to

analyse potential issues during reconnaissance

attacks [11]. Altair GraphQL Client stands out due

to its Postman-like operation but with features

designed exclusively for GraphQL testing. Through

Altair security experts can enter and execute queries

to analyse API outcomes and locate security

weaknesses in real-time. The crucial role of Altair

during reconnaissance stems from its real-time

feedback to see how an endpoint responds to tests

and reveals any mismatches or irregular patterns

where vulnerabilities might exist. Through Altair

tests and GraphQL Voyager users receive a diagram

view of their API design which shows how different

types, fields and mutations depend on each other

[16]. An attacker can easily detect the entire API

architecture when interdependencies are displayed

although this organization seems challenging [16].

Eyewitness helps reconnaissance work by recording

all web interfaces that attackers can access including

GraphiQL and GraphQL Playground, in addition to

gathering client-side data. Burp Suite's InQL plugin

automatically analyses GraphQL endpoints during

web application testing while InQL tool works with

the software in passive mode [17].

3.2. Injection Attacks

Injection vulnerabilities appear when applications

accept untrusted input data which results in

dangerous commands or queries being interpreted

during either server or client operations [13]. The

extensive classification of attacks infiltrates

numerous parts of network frameworks from

operating systems through browsers to databases

together with external third-party programs. The

failure to conduct proper security checks creates

conditions where harmful input can execute such

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0203

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1235 – 1247

 IRJAEM 1238

violations which result in severe security issues.

Several different mechanisms exist through which

applications create unintentional injection

vulnerabilities. The introduction of security lapses

through these weak practices includes skipping

security checks on data entry and employing flawed

parser libraries and direct transmission of unverified

data. Vulnerabilities emerge from displaying

unmodified user input back to the client that has not

gone through any transformation. When clients have

access to manipulate GraphQL API data through

query arguments as well as mutations and

subscriptions and query filters these vulnerabilities

become issues. The vulnerability risk can be reduced

by performing proper input validation and

sanitization yet total removal of injection flaws

proves difficult because apps need user input.

GraphQL uses mutations for basic CRUD operations

[3]. Mutations are already defined in the schema and

used to perform any actions like creating a user

account, logging in, or storing some data. With

mutations, it performs any CRUD tasks; that's why

the input point of the mutation needs to be handled

carefully. The following mutation checks the login

credentials of the user entered in the email and

password field; if it is correct, then it will return a

token; otherwise, it will return an error.

mutation {

loginUser(email: "user@example.com",

password: "123456"){

token

 }

 }

Here we don't know the database behind the server,

like if it is SQL or NoSQL, so the attacker tries to

insert multiple queries that affect the database.

mutation {

loginUser(email:"user@example.com”,

password:"123456";DROP TABLE users;--"){

 token

 }

 }

The database will execute this query directly if the

server doesn't have sanitation or any other robust

security mechanisms. The following query only

accepts the limit argument, which is an integer value,

but if we can't handle it properly and the attacker

sends malicious input like -1 or any other input, then

the behaviour may be unpredictable, and it may

return all users.

query {

users(limit: 100) {

 id

 }

 }

GraphQL's richness in querying data introduces an

additional layer of complexity in guarding

applications against cross-site scripting (XSS)

attacks [14]. In a GraphQL system, XSS attacks can

occur when user data—query or mutation

parameters, for example—is not sanitized prior to

being placed in resulting data returned to a client

[14]. Not validating opens up the possibility of an

attacker injecting code containing malicious

JavaScript that can execute immediately (reflected

XSS) or is deferred until when data is actually being

loaded from a datastore (stored XSS). Beyond this,

GraphQL clients that render user-provided content

with inadequate encoding expose themselves

particularly to DOM-based XSS that only happens

on the client-side of the browser's logic [14]. Impacts

can include unauthorized access to data such as

session cookies, personal data, and auth tokens,

which makes it of critical necessity to enforce strong

input validation, output encoding, and safe client-

side script practices for GraphQL-based

applications. (Figure 3)

Figure 3 Common Server Architectures Among

Organizations [11]

The figure 3 shows the public and internal servers.

