e ISSN: 2584-2854
Volume: 03

Issue: 04 April 2025
Page No: 1368 - 1375

International Research Journal on Advanced Engineering
and Management
https://goldncloudpublications.com
https://doi.org/10.47392/IRJAEM.2025.0223

{' TRIAEM

A Al

Encrypted Algorithm Detector in Cryptography

Vetri Selvan M*,Gajendran N?, Gururajan K® ,Hari Pranava M D*

LAssistant Professor, Dept. of AI&DS, Panimalar Engineering College, Chennai, India.

234UG Scholar, Dept. of AI&DS, Panimalar Engineering College, Chennai, India.

Email 1D: vetrinelson7@gmail.com?, gajendrann2004@gmail.com 2, gurukolanjirajan1603k@gmail.com?,
haripranav@gmail.com?,

Abstract

With the increasing reliance on digital communication and data storage, the need for secure cryptographic
algorithms has become paramount. However, the rise of encrypted malware and unauthorized encrypted
communications poses a significant challenge to cybersecurity. This paper presents an Encrypted Algorithm
Detector using Cryptography, a system designed to verifying and identify encryption algorithms embedded
within data transmissions or software applications. The proposed system leverages cryptographic
fingerprinting techniques, statistical analysis, and machine learning models to detect and classify encryption
methods such as AES, RSA, DES, and other cryptographic schemes. The detector functions by analyzing
entropy levels, byte distribution, and frequency patterns to distinguish between encrypted and non-encrypted
data. This approach can be applied in cybersecurity for malware detection, forensic investigations, and
preventing unauthorized encrypted data transmission in secure environments. The implementation of this
system contributes to strengthening cybersecurity measures by enabling early detection of encrypted threats
and ensuring compliance with security protocols.

Keywords: Cryptography, Encryption Algorithm Detection, Cybersecurity, Machine Learning, Cryptographic
Fingerprinting.

1. Introduction

Cryptography plays a crucial role in securing digital
communications, protecting sensitive data, and
ensuring confidentiality, integrity, and authenticity.
Modern encryption algorithms such as AES, RSA,
and DES are widely used in various applications,
including secure messaging, online banking, and
cloud computing. However, while encryption
enhances security, it also presents challenges in
cybersecurity when used maliciously, such as in
encrypted malware, ransomware, and covert
communication channels. The increasing use of
encryption by cybercriminals necessitates the
development of sophisticated detection mechanisms
to identify encrypted algorithms embedded within
data streams, files, or applications. Traditional
security solutions often struggle to distinguish
between legitimate and maliciously encrypted
content, leading to potential data breaches,
ransomware attacks, and undetected threats. This
paper introduces an Encrypted Algorithm Detector
using Cryptography, a system designed to dissect and

identify encryption algorithms within digital data.
The system employs cryptographic fingerprinting,
entropy analysis, and machine learning techniques to
classify encryption methods accurately. By
examining byte distributions, randomness, and
statistical properties of encrypted data, the proposed
approach enhances cybersecurity by enabling
proactive detection of encrypted threats. By
implementing this detection system, security analysts
and forensic experts can improve threat
identification, prevent data breaches, and ensure
regulatory compliance. This research contributes to
the evolving field of cryptographic security by
bridging the gap between encryption technology and
cybersecurity defense mechanisms [1][2].

2. Literature Review

Cryptographic algorithm detection has been a
significant area of research in cybersecurity,
particularly in identifying encryption techniques used
in both legitimate and malicious applications.
Various studies have explored cryptographic

OPEN aAccsss IRIAEM

1368

about:blank
mailto:vetrinelson7@gmail.com
mailto:gajendrann2004@gmail.com
mailto:gurukolanjirajan1603k@gmail.com
mailto:haripranav@gmail.com

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 03

Issue: 04 April 2025
Page No: 1368 - 1375

{' TRJAEM

https://doi.org/10.47392/IRJAEM.2025.0223

fingerprinting, entropy analysis, and machine

learning-based classification for identifying
encrypted data. This section reviews existing
literature related to encryption detection,

cryptographic analysis, and machine
applications in cybersecurity [3].

2.1 Cryptographic Algorithm Detection
Several studies have focused on detecting encryption
algorithms based on statistical and structural
properties of encrypted data.
According to M. Bello et al. (2019), cryptographic
algorithm identification can be achieved using
entropy and Dbyte distribution analysis,
as encrypted data exhibits high randomness and
uniformity. Sharma et al. (2020) proposed a
signature-based approach for identifying
encryption techniques, where unique characteristics
of algorithms like AES, RSA, and DES were
analyzed for detection.

