

https://doi.org/10.47392/IRJAEM.2025.0207

Issue:04 April 2025
Page No: 1268 – 1272

e ISSN: 2584-2854 Volume: 03

Menstrual Pain Relief Pad

D.Murugesan¹, S. Lingasri², A. Barath³, P. Mahalakshmi⁴, S. Vasanth Kumar⁵

¹Associate Professor, Paavai Engineering College, Namakkal, Tamilnadu, India.

^{2,3,4,5}UG Students, Paavai Engineering College, Namakkal, Tamilnadu, India.

Email ID: gesan26@gmail.com¹, lingasrime@gmail.com², barathdevil1430@gmail.com³, dineshkarthiklakshmi01@gmail.com⁴, vasanthvasanth34526@gmail.com⁵

Abstract

Menstrual health remains an under-researched domain within the broader scope of women's health and technology. Commonly experienced menstrual symptoms—such as pain, cramps, bloating, and emotional discomfort—are typically managed using contraceptives or painkillers, which provide only temporary relief and fail to promote innovation in the area of menstrual wellbeing. This research explores the application of soft robotics, Soma Design, and Shape-Changing Materials (SCM) to develop interactive and adaptive software-based solutions aimed at easing menstrual pain in a non-invasive and personalized manner. The study investigates the potential of using embodied interaction, flexible hardware systems, and human-centered design to create wearable prototypes that are both comfortable and effective. [Reference 18 -22]

Keywords: Menstrual pain, soft robotics, Shape Changing Materials, Soma Design, wearable technology, biomedical engineering.

1. Introduction

Menstruation is a natural biological process experienced by millions of women globally, yet it is accompanied by physical discomfort, emotional fluctuations, and pain that can severely affect daily life. Traditional solutions such as painkillers or hormonal contraceptives offer shortterm relief but fail to address the broader experiential and bodily challenges of menstruation. Moreover, the field of menstrual health technology remains largely underexplored, leaving a significant gap in the development of inclusive, innovative, and bodysensitive solutions. This research investigates the possibilities of combining soft robotics, Soma Design principles, and Shape-Changing Materials (SCM) to create a new category of assistive technologies aimed at easing menstrual pain in a more empathetic and personalized way. Soma Design focuses on embodied interaction and sensory engagement, making it a valuable framework for developing systems that respond to the nuanced needs of menstruating individuals. The integration of SCM allows for adaptive feedback mechanisms such

as pressure, temperature changes, or motion that can be adjusted to individual preferences and physical conditions The project involved the development of ten different software programs embedded in soft robotic prototypes designed to apply responsive movements and sensations to targeted areas of the body. These systems were evaluated through a firstperson test approach, enabling highly personalized data collection and iteration. This methodology provided deeper insight into how menstrual discomfort could be alleviated through physical interaction rather than pharmacological means. This work contributes to the broader conversation on inclusive design and human-centered technology, offering new directions for menstrual health innovation. The findings not only emphasize the technical feasibility of such solutions but also stress the importance of bodily awareness, user comfort, and emotional sensitivity in the design of future wellness technologies. [1-5]

2. Methods

This research adopted a qualitative, abductive

OPEN CACCESS IRJAEM

Volume: 03 Issue:04 April 2025 Page No: 1268 – 1272

e ISSN: 2584-2854

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0207

methodology grounded in iterative design and usercentered development. The core aim was to investigate how soft robotic systems, guided by Soma Design principles and Shape-Changing Materials (SCM), could be used to ease menstrual pain in ways that are flexible, responsive, and comfortable for the user. The process began with exploratory prototyping using soft materials and actuators capable of generating motion pressure. A total of ten software-driven hardware prototypes were developed, each programmed to deliver specific interaction patterns—such as pulsation, vibration, compression, or warmth targeting abdominal and lower back areas where menstrual discomfort is commonly experienced. All were tested through first-person experiential evaluations. In this approach, the researcher used the devices on themselves [17] during menstruation, documenting responses, sensations, pain levels, and emotional reactions in real-time. This method allowed for deep, embodied insights into the interaction between the user's body and the device's behavior. The development of the menstrual pain relief pad was carried out through a structured approach involving sensor integration, temperature control, and feedback mechanisms. The pad was embedded with a flexible heating element controlled by an Arduino Uno microcontroller. A thermistor sensor was used to continuously monitor the temperature of the heating pad to ensure it remained within a safe and comfortable range (typically between 38°C to 45°C). The user could control the heat intensity using physical buttons or a mobile app interface connected via Bluetooth. Each prototype was refined over multiple cycles based on testing outcomes, user comfort, and effectiveness in pain management. [16] The collected data were analyzed using predefined metrics, including relief duration, perceived comfort, emotional response, and wearability. These measures were used to evaluate and compare the performance of each system. Illustrates the different phases during a 28day long menstrual cycle and the respective days for each phase. The figure is based on information provided by the "Normal Menstrual Cycle" (Figure 1) [19]