The public server may be secure due to validation,

but the internal server accepts any request directly

from the public server. It is dangerous since, if the

public server is compromised, it can then hijack the

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0203

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1235 – 1247

 IRJAEM 1239

other internal servers; hence all servers must be

secured in their own way. The attacker first tries to

execute the query to check for the server

vulnerability to which the server immediately

responds like so:

 query {

 mutation(message:

"<script>alert('hello!');</script>)

 }

The response is either displayed in some threat

notification or gives an alert box on the web page.

The malicious payload is stored in a database or

some other storage area, where it persists and is

shown to any user viewing the affected content.

 mutation {

 updateUser(data:

"<script>fetch('http://example.com/users?

cookie=' + document.cookie)</script>")

 }

It is meant to update user details, but instead the

attacker injects a malicious script designed to steal

user cookies.

3.3. Denial of Service (Dos) Attack

It is a common attack where the attackers exploit the

server's resources using various methods like field

duplication, circular queries, or directive

overloading to increase the workload of the server

and cause CPU and memory exhaustion [11]. This

will lead to financial losses and damage the

reputations. GraphQL is extremely flexible, with no

fixed depth per query; thus, multiple queries can

occur against the database. This is called the N + 1

query problem [12]. It calls multiple successive calls

from the database in highly complicated and deeply

nested queries to such an extent that performance is

considerably hampered on the server side.

Type car {

Id: ID!

Name: String!

Parts: [car]!

 }

In this case, the car type as defined in the schema

returns a name relation (of user type). If any person

tried the following query, it would create an infinite

loop-and it would iterate through the queries

recursively. Such query types are referred to as

circular queries.

 query {

 user{

 name

 user{

 name

 user{

 name

 user{

 name

 user{

 name

 }

 }

 }

 }

 }

 }

Circular queries are initiated by bidirectional

relations in the GraphQL schema that end up leading

to resource exhaustion [11]. In each recursive

reference of interconnected types, attackers can

carry out a deep nesting of queries that compel the

server to resolve extremely large constructs

exponentially growing in size. To mention but a few,

each nesting increment will format the number of

objects or fields that the server has to process,

thereby overloading the CPU and memory space for

processing. Inherent weaknesses stem from this

flexibility of GraphQL, which generalizes complex

requests for data from a client without any inherent

measure to suppress abusive query patterns, thereby

exposing the servers to denial-of-service

attacks.Attacks using cyclical dependencies are gaps

a hacker opens up from analysing the schema,

usually by using tools to visualize such relationships

or detect recursive kinds of fragments. Testing

essentially is done by increasing the depth of the

query to determine how much degradation is

occurring to the performance of the server. This

consists of formulating recursive queries that will

"walk" through matched types, thereby forcing the

server to complete endless loops of resolution.

Parallel execution of such queries imposes a

multiplicative effect that will have the server

resource depletion happen at a faster rate, thereby

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0203

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1235 – 1247

 IRJAEM 1240

leading to the server crashing. Good defence

practices include the following: depth and

complexity limit on queries, cost estimation based

on the attribution of computational weights to the

higher-risk domains, and paginating returned data in

the case of limiting returned data. Schema

obfuscation eliminates introspection, and rate

limiting prevents denial-of-service attacks in the

form of repeated attacks. Schema audits need to be

done by developers in order to uncover circular

patterns and introduce proper controls to the

photosystem to counteract the flexibility of

GraphQL with defensibility in a denial-of-service

scenario. Attackers carry out alias overloading by

leveraging the ability to alias that allows clients to

alias fields from one request to, hence overloading

expensive resolver functions and leading to server

overload with an attacker performing a query

involving several aliased fields for a single data type.

The GraphQL server considers every alias as an

independent execution context and then creates

multiple instances of the root resolver process [11].