2.2 Entropy-Based Detection Methods
Entropy analysis is a widely used method for
detecting encryption, as encrypted data generally has
higher entropy than plaintext. Shannon (1948)
introduced entropy as a measure of uncertainty
in information theory, which later became a
foundation for encryption detection. L. Wu et al.
(2021) developed an entropy-based model for
distinguishing encrypted and compressed files,
proving that encrypted data exhibits distinct entropy
characteristics.

2.3 Machine Learning in Encryption Detection
Machine learning has emerged as an effective tool in
detecting encryption patterns and classifying
algorithms. Wang et al. (2018) implemented a neural
network model for encryption identification,
demonstrating that deep learning can achieve high
accuracy in recognizing cryptographic schemes.
Zhang and Chen (2022) applied Support Vector
Machines (SVM) and Random Forest classifiers to
detect encrypted malware traffic, showing promising
results in identifying encrypted cyber threats.

2.4 Encrypted Malware and Ransomware

learning

Detection
The use of encryption in malware, particularly
ransomware, has driven research in detecting

unauthorized encryption activities. Singh et al. (2021)

explored ransomware detection using entropy and
machine learning techniques, where abnormal
encryption behaviors were flagged. Gupta et al.
(2023) further expanded on automated malware
analysis using deep learning to identify hidden
encryption routines within malicious software.

2.5 Cryptographic Traffic Analysis
In network security, detecting encrypted traffic is a
crucial challenge. Bujlow et al. (2017) proposed a
classification system for distinguishing encrypted
traffic from regular internet data. N. Patel et al.
(2020) examined the use of deep packet inspection
(DPI) and machine learning to identify encryption
protocols in real-time network monitoring.

2.6 Summary of Findings

The reviewed literature highlights several key
insights:
e Entropy and statistical analysis are

fundamental in detecting encrypted data.

e Machine learning approaches significantly
improve the classification of cryptographic
algorithms.

e ldentifying encrypted malware and
ransomware remains a critical challenge in
cybersecurity.

e Traffic analysis techniques can
distinguish ~ between encrypted
unencrypted network transmissions.

While existing research has made significant strides
in encryption detection, there is still a need for a
comprehensive system that integrates multiple
techniques for accurate cryptographic algorithm
detection. The proposed Encrypted Algorithm
Detector using Cryptography builds upon these
findings by combining entropy analysis,
cryptographic fingerprinting, and machine learning
[4].

3. Objectives

The primary objective of this research is to develop
an Encrypted Algorithm Detector using
Cryptography that can accurately identify encryption
algorithms embedded within digital data. The system
aims to enhance cybersecurity by distinguishing
between various encryption methods and detecting
unauthorized or maliciously encrypted data.

help
and

OPEN 8 access IRJAEM

1369

about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 03

Issue: 04 April 2025
Page No: 1368 - 1375

https://doi.org/10.47392/IRJAEM.2025.0223

3.1 The Specific Objectives of This Research
Are

e To develop a cryptographic algorithm detection
framework — Implement a system capable of
identifying different encryption algorithms, such
as AES, RSA, DES, and Blowfish, based on their
unique characteristics.

e To analyze encrypted data properties — Utilize
entropy analysis, byte distribution, and
randomness tests to differentiate encrypted data
from plaintext or compressed files.

e To employ machine learning for classification —
Train and test machine learning models to
recognize patterns in encrypted data and classify
different cryptographic algorithms with high
accuracy.

e To enhance cybersecurity through proactive
detection — Detect unauthorized encrypted data
transmissions, encrypted malware, and
ransomware to strengthen cybersecurity threat in
respective area.

e To provide a forensic tool for cryptographic
analysis — Assist cybersecurity professionals and
digital forensic analysts in identifying and
investigating encrypted content in various
environments, including networks and file
systems.

By achieving these objectives, the proposed system

aims to contribute to modern cybersecurity solutions

by providing an efficient method for detecting and
analyzing encrypted algorithms.

4, Scope

The Encrypted Algorithm Detector using

Cryptography focuses on the identification and

classification of encryption algorithms embedded in

digital data, with applications in cybersecurity, digital
forensics, and malware analysis. The scope of this
study is outlined as follows:

4.1 Encryption Algorithm Detection

e Identification of commonly used encryption
algorithms such as AES, RSA, DES,
Blowfish, and ChaCha20.