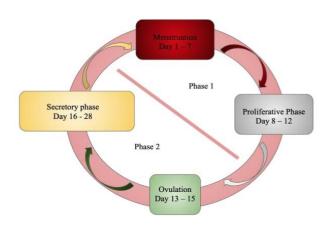


Figure 1 Method

This methodological framework allowed for the development of highly tailored devices, capable of addressing both physical and emotional aspects of menstrual pain through a combination of soft robotics, design thinking, and embodied interaction. (FIGURE 2. Illustration of the graphical representation for six of the developed programs) FIGURE 1. Illustrates the different phases during a 28-day long menstrual cycle and the respective days for each phase. The figure is based on information provided by the "Normal Menstrual Cycle" [20]

3. Result and Discussion

The iterative development and testing of ten distinct soft robotic prototypes yielded a range of insights related to the practical use of shape-changing technologies in managing menstrual pain. Each prototype was evaluated across several predefined parameters, including comfort, effectiveness, wearability, and user experience. The results support the hypothesis that soft robotic systems can offer effective, non-pharmacological [8] relief from menstrual pain. The most successful prototypes were those that mimicked slow, gentle human touch or pressure—correlating with known techniques such as abdominal massage or weighted pressure therapy. A key discovery was the importance of interactivity. Systems that responded to the user's body movements or allowed manual input for control were more favorably rated than passive devices. Placement was also a critical factor; even misalignments significantly minor reduced

e ISSN: 2584-2854 Volume: 03 Issue:04 April 2025 Page No: 1268 – 1272

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0207

effectiveness, highlighting the need for adaptive or form-fitting designs. The physical position of the body during use played a role in pain management. For example, lying down enhanced the sensation and effectiveness of the devices compared [9] to sitting or standing. Hardware noise was another factor: quieter devices were preferred, especially in public or shared spaces. Finally, some prototypes required external means—such as supportive garments or wraps-to stay in place and deliver consistent performance. This underlines importance of integrating wearable design principles into future iterations. These insights emphasize that successful menstrual pain relief through soft robotics is not just a function of technical performance, but also of emotional comfort, usability, and embodiment. By engaging directly with the body in a somatically aware manner, these prototypes created more than mechanical relief—they offered a sense of care and attention during a typically vulnerable time. (Figure 2) [21]

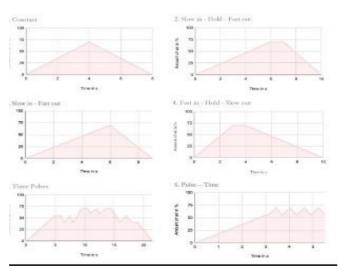


Figure 2 Result

Illustration of the graphical representation for six of the developed programs

Conclusion

research confirms the feasibility effectiveness of using soft robotics, Shape-Changing Materials (SCM), and Soma Design pain principles to ease menstrual through wearable technologies. interactive, The study demonstrated real-time, body-responsive that systems can offer meaningful relief from menstrual discomfort in ways that are personal, adaptable, and drug-free. Through the development and testing of ten different software programs integrated into soft robotic prototypes, it was evident that not only could physical symptoms such as cramps and bloating be alleviated, but the emotional experience of menstruation could also be positively impacted. The use of a first-person test approach enabled deep, embodied feedback that guided improvements in design, comfort, and functionality. The proposed menstrual pain relief pad successfully demonstrates how IoT and embedded systems can be applied to address everyday health challenges faced by women. By integrating a temperaturecontrolled heating element and a vibration motor, the device offers a dual-mode pain relief mechanism that is both effective and user-friendly. The inclusion of real-time temperature monitoring, mobile control features, and safety automation ensures reliability and ease of use. The compact, wearable design allows for discreet and comfortable usage throughout daily activities. Overall, this solution provides a safe, non-invasive, customizable approach to managing menstrual discomfort, highlighting the potential of smart wearable health technologies. These insights point to a promising future where menstrual care can be revolutionized through thoughtful design and technological innovation. The research encourages further exploration of soft robotic systems not just as functional tools but as empathetic interfaces that support bodily autonomy and wellbeing. [22]

References

- [1]. Choonara, T. Kenny, Arch Dis Child, adc.bmj.com, 2013, pp. 573–574. [Online]. Available:
 - https://adc.bmj.com/content/archdischild/98/8/574.full.pdf
- [2]. Lund, How menstruation affects women's health, Medicinsk VeInfra Redkap, no. 4, pp 26-28, Dec 2016. [Online]. Available: https://issuu.com/karolinska_institutet/docs/mv_nr_4_2016
- [3]. M. Balaam, L. Hansen. Women's Health