For example, an attacker might issue a query like:

query {

user1: users(id: "101") { data }

user2: users(id: "101") { data }

user3: users(id: "101") { data }

 // ... and so on for dozens or even 6 hundreds of

aliases

 }

Though all the received data points are the same, the

individual calls to every alias invoke respective

resolvers that run heavy tasks such as intricate

queries and logical operations. The vulnerability of

server resource exhaustion rises with poor

limitations on query depth and complexity as this

duplication of workload spreads server resources,

leading to eventual performance degradation or

complete system crash. GraphQL servers, however,

can become an easy target for denial-of-service

attacks due to powerful and possibly maliciously

crafted queries, on which proposals of various

mechanisms are laid. The mechanism for cost

attribution lies in performing a query cost analysis

whereby every field in the schema is assigned a

"cost" that is proportional to the resources required

by that field per unit of time. For example, each

could be CPU cycles, I/O accesses, memory, or

network transmission. This cost may either be static,

approximated by query structure examination before

it actually gets executed, or dynamic, such as

measuring the actual response on execution [12]. On

a request for a query, the server will measure the

aggregate cost, compared to the set threshold, and if

that cost is in excess of this threshold, it can

terminate the request and deny access to the system

for resource-constrained queries by the user. The

second line of defence is designed by the credit-

based rate-limiting mechanism in which clients are

assigned fixed credits (say, 1,000 credits per query)

and queries consume credits based on their expected

cost [11]. Thus, the more expensive a query is, the

more credits it spends, which restricts the number of

such queries that a client can issue in a given time

frame. This kind of defence stops unfair usage and

prevents one client from hogging server resources,

as there could be concurrent expensive queries.

Other than that, the GraphQL spec itself is

apparently liberal with respect to aliases and field

duplication, so much that that itself may be exploited

by the attackers to inflate query costs. In order to

prevent this, middleware can be placed in front of the

application to perform checks on incoming queries

for correctness, count generators for alias or

duplicate fields, and impose limits to practically

abort this misuse. (Figure 4)

Figure 4 GraphQL Query Cost Exploitation

Here, if you even impose a maximum cost per query,

the attacker sends multiple requests exactly or less

than the limit, and here the query cost fails, so we

need the rate-limiting approach that specifies the

cost of a query from any client within an hour.

Moreover, WENDIGO proposes a deep

reinforcement learning approach to automatically

discover GraphQL queries that can induce denial-of-

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0203

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1235 – 1247

 IRJAEM 1241

service (DoS) attacks. Instead of flooding the server

with traffic, it strategically mutates query templates

using a DRL agent with Proximal Policy

Optimization, guided by rich feedback from a pre-

trained transformer on HTTP responses. Evaluated

on a vulnerable GraphQL application, WENDIGO

efficiently uncovers queries that significantly

increase server load with very few requests,

outperforming traditional fuzzing techniques [12].

3.4. Authentication and Authorization Bypass

Authentication and authorization have become the

base architecture of security. The GraphQL API

contains in-band authentication and authorization

[11] that perform user authentication along with

permission management tasks. The implementation

of these techniques creates additional vulnerability

areas due to complex logic duplication thus making

the system more susceptible to attacks. The

management of out-of-band authentication and

authorization controls shifts to an external service

such as an API gateway so GraphQL API remains

separate from these activities. Out of the best

practice options this model ensures authentication

functions at the gateway level and authorization

remains in the business logic tier between GraphQL

and persistence layers. Secure implementation of

these mechanisms proves challenging during initial

construction except when using established

framework structures. Any system must implement

strict security implements. GraphQL does not carry

an in-built mechanism for authentication and

authorization, thus leaving the responsibility to the

developers to assume its implementation from its

immediate logic. Such additional work undertaken

by developers opens room for errors that attackers

exploit to bypass security, gain access to sensitive

information, or perform forbidden actions. Since

GraphQL does not come with standard security

procedures right out of the box, developers use

different techniques, which can generally be

classified into in-band and out-of-band. In-band

techniques build authentication and authorization

right into the GraphQL API, handling logins,

signups, and permissions through custom queries

and, most commonly using HTTP headers

[15]authorization: <token> or special fields such as

ID, to fetch user data. Out-of-band techniques allow

an external system-such as an API gateway, or

identity provider-to handle these functions, and

leave GraphQL APIs to be responsible for data

delivery upon receipt of verified credentials. Other

approaches are schema directives, such as @auth,

middleware checking requests, and libraries such as

GraphQL Shield for enforcing rules, with varying

trade-offs in complexity and security [11]. The very

flexibility of GraphQL may lend itself to weaknesses

that an attacker could exploit to bypass security. For

example, brute-force attacks might implement query

batching for submitting numerous logins attempts in

a single request and so evade the rate limit,

especially for certain tools, like CrackQL [18].