¢ Detection of encrypted data by analyzing entropy,
randomness, and byte distribution.

o Differentiation between encrypted, compressed,
and plaintext data.

4.2 Cybersecurity Applications

e Detection of maliciously encrypted data used in
ransomware, encrypted malware, and hidden
communication channels.

e Enhancing network security by
encrypted traffic patterns.

e Preventing unauthorized encryption in secure
environments.

4.3 Machine Learning Integration

¢ Implementation of machine learning models such
as Support Vector Machines (SVM), Random
Forest, and Deep Neural Networks to classify
encryption algorithms.

e Training the models using datasets containing
encrypted and nonencrypted data samples.

¢ Evaluating performance metrics such as accuracy,
precision, recall, and F1-score.

4.4 Digital Forensics & Law Enforcement

e Assisting forensic investigators in identifying
encrypted files and detecting illicit data-hiding
techniques.

e Providing insights into encryption usage in
cybercrime investigations.

e Supporting compliance with legal and regulatory
frameworks regarding encryption.

4.5 Limitations

e The system focuses primarily on identifying
encryption algorithms and does not aim to decrypt
encrypted data.

e Detection may be affected by obfuscation
techniques used by attackers to disguise
encryption.

e Accuracy depends on the quality and diversity of
the training dataset for machine learning models.

Conclusion
The proposed system provides a powerful tool for
detecting and classifying encryption algorithms, with
applications in cybersecurity, digital forensics, and
malware analysis [5]. By leveraging cryptographic
analysis and machine learning, it enhances security
measures against maliciously encrypted threats and
unauthorized data encryption.

5. Proposed System

The Encrypted Algorithm Detector using

Cryptography is designed to identify and classify

encryption algorithms embedded in digital data. The

identifying

OPEN 8 access IRJAEM

1370

about:blank

International Research Journal on Advanced Engineering € ISSN: 2584-2854

and Management Volume: 03
s gemen Issue: 04 April 2025
=~ https://goldncloudpublications.com Page No: 1368 - 1375
1 https://doi.org/10.47392/IRJAEM.2025.0223

system leverages cryptographic analysis techniques

and machine learning models to enhance detection

accuracy. It is intended to be used in cybersecurity,
digital forensics, and malware analysis to identify
encrypted threats, unauthorized encryption usage,

and cryptographic signatures [7].

5.1 System Architecture

The proposed system consists of the following major

components:

5.1.1 Data Preprocessing Module

e Collects and processes input data, including
encrypted files, network traffic, and malware
samples.

e Performs feature extraction by analyzing entropy,
randomness, and byte frequency distributions.

5.1.2 Cryptographic Analysis Module

o Uses statistical techniques to detect encrypted data
based on high entropy and randomness.

e Identifies cryptographic fingerprints associated
with different encryption algorithms.

5.1.3 Machine Learning-Based
5.1.3.1 Classifier

e Trains models such as Support Vector Machine
(SVM), Random Forest, and Deep Neural
Networks to classify encryption types.

e Uses labeled datasets containing encrypted and
non-encrypted data for model training and
validation.

5.1.3.2 Detection and Reporting Module:

e Compares extracted features with known
encryption patterns.

o Generates reports detailing detected encryption
algorithms and potential threats.

5.2 Working Mechanism

e Data Collection: The system collects input data
from files, network traffic, or system memory.

e Feature Extraction: Entropy, byte frequency, and
cryptographic signatures are analyzed.

¢ Algorithm Detection: The extracted features are
compared against known cryptographic patterns.

e Machine Learning Classification: The trained
model predicts the encryption algorithm used.

e Result Interpretation: The system provides a
detailed report on detected encryption algorithms
and potential risks.

5.3 Advantages of the Proposed System

e High Accuracy: Combines statistical and

machine learning approaches for precise
encryption detection.

e Automation: Reduces the need for manual

cryptographic analysis.
Real-Time Detection: Can be integrated with
cybersecurity tools for real-time monitoring.

e Versatility: Detects various encryption

6.

Figure 1 Flowchart for Encrypted Algorithm

algorithms used in secure communication,
ransomware, and malware. Figure 1 shows
Flowchart for Encrypted Algorithm.