OPEN CACCESS IRJAEM

e ISSN: 2584-2854 Volume: 03 Issue:04 April 2025 Page No: 1268 – 1272

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0207

- @CHI, Interactions.acm.org, 2020. [Online]. Available: https://interactions.acm.org/archive/view/ja nuary-february-2018/womens-health-chi
- [4]. What is Human-Computer Interaction (HCI)?, The Interaction Design Foundation, n.d. Accessed: 02 Apr 2020, [Online]. Available: https://www.interaction-design.org/literature/topics/human-computer-interaction
- [5]. M L. Søndergaard, private communication. Apr. 2020
- [6]. D. Benyon, Designing interactive systems, 3rd ed. Harlow (England): Pearson, 2014. [Online]. Available: https://ebookcentral-proquest-com.focus.lib.kth.se/lib/kth/reader.action?d ocID=5137312
- [7]. P. Wild, G. van Dijk, N. Maiden, New opportunities for services and human–computer interaction, Taylor and Francis Online, 2012. [Online]. Available: https://www-tandfonline-com.focus.lib.kth.se/doi/full/10.1080/01449 29X.2012.663650
- [8]. Om mens, Umo.se, n.d. Accessed: 14 May 2020. [Online]. Available: https://www.umo.se/kroppen/mens/Ommens/
- [9]. Murugesan, D., Jagatheesan, K., Shah, P. and Sekhar, R., 2023. Fractional order PIλDμ controller for microgrid power system using cohort intelligence optimization. Results in Control and Optimization, 11, p.100218.
- [10]. Murugesan, D., Jagatheesan, K., Shah, P. and Sekhar, R., 2023. Optimization of load frequency control gain parameters for stochastic microgrid power system. Journal of Robotics and Control (JRC), 4(5), pp.726-742.
- [11]. Murugesan, D., Kaviyarasan, M., Matheswari, S., Preethika, M. and Tamilarasan, B., IOT based Assist Device for Pulmonary Diseased Patients Monitoring Framework.

- [12]. Dodia, A., Shah, P. and Sekhar, R., 2023, May. Smart sensors in industry 4.0. In 2023 4th International Conference for Emerging Technology (INCET) (pp. 1-6). IEEE.
- [13]. Shylla, D., Shah, P. and Sekhar, R., 2023, July. Embedded systems in industrial automation 4.0. In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.
- [14]. Mudhivarthi, B.R., Shah, P., Sekhar, R. and Bhole, K., 2023, July. Cybernetic technologies in industry 4.0. In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.
- [15]. Salih, S.Q., Abdulameer, S.M., Abbas, H.H., Tawfeq, J.F., Sekhar, R., Shah, P., Kingsly, S., Dhasagounder, M. and Radhi, A.D., 2025. An Investigating of 5G Multi-Access Edge Computing (MEC) and Subcarrier Spacing to Improve Wireless Communications. International Journal of Intelligent Engineering & Systems, 18(1).
- [16]. Dhasagounder, M., Kaliannan, J., Shah, P. and Sekhar, R., 2024. An Application of Artificial Bee Colony and Cohort Intelligence in the Automatic Generation Control of Thermal Power Systems. In Intelligent Methods in Electrical Power Systems (pp. 23-41). Singapore: Springer Nature Singapore.
- [17]. Dhasagounder, M., Kaliannan, J., Shah, P. and Sekhar, R., 2024. Comparing The Performance Of Various Soft Computing Approaches In Load Frequency Control For Interconnected Power Systems Combining Thermal-Hydro And Thermal-Diesel Sources. Dyna, 99(5).
- [18]. Höök, K., Eriksson, S., Louise Juul Søndergaard, M., Ciolfi Felice, M., Campo Woytuk, N., Kilic Afsar, O., Tsaknaki, V. and Ståhl, A., 2019, November. Soma design and politics of the body. In Proceedings of the Halfway to the Future Symposium 2019 (pp. 1-8).

OPEN CACCESS IRJAEM

e ISSN: 2584-2854 Volume: 03 Issue:04 April 2025 Page No: 1268 – 1272

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0207

- [19]. Lilja, K. and Lundkvist, J., 2020. Soft Robotics for Young People's Menstrual Health.
- [20]. Tennent, P., Marshall, J., Tsaknaki, V., Windlin, C., Höök, K. and Alfaras, M., 2020, April. Soma design and sensory misalignment. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1-12).
- [21]. Ståhl, A., Tsaknaki, V. and Balaam, M., 2021. Validity and rigour in soma design-sketching with the soma. ACM Transactions on Computer-Human Interaction (TOCHI), 28(6), pp.1-36.
- [22]. Allen d'Ávila Silveira, C., Kilic Afsar, O. and Fdili Alaoui, S., 2022, June. Wearable choreographer: designing soft-robotics for dance practice. In Proceedings of the 2022 ACM Designing Interactive Systems Conference (pp. 1581-1596).