Token forging occurs when an API does not properly

check the JSON Web tokens (JWT), thus allowing

for token creation from the side of the attacker, who

can assign privileges at will [19]. Authorization

bypass takes place when inconsistent or

misconfigured rules allow an attacker to access data

via that are not sufficiently protected, commonly

revealed by means of introspection queries that

expose the API's underlying schema. Injection

attacks modify the query variables so as to bypass

the security checks, while the introspection exploits

use the very schema that these introspection attacks

expose in order to find and exploit the weak link. All

of these methods could result in a major breach of

constitutional rights to privacy of information and

integrity of the system. There are several ways to

bypass the authentication in the GraphQL and the

very basic is brute forcing the passwords. The

attacker injects the following types of queries until it

completes the attack.

 1 mutation {

 2 try1: login(username: "admin",

password: "admin") {

 3 token

 4 }

 5

 6 # N number of query

 7

 8 tryN: login(username: "user",

password: "user123") {

 9 token

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0203

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1235 – 1247

 IRJAEM 1242

10 }

11 }

Here, using some advanced tools like CrackQL [18],

the attacker executes multiple queries using aliases;

therefore, it sends a large number of queries in a

single HTTP request. CrackQL uses CSV files and

templates for word lists, making it efficient for

attacking [18]. In some systems, they use JWT

tokens so the authentication mechanisms are

different; therefore, attackers can steal the auth token

or session token of other users using XSS attacks and

then execute that token directly on the server. The

attacker used a forged token, and it will throw the

user's data as a form of error.

1 query {

2 data(token:"

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzd

WIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4

gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwR

JSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c")

{

3 id

4 email

5 role

6 }

7 }

If the server doesn’t validate this token, it will return

the user’s data with a forged admin role.

Authorization validates the access control of the

data, but sometimes the developer forgets to

implement robust validation and verifications on the

resolvers. The attacker asks for the data in the form

of nested queries, and if the validations are not

proper, then it will lead to data leaks and privacy

issues. In the following query, the posts of the user

with ID 101 will be fetched, but here anyone can

fetch the data, if the server does not validate the

query, then it will return all comments, whether they

are private or hidden, on all posts from all users.

 1 query {

 2 users (id: 101) {

 3 posts {

 4 comments {

 5 content

 6 }

 7 }

 8 }

 9 }

The second one, alias bypassing, is a vulnerability

that takes advantage of the way GraphQL enables

clients to alias fields in a query, possibly tricking an

API into skipping security checks if such security

checks are poorly implemented; i.e., if an API limits

access to a sensitive field named getuserdata but only

checks the alias passed in the query and not the

actual resolver being invoked, an attacker could pass

in a query where the alias safe data conceals the true

nature of the field being invoked, thus circumventing

the security measures in place—this is one such

example of the imperative need for complete AST

inspection and resolver-level security checks to

ensure field-level permissions are enforced

irrespective of any aliasing in effect.

1 query {

2 safedata: getuserdata {

3 secret

4 }

5 }

A third problem is a lack of authorization in

mutations. This is when access control in a GraphQL

API is too lenient, so that any authenticated user can

perform risky modifications. Where, for instance, a

mutation for changing user roles or for deleting

critical records checks only that a user is

authenticated, not that they are an administrator, an

attacker can use the mutation to promote themselves

or delete data they are not entitled to. This is not only

risky to the integrity of the data in the system, but it

exposes the application to misuse and unauthorized

modification of its state. In the following mutation,

the server will execute the query, but if it fails to

verify the right to delete the data, then it will delete

the account of the user.

1 mutation {

2 deleteuser(id: 101)

3 }

In GraphQL, subscriptions allow for real-time

exchange of data. [20] They are web socket-based.

Use of subscriptions has been a contentious issue

because they help handle real-time streams of data,

which usually involve special authorization

procedures distinct from those involved in queries or

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0203

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1235 – 1247

 IRJAEM 1243

mutations. If the subscription model does not

rigorously guarantee that the requesting user has the

necessary permissions to get live updates, it can

allow an attacker to subscribe to updates or changes

intended for another user. For example, in a system

that provides live orders or status updates, the lack

of proper authorization checks can allow a malicious

user to subscribe to notifications about orders not

intended for them, thus causing unauthorized

exposure of real-time data. This security

vulnerability can result in severe privacy breaches

and compromise the integrity of real-time

communications. In the following query, if the

server doesn't verify the access right, then an attacker

can subscribe to it, and every time the user changes

his email, a notification is sent to the attacker about

the new email address.

1 subscription {

2 userupdates(id: 101) {

3 email

4 }

5 }

To further inhibit authentication bypasses in

GraphQL, account lockout implementation after a

certain number of failed logins should be instituted

to deter brute-force attacks. For instance, if an

account is locked for 15 minutes after 10 failed

attempts, the attackers will be forced to slow down

or stop their attempts. Additionally, when strong

password practices are deployed—ranging from

minimum length of passwords, variety in character

types (e.g., upper case, lower case, numbers,

symbols), and disallowance of default passwords—

the possibility of credential guessing will be

avoided. Passwords should be hashed by developers

with strong algorithms such as bcrypt or Argon2 so

that even if the database is hacked [11], the stolen

passwords become useless. Logging and monitoring

login attempts can, however, greatly improve

security, helping discover such suspicious activities

as repeated attempts from a single IP address and

allowing proactive steps such as blocking the IP or

alerting admin staff. To make authorization stronger

in GraphQL, developers ought to apply a contextual

role-based access control system, where permissions

are dynamically allocated on user context [15], e.g.,

department or project affiliation. This enables some

needed granularity—for instance, a manager can

view only data that is relevant to the manager's

department. One very needed solution is schema

validation that denies unauthorized fields' queries,

which are typically maximum depth-limited to

enable checks. Developers can kill two birds with

one stone through tools such as graphql-depth-limit,

which enable one to limit query depth, and graphql-

validation-complexity, which assigns complexity

scores to queries and thus limits fade attempts. Last,

such logging and auditing on authorization decisions

will uncover and reveal attempts made in bypassing

remotely to investigate, demonstrating some

improvement in such security policies.

3.5. Request Forgery

There are two principal request forgery attack types

that are used to compromise the GraphQL server,

and they are CSRF (Cross-Site Request Forgery) and

SSRF (Server-Side Request Forgery). In CSRF [11],

an ill-intentioned code is inserted into the user's

browser, using HTML or JavaScript for the sole

purpose of executing the GraphQL query directly.

The basic intention of such an attack is to hijack the

session information of the users along with their

cookies. If the victim's browser gets infected, the

browser initiates a request to the endpoint, thus

gaining access to cookies as well as website data.

Using this ability, user data could be edited, altered,

or erased. Under the framework of CSRF, two

exploitation processes are used, one being the POST

method, and the other method is the GET method

[21]. In POST-based methods, it sends the POST

request to the server. For the following query, it

sends the post request to delete the user account in

the form using the POST method [21], and the input

is hidden and the name is a query, so the server

executes it as a query, and it deletes the victim's

account as per the token found in the cookie.

1 <form id="csrf"

action="https://example.com/graphql"

method="POST">

2 <input type="hidden" name="query"

value="mutation { deleteuseraccount { success}

}">

3 </form>

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0203

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1235 – 1247

 IRJAEM 1244

4 <script>

document.getElementById('csrf').submit();

6 </script>

In GET-based methods, it is used to retrieve the data,

but sometimes the mutations are not protected by

POST requests, and with the GET request [21], it

manipulates the mutations. This is dangerous

because anyone can send the GET request and

manipulate the data. In the following query, it will

force the browser to send a request, and it will

execute the delete mutation.

1 <img

src="https://example.com/graphql?query=mutation

%20%7B%20deleteuser(id%3A123)%20%7B%20s

uccess%20%7D%20%7D" alt=""/>

To effectively counter cross-site request forgery

(CSRF), a multi-layered strategy must be put into

effect: initially, the SameSite attribute should be set

on cookies, to ensure that they are sent only in

appropriate contexts; whereas SameSite=Strict

restricts cookies to same-origin requests,

SameSite=Lax sends cookies with GET requests that

were not initiated from scripts, thereby attempting to

minimize cross-site leakage; one must configure this

attribute explicitly, because modern browsers will

default to Lax if not specified, definitely not be

sufficient for all cases. Implementing anti-CSRF

tokens would lend an additional, much-needed

protection against CSRF [11], with each request

bearing a unique, cryptographically secure token,

which is instead issued by the server per request and

sent inside the request using custom headers like X-

CSRF-TOKEN or parameters like csrf-token, as

opposed to static throughout a session [11]; this,

nonetheless, limits the ability of attackers to guess or

reuse tokens considerably. Besides that, by ensuring

that all operations affecting state, including

GraphQL mutations, are invoked only through

POST requests and not through GET requests, this

will mitigate the attacks exploiting CSRF through

GET requests, given that GET requests can easily be

instigated through the use of image tags or hidden

form submission methods. Finally, one continuously

keeps vigilance against ways of bypassing tokens

through null values, token reuse, or weak token

generation algorithms that can seriously weaken all

of the CSRF countermeasures; routine security

audits and updates in the cookie and token

management practices will be a vital cog in the

wheel for keeping the whole defence against an

attack robust. An SSRF in the GraphQL framework

is a very serious security lapse that often allows

attackers to exploit certain weaknesses [22] in a

poorly architected GraphQL server to send strange

requests to either external or internal systems. This

is triggered by the fact that user inputs, such as URLs

or endpoints, may not have undergone stringent

validation or be adequately sanitized, thus leaving

the resolvers that contact extranet services open to

attack. This kind of attack can be immensely deadly

simply because, in so many cases, the high flexibility

of query and mutation almost opens the door for

hardcoded Bahama functions to fetch information

and/or requests from external sources or internal

microservices. Some creative work on a query, in

general, would allow such an attacker to induce the

server to execute a command on behalf of the

attacker—thus bypassing firewalls, obtaining

sensitive internal data that would not, thus, have

been achieved, or sterilizing portions of the network.

Therefore, it is very important to strengthen input

validation, increase access control, and reconsider

any resolver fetching of data that would lead to the

vulnerability to SSRF in the case of GraphQL

applications.

 1 mutation {

 2 fetchdata(

 3 scheme: "http",

 4 host: "localhost",

 5 port: 4000,

 6 path: "/admin/config"

 7) {

 8 output

 9 }

10 }

This mutation will in turn cause the server to make

an HTTP request to localhost:4000/admin/config. In

other words, we need to realize that services that are

supposed to remain internal in a properly segmented

and controlled environment, such as an

administrative configuration endpoint, should not be

accessible through external input. In the absence of

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0203

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1235 – 1247

 IRJAEM 1245

proper input validation or network segmentation,

frequent SSRF mutations would prompt the server to

fetch sensitive internal data. Such exposure could

potentially disclose internal configuration details,

internal credentials, or any sensitive information

originally intended for internal access alone.

Information that would be exposed could give an

attacker some insight into the architecture behind the

system, which could then be exploited to escalate

privileges or pivot access to further internal services.

The net impact can thus start off with compromised

confidentiality and perhaps integrity, among others,

something one space ought to zealously try to

implement against. A good defence strategy against

SSRF attacks involves organizations starting with

good input sanitization through verification controls.

The whole system conducts URL normalizing [22],

followed by verification of all user-provided

addresses against an openly accepted list of safe

protocol domains and IP addresses and correct

communication methods, such as HTTPS but not

nonstandard syntax examples such as file://, ftp://,

and gopher://. [11] An attack prevention system

requires URL input scanning for concealed security

evasion techniques, such as IP address encoding or

numeral value encoding. From the perspective of

SSRF risk mitigation, network segmentation

enforcement needs to be used in order to limit

outbound requests because internal endpoints must

be segmented from public interfaces through

firewall and network ACL rules. Application proxy

servers with tight policies act as communication

intermediaries for all external requests and rate-limit

access points along with timeout configurations to

prevent denial-of-service states from being created.

As a last preventive measure, organizations must

implement regular outbound traffic monitoring and

anomaly detection through automated alerting

mechanisms that will enable them to easily discover

SSRF exploitation attempts.

3.6. Introspection

Introspection is one of the features of GraphQL,

which allows the client to ask for the whole structure

of the schema [23]. It includes the types, fields,

mutations, subscriptions, and directories [10]. This

feature is very useful in the development, but in the

production, it is a nightmare for developers. It gives

the advantage of auto-completion and playground. In

the production, it is necessary to turn off this feature.

It becomes a vulnerability when, in production, it

exposes sensitive data of fields and mutations. The

attacker will gather the data and, after mapping the

structure, they will exploit the vulnerability if found.

In the following query, it will fetch all the queries

with their names, mutations, and fields with their

types.

 1 query {

 2 __schema {

 3 queryType {

 4 name

 5 }

 6 mutationType {

 7 name

 8 }

 9 types {

10 name

11 fields {

12 name

13 type {

14 name

15 }

16 }

17 }

18 }

19 }

GraphQL servers use mutation for CRUD operations

and resolvers for the request completion so that if the

attacker already knows the schema, then they will

exploit any mutation or subscriptions [23]. This will

lead to the attack because the attacker is already

familiar with the structure. If we have to use this

feature in production, then we make sure that the

sensitive fields are hidden and no one can access

those fields. Most of the servers are already enabled

by default, but we can turn this off. There are several

configurations and tools available, like GraphQL

Armor and GraphQL Protect. Sometimes if the

introspection is disabled, but due to a lack of proper

exception handling, it will lead to data leakage. The

attacker sends the malicious code with a random

field or random name, and the server shows the full

message of the field, so this will lead to data leakage.

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0203

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1235 – 1247

 IRJAEM 1246

In the following response, when the client sends the

query to fetch the user data, and if our mechanism is

improper, it will return the full error in the terminal.

 1 {

 2 "errors": [

 3 {

 4 "message": "Cannot query field

 \"email\" on type \"User\".",

 5 "locations": [

 6 {

 7 "line": 4,

 8 "column": 5

 9 }

10]

11 }

12],

13 "data": null

14 }

These smaller mistakes of developers lead to

breaking the query of GraphQL. It is the best and

most flexible language to solve the common

problems with REST, like over-fetching and under-

fetching. There are several flaws with GraphQL, and

we need to understand it for the best and most secure

GraphQL API development.

Conclusion
GraphQL's flexibility, efficiency, and powerful

querying capabilities make it a preferred choice for

modern API development, but its dynamic nature

also introduces significant security risks. As

GraphQL adoption continues to rise, securing these

APIs becomes paramount. These issues, if

unaddressed, can compromise data integrity, disrupt

services, and expose sensitive information to

unauthorized parties. Some issues like introspection,

injection attacks, and request forgery are easy to

prevent with just validations and security checks, but

it's hard to prevent DoS attacks and authentication

and authorization bypass because it requires robust

mechanisms.

References

[1]. “Introduction to GraphQL,” GraphQL

Organization, [Online]. Available:

https://graphql.org/learn/.

[2]. O. Harting and j. Perez, “An Initial Analysis

of Facebook's GraphQL Language,” Alberto

Mendelzon International Workshop, (2017).

[3]. E. Written, A. Cha, J. C. Davis, G. Baudart

and L. Mandel, “An Empirical study of

GraphQL schemas,” Service-Oriented

Computing, jul 2019.

[4]. G. Brito and M. T. Valente, “REST vs.

GraphQL: A Controlled Experiment,” IEEE

Int. Conf. Software Architecture (ICSA),,

Feb 2020.

[5]. Lawi, B. L. E. Panggabean and T. Yoshida,

“Evaluating GraphQL and REST API

Services Performance in a Massive and

Intensive Accessible Information System,”

Computers 2021, vol. 10, p. 138, Oct 2021.

[6]. E. Frigård, “GraphQL vs. REST: A

Comparison of Runtime Performance,”

Bachelor’s Thesis, Dept. of Computer

Science VT 2022.

[7]. P. Marganski and B. Panczyk, “REST and

GraphQL Comparative Analysis,” Comput.

Sci. Inst., vol. 19, p. 89–94, 2021.

[8]. “GraphQL vs REST - A comparison.,”

[Online]. Available:

https://www.howtographql.com/basics/1-

graphql-is-the-better-rest/.

[9]. T. Kalos, “The state of GraphQL Security

2024,” [Online]. Available:

https://26857953.fs1.hubspotusercontent-

eu1.net/hubfs/26857953/The%20State%20o

f%20GraphQL%20Security%202024.pdf.

[10]. Quina-Mera, p. Fernandez, J. Maria Garica

and A. Ruiz-Cortes, “GraphQL: A

Systematic Mapping study,” ACM

Computing Surveys, vol. 55, no. 10, p. 1–35,

Sep 2022.

[11]. D. Fehari and N. Aleks, Black Hat GraphQL:

Attacking Next Generation APIs, No Starch

Press, 2023.

[12]. S. McFadden, M. Maugeri, C. Hicks, V.

Mavroudis and F. Pierazzi, “WENDIGO:

Deep Reinforcement Learning for Denial-of-

Service Query Discovery in GraphQL,” in

IEEE Security and Privacy Workshops

(SPW), San Francisco, 2024, pp. 68-75.

[13]. M. Alsalamah, h. alwabi, h. alqwifi and D.

ibraham, “A Review Study on SQL Injection

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0203

e ISSN: 2584-2854

Volume: 03

Issue:04 April 2025

Page No: 1235 – 1247

 IRJAEM 1247

Attacks, Prevention, and Detection,” The

ISC International Journal of Information

Security, 2021.

[14]. P. Nagarjun and S. S. Ahamad, “Cross-site

Scripting Research: A Review,”

International Journal of Advanced Computer

Science and Applications, 2020.

[15]. V. Thota, “Enhancing GraphQL

Authorization with Open Policy Agent

(OPA),” Computational intelligence and

machine learning e-ISSN: 2582-7464, vol. 5,

no. 1, 2024.

[16]. graphql-kit, “graphql-voyager,” GitHub,

[Online]. Available:

https://github.com/graphql-kit/graphql-

voyager.

[17]. “Working with GraphQL in Burp Suite,”

PortSwigger, [Online]. Available:

https://portswigger.net/burp/documentation/

desktop/testing-workflow/working-with-

graphql.

[18]. Nicholasaleks, “CrackQL,” GitHub,

[Online]. Available:

https://github.com/nicholasaleks/CrackQL.

[19]. “JSON Web Token Introduction,” jwt.io, 30

Nov 2024. [Online]. Available:

https://jwt.io/introduction.

[20]. “Subscriptions,” GraphQL organization,

[Online]. Available:

https://graphql.org/learn/subscriptions/.

[21]. P. Kour, “A Study on Cross-Site Request

Forgery Attack and its Prevention

Measures,” Int. J. Advanced Networking and

Applications, vol. 12, no. 2, pp. 4561-4566,

2020.

[22]. B. Jabiyey, O. Mirzaei, A. Kharraz and E.

Kirda, “Preventing Server-Side Request

Forgery Attacks,” Proceedings of the 36th

Annual ACM Symposium on Applied

Computing, p. 1626–1635, 2021.

[23]. “Introspection,” GraphQL Organization,

[Online]. Available:

https://graphql.org/learn/introspection/.

about:blank