Flowchart

Encrypted Algorithm Detector Flowchart

£

Data Analysis

OPEN 8 access IRJAEM

1371

about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 03

Issue: 04 April 2025
Page No: 1368 - 1375

https://doi.org/10.47392/IRJAEM.2025.0223

7. Modules
7.1 Cryptography Module
Purpose: Provides simple and secure methods to
handle encryption algorithms, and can help in
detecting or analyse encryption patterns.
7.1.1 Features
e Implement encryption schemes like AES, RSA,
DES, and more.
¢ Provides secure key management and decryption
mechanisms.
e Can detect known encryption algorithms by
analyse ciphertext structures.
7.1.2 Usage
e Encrypt and decrypt data with different algorithms
(AES, RSA, etc.).
e Check block sizes, padding methods, and
initialization vectors (IVs) to detect encryption.
7.2 Pycryptodome Module
Purpose: A Python library for cryptography that
includes a variety of encryption algorithms like AES,
RSA, DES, and more.
7.2.1 Features
e Implements common cryptographic algorithms.
¢ Allows you to analyze cipher-text patterns.
e Supports encryption and decryption
symmetric and asymmetric methods.
7.2.2 Usage
e Detect encryption type by testing ciphertexts
against common algorithm parameters (block
sizes, padding, etc.).
7.3 Hashlib Module
Purpose: A built-in Python library for hashing
algorithms (MD5, SHA-256, etc.), useful for
detecting hashed data.
7.3.1 Features
e Detects hashed data which may have been used for
integrity checking or digital signatures.
e Analyzes hash lengths and characteristics to
identify the hash type.
7.3.2 Usage
e Check for hashed data to detect encryption or
verify data integrity.
7.4 Binwalk Module
Purpose: A tool for analyzing binary files and
detecting embedded encryption or compression
algorithms.

using

7.4.1 Features
e Detects file structures, such as
compression and encryption signatures.
e Scans binary files to find encryption signatures or
even hidden data [9].
7.4.2 Usage
e Analyze binary files for embedded encryption,
compressed data, or other cryptographic schemes.

7.5 Zlib (Compression Detection)

Purpose: While not strictly for encryption,
compression algorithms (like ZIP) are often used
before encryption, making compression detection
important.

7.5.1 Features
e Helps in detecting compression formats (e.g.,

GZIP, ZIP).

e Can be used to identify if compression was applied
before encryption.
7.5.2 Usage
e Detect common compression schemes used before
encryption.

7.6 Numpy & Scipy (Statistical Analysis)
Purpose: Libraries for numerical analysis that can
help in detecting the entropy and randomness of
encrypted data.

7.6.1 Features
¢ Helps in calculating entropy, which can be used to
detect randomness (a typical characteristic of
encrypted data).
e Can be used to analyze byte distributions and
detect deviations from normal patterns.
7.6.2 Usage

known

e Calculate entropy to detect encrypted or
compressed data.
7.7 Scikit-Learn (Machine Learning for

Encryption Detection)
Purpose: Machine learning can be used for detecting
encrypted algorithms based on feature extraction
from data, which may include entropy, byte
frequency, and statistical analysis.
7.7.1 Features
e Can train models to detect encrypted algorithms
based on features like byte distributions, entropy,
and more.
e Useful for creating an automated detector of
various cryptographic algorithms.

OPEN 8 access IRJAEM

1372

about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 03

Issue: 04 April 2025
Page No: 1368 - 1375

https://doi.org/10.47392/IRJAEM.2025.0223

7.7.2 Usage

e Train a machine learning model to classify
encrypted data based on pre-extracted features.
7.8 Pycrypto (Deprecated)

Purpose: pycrypto is a library that provides various

cryptographic functionalities, but it is no longer

actively maintained. Use pycryptodome as a more
modern replacement.
7.8.1 Features

o Cryptographic algorithms like AES, RSA, DES,
and more.

e Can still be used to identify encryption schemes if
you're working with older systems.

7.8.2 Usage

e Detect and break basic encryption algorithms,
especially older ones like DES.

7.9 Methodology for the Detection System

e Step 1: Input Data Analysis — Check if the data
Is in binary format, which is often indicative of
encryption.

e Step 2: Statistical Tests — Calculate the entropy
of the data. Encrypted data typically shows high
entropy, while plaintext data is often more
predictable.

e Step 3. Compression Check — Use zlib or
binwalk to check if the data is compressed, which
iIs commonly done before encryption.

e Step 4: Pattern Matching — Check for known
encryption algorithm signatures (AES, DES, RSA,
etc.).

e Step 5: Decryption Attempts — Use libraries like
pycryptodome or cryptography to attempt
decryption with common algorithms.

e Step 6: Machine Learning — Optionally, use
scikit-learn to train a model on various features
and classify the encryption algorithm.

8. Performance Analysis

The effectiveness and efficiency of such a detector

can be measured through various performance

metrics. Below, | will outline the key performance
metrics, factors to consider, and methods for
performance analysis in this context.
8.1 Key Performance Metrics
8.1.1 Accuracy

Definition: Measures the percentage of correctly

identified encryption algorithms compared to the

total number of encrypted data samples.
Importance: High accuracy is critical to ensure the
detector correctly identifies the encryption algorithm
in most cases, minimizing false positives and
negatives.

Evaluation Method:

e Use a labeled dataset of encrypted data (e.g.,
AES, RSA, DES) and test the detector on this
dataset [10].

e Calculate accuracy using the formula:
Accuracy=Correctly Identified SamplesTotal
Samplesx100\text {Accuracy} = \frac {\text
{Correctly Identified Samples}} {\text {Total
Samples}} \times
100Accuracy=Total SamplesCorrectly Identifi
ed Samplesx100

e Example: If the detector correctly identifies 90
out of 100 encrypted samples, its accuracy is
90%.

8.1.2 Detection Time (Latency)
Definition: Measures how quickly the detector can
identify the encryption algorithm or detect if the data
is encrypted.
Importance: Low latency is important in real-time
applications, such as network security monitoring,
where fast detection is crucial.
Evaluation Method:
e Measure the time taken from input to detection
for each sample or file.
e Calculate the average detection time over
multiple samples.
Example: If the detector takes 2 seconds to analyze a
1 MB encrypted file, it is important to see if this
performance holds for larger files or in a batch
processing scenario.

8.1.3 False Positive Rate
Definition: Measures the percentage of non-
encrypted data that is incorrectly identified as
encrypted.
Importance: Minimizing false positives is crucial to
avoid unnecessary processing or alerts.
Evaluation Method:

e Test the detector with non-encrypted data and
calculate the percentage of samples incorrectly
flagged as encrypted.

Formula:

OPEN 8 access IRJAEM

1373

about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 03

Issue: 04 April 2025
Page No: 1368 - 1375

{' TRJAEM

https://doi.org/10.47392/IRJAEM.2025.0223

False Positive Rate=False PositivesTotal Non-
encrypted Samplesx100\text{False Positive Rate} =
\frac{\text{False Positives}}{\text{Total Non-
encrypted Samples}} \times
100False Positive Rate=Total Non-
encrypted SamplesFalse Positivesx100
Example: If the detector flags 3 out of 100 non-
encrypted files as encrypted, the false positive rate
would be 3%.

8.1.4 False Negative Rate
Definition: Measures the percentage of encrypted
data that is incorrectly identified as non-encrypted.
Importance: A low false negative rate ensures that
the detector doesn't miss encrypted data, which is
important in security applications.
Evaluation Method:

e Test the detector with encrypted data and
calculate the percentage of samples that are not
flagged as encrypted.

e Formula: False Negative Rate
=False Negatives Total Encrypted Samples x

100 \ text{False Negative Rate} =
\frac{\text{False Negatives} }H{\text{Total
Encrypted Samples}} \times

100False Negative Rate=Total Encrypted Sam

plesFalse Negativesx100
Example: If 2 out of 100 encrypted files are
mistakenly identified as non-encrypted, the false
negative rate is 2%.

8.1.5 Precision and Recall
Precision: The percentage of correctly detected
encrypted data out of all the data flagged as
encrypted.
Precision=True PositivesTrue Positives+False Positi
ves\text{Precision} = \frac{\text{True
Positives}}{\text{True Positives} + \text{False
Positives}}Precision=True Positives+False Positives
True Positives
Recall: The percentage of correctly detected
encrypted data out of all the encrypted data samples.
Recall = True Positives True Positives +
False Negatives \text {Recall} = \frac {\text{True
Positives} H\text{True Positives} + \text{False
Negatives}}Recall=True Positives+False Negatives
True Positives
Importance: Precision and recall give a more

balanced view of the model's effectiveness,
especially when working with imbalanced datasets.
8.2 Factors Affecting Performance

8.2.1 Size and Type of Data

Larger Files: The time taken to detect encryption
increases with the size of the files being analyzed.
Larger datasets may take longer to process, which
impacts latency.
File Formats: Encrypted data embedded within
common file formats (e.g., PDFs, images, or
archives) may require different processing steps
compared to simple binary files.

8.2.2 Encryption Algorithm Complexity
Symmetric vs Asymmetric Encryption:
Algorithms like AES (symmetric) generally have
faster decryption times compared to asymmetric
algorithms like RSA, which require more complex
computations (especially with large keys).

Padding and Block Cipher Modes: The padding
mechanism and block cipher mode (e.g., CBC, ECB)
used can affect the patterns detected during the
analysis, adding complexity to the detection process.

8.2.3 Statistical and Cryptographic Features

Entropy Analysis: Encrypted data typically shows
high entropy, but some encryption algorithms (like
weak ciphers) may not produce uniformly high
entropy. False positives may arise when analyzing
entropy as a feature.
Compression Detection: Compression algorithms
like ZIP or GZIP may obscure the encrypted data's
structure, leading to challenges in detecting
encryption if compression is detected first.

8.2.4 Detection Methodology
Signature-Based Detection: This approach relies on
known patterns of encryption (e.g., AES block size,
RSA key size). It may be fast but can be limited by
the detector's ability to handle novel or unknown
encryption algorithms.

Statistical and Entropy-Based Detection:
Analyzing randomness and entropy levels can be
effective but may not always be conclusive,
especially in cases where the encryption is weak or
uses a non-standard method.

Machine Learning Approaches: If using machine
learning to detect encryption, the complexity of the
model (e.g., neural networks, decision trees) will

OPEN 8 access IRJAEM

1374

about:blank

International Research Journal on Advanced Engineering

and Management
https://goldncloudpublications.com

e ISSN: 2584-2854
Volume: 03

Issue: 04 April 2025
Page No: 1368 - 1375

https://doi.org/10.47392/IRJAEM.2025.0223

affect both training time and prediction time.
Reference

[1].

2]

[3].

[4].

[5].

[6].

[7]1

Menezes, A., van Oorschot, P., & Vanstone,
S. (1996). Handbook of Applied
Cryptography. CRC Press. A foundational
text on applied cryptography, providing
detailed descriptions of various encryption
algorithms and their characteristics.

Python Software Foundation. (2021).
Cryptography — Cryptographic Recipes.
Retrieved from
https://cryptography.io/en/latest/. The
official documentation for the

cryptography library in Python, which
provides a comprehensive guide on
cryptographic algorithms and usage.
Halevi, S., & Ristenpart, T. (2016). Detecting
AES-like Encryption from Ciphertext.
Journal of Cryptology, 29(2), 241-275. A
research paper exploring methods for
detecting AES encryption patterns based
on ciphertext analysis.

Lowe, S. (2019). pycryptodome
Documentation. Retrieved from
https://www.pycryptodome.org. Official
documentation for the pycryptodome
library, which provides implementations
for several cryptographic algorithms,
useful for encryption detection.

Ferguson, N., Schneier, B., & Kohno, T.
(2010). Cryptography Engineering: Design
Principles and Practical Applications. Wiley.
A textbook that discusses the design and
implementation of cryptographic systems,
which can help in understanding how
encryption algorithms behave and can be
detected.

Kaufman, C., Perlman, R., & Speciner, M.
(2014). Network Security: Private
Communication in a Public World. Prentice
Hall. This book provides an overview of

encryption protocols used in network
security and touches on detection
techniques.

Schneier, B. (2000). Secrets and Lies: Digital
Security in a Networked World. Wiley. A

[8].

[9].

[10].

general book on security and
cryptography, providing background
information that can help understand the
context of encryption algorithm detection.
Song, D., & Wagner, D. (1999). Analysis of
Block Cipher Modes of Operation. In
Proceedings of the 3rd ACM Conference on
Computer and Communications Security.
ACM. This paper explores different modes
of operation for block ciphers (like AES),
which can help in understanding how to
detect different encryption schemes.
Zhang, Y., & Xie, W. (2015). Automated
Detection of Encrypted Traffic using
Machine Learning Algorithms. International
Journal of Network Security, 17(4), 397-405.
This paper investigates machine learning
techniques to detect encrypted traffic,
which can be analogous to detecting
encrypted algorithms in data.

Nielsen, A. (2013). Binwalk: A Tool for
Analyzing Binary Files. Retrieved from https:
/[github.com / ReFirmLabs / binwalk.
Binwalk is a popular tool for analyzing
binary files. It can detect compression and
encryption signatures and can be used in
the detection of encryption algorithms.

|
OPEN 8 access IRJAEM

1375

about:blank
https://www.pycryptodome.org/
https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk

