

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0223

e ISSN: 2584-2854

Volume: 03

Issue: 04 April 2025

Page No: 1368 - 1375

 IRJAEM 1368

Encrypted Algorithm Detector in Cryptography
Vetri Selvan M1,Gajendran N2, Gururajan K3 ,Hari Pranava M D4
1Assistant Professor, Dept. of AI&DS, Panimalar Engineering College, Chennai, India.
2,3,4UG Scholar, Dept. of AI&DS, Panimalar Engineering College, Chennai, India.

Email ID: vetrinelson7@gmail.com1, gajendrann2004@gmail.com 2, gurukolanjirajan1603k@gmail.com3,

haripranav@gmail.com4.

Abstract

With the increasing reliance on digital communication and data storage, the need for secure cryptographic

algorithms has become paramount. However, the rise of encrypted malware and unauthorized encrypted

communications poses a significant challenge to cybersecurity. This paper presents an Encrypted Algorithm

Detector using Cryptography, a system designed to verifying and identify encryption algorithms embedded

within data transmissions or software applications. The proposed system leverages cryptographic

fingerprinting techniques, statistical analysis, and machine learning models to detect and classify encryption

methods such as AES, RSA, DES, and other cryptographic schemes. The detector functions by analyzing

entropy levels, byte distribution, and frequency patterns to distinguish between encrypted and non-encrypted

data. This approach can be applied in cybersecurity for malware detection, forensic investigations, and

preventing unauthorized encrypted data transmission in secure environments. The implementation of this

system contributes to strengthening cybersecurity measures by enabling early detection of encrypted threats

and ensuring compliance with security protocols.

Keywords: Cryptography, Encryption Algorithm Detection, Cybersecurity, Machine Learning, Cryptographic

Fingerprinting.

1. Introduction

Cryptography plays a crucial role in securing digital

communications, protecting sensitive data, and

ensuring confidentiality, integrity, and authenticity.

Modern encryption algorithms such as AES, RSA,

and DES are widely used in various applications,

including secure messaging, online banking, and

cloud computing. However, while encryption

enhances security, it also presents challenges in

cybersecurity when used maliciously, such as in

encrypted malware, ransomware, and covert

communication channels. The increasing use of

encryption by cybercriminals necessitates the

development of sophisticated detection mechanisms

to identify encrypted algorithms embedded within

data streams, files, or applications. Traditional

security solutions often struggle to distinguish

between legitimate and maliciously encrypted

content, leading to potential data breaches,

ransomware attacks, and undetected threats. This

paper introduces an Encrypted Algorithm Detector

using Cryptography, a system designed to dissect and

identify encryption algorithms within digital data.

The system employs cryptographic fingerprinting,

entropy analysis, and machine learning techniques to

classify encryption methods accurately. By

examining byte distributions, randomness, and

statistical properties of encrypted data, the proposed

approach enhances cybersecurity by enabling

proactive detection of encrypted threats. By

implementing this detection system, security analysts

and forensic experts can improve threat

identification, prevent data breaches, and ensure

regulatory compliance. This research contributes to

the evolving field of cryptographic security by

bridging the gap between encryption technology and

cybersecurity defense mechanisms [1][2].

2. Literature Review

Cryptographic algorithm detection has been a

significant area of research in cybersecurity,

particularly in identifying encryption techniques used

in both legitimate and malicious applications.

Various studies have explored cryptographic

about:blank
mailto:vetrinelson7@gmail.com
mailto:gajendrann2004@gmail.com
mailto:gurukolanjirajan1603k@gmail.com
mailto:haripranav@gmail.com

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0223

e ISSN: 2584-2854

Volume: 03

Issue: 04 April 2025

Page No: 1368 - 1375

 IRJAEM 1369

fingerprinting, entropy analysis, and machine

learning-based classification for identifying

encrypted data. This section reviews existing

literature related to encryption detection,

cryptographic analysis, and machine learning

applications in cybersecurity [3].

2.1 Cryptographic Algorithm Detection

Several studies have focused on detecting encryption

algorithms based on statistical and structural

properties of encrypted data.

According to M. Bello et al. (2019), cryptographic

algorithm identification can be achieved using

entropy and byte distribution analysis,

as encrypted data exhibits high randomness and

uniformity. Sharma et al. (2020) proposed a

signature-based approach for identifying

encryption techniques, where unique characteristics

of algorithms like AES, RSA, and DES were

analyzed for detection.

2.2 Entropy-Based Detection Methods

Entropy analysis is a widely used method for

detecting encryption, as encrypted data generally has

higher entropy than plaintext. Shannon (1948)

introduced entropy as a measure of uncertainty

in information theory, which later became a

foundation for encryption detection. L. Wu et al.

(2021) developed an entropy-based model for

distinguishing encrypted and compressed files,

proving that encrypted data exhibits distinct entropy

characteristics.

2.3 Machine Learning in Encryption Detection

Machine learning has emerged as an effective tool in

detecting encryption patterns and classifying

algorithms. Wang et al. (2018) implemented a neural

network model for encryption identification,

demonstrating that deep learning can achieve high

accuracy in recognizing cryptographic schemes.

Zhang and Chen (2022) applied Support Vector

Machines (SVM) and Random Forest classifiers to

detect encrypted malware traffic, showing promising

results in identifying encrypted cyber threats.

2.4 Encrypted Malware and Ransomware

Detection

The use of encryption in malware, particularly

ransomware, has driven research in detecting

unauthorized encryption activities. Singh et al. (2021)

explored ransomware detection using entropy and

machine learning techniques, where abnormal

encryption behaviors were flagged. Gupta et al.

(2023) further expanded on automated malware

analysis using deep learning to identify hidden

encryption routines within malicious software.

2.5 Cryptographic Traffic Analysis
In network security, detecting encrypted traffic is a

crucial challenge. Bujlow et al. (2017) proposed a

classification system for distinguishing encrypted

traffic from regular internet data. N. Patel et al.

(2020) examined the use of deep packet inspection

(DPI) and machine learning to identify encryption

protocols in real-time network monitoring.

2.6 Summary of Findings

The reviewed literature highlights several key

insights:

 Entropy and statistical analysis are

fundamental in detecting encrypted data.

 Machine learning approaches significantly

improve the classification of cryptographic

algorithms.

 Identifying encrypted malware and

ransomware remains a critical challenge in

cybersecurity.

 Traffic analysis techniques can help

distinguish between encrypted and

unencrypted network transmissions.

While existing research has made significant strides

in encryption detection, there is still a need for a

comprehensive system that integrates multiple

techniques for accurate cryptographic algorithm

detection. The proposed Encrypted Algorithm

Detector using Cryptography builds upon these

findings by combining entropy analysis,

cryptographic fingerprinting, and machine learning

[4].

3. Objectives

The primary objective of this research is to develop

an Encrypted Algorithm Detector using

Cryptography that can accurately identify encryption

algorithms embedded within digital data. The system

aims to enhance cybersecurity by distinguishing

between various encryption methods and detecting

unauthorized or maliciously encrypted data.

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0223

e ISSN: 2584-2854

Volume: 03

Issue: 04 April 2025

Page No: 1368 - 1375

 IRJAEM 1370

3.1 The Specific Objectives of This Research

Are

 To develop a cryptographic algorithm detection

framework – Implement a system capable of

identifying different encryption algorithms, such

as AES, RSA, DES, and Blowfish, based on their

unique characteristics.

 To analyze encrypted data properties – Utilize

entropy analysis, byte distribution, and

randomness tests to differentiate encrypted data

from plaintext or compressed files.

 To employ machine learning for classification –

Train and test machine learning models to

recognize patterns in encrypted data and classify

different cryptographic algorithms with high

accuracy.

 To enhance cybersecurity through proactive

detection – Detect unauthorized encrypted data

transmissions, encrypted malware, and

ransomware to strengthen cybersecurity threat in

respective area.

 To provide a forensic tool for cryptographic

analysis – Assist cybersecurity professionals and

digital forensic analysts in identifying and

investigating encrypted content in various

environments, including networks and file

systems.

By achieving these objectives, the proposed system

aims to contribute to modern cybersecurity solutions

by providing an efficient method for detecting and

analyzing encrypted algorithms.

4. Scope

 The Encrypted Algorithm Detector using

Cryptography focuses on the identification and

classification of encryption algorithms embedded in

digital data, with applications in cybersecurity, digital

forensics, and malware analysis. The scope of this

study is outlined as follows:

4.1 Encryption Algorithm Detection

 Identification of commonly used encryption

algorithms such as AES, RSA, DES,

Blowfish, and ChaCha20.

 Detection of encrypted data by analyzing entropy,

randomness, and byte distribution.

 Differentiation between encrypted, compressed,

and plaintext data.

4.2 Cybersecurity Applications

 Detection of maliciously encrypted data used in

ransomware, encrypted malware, and hidden

communication channels.

 Enhancing network security by identifying

encrypted traffic patterns.

 Preventing unauthorized encryption in secure

environments.

4.3 Machine Learning Integration

 Implementation of machine learning models such

as Support Vector Machines (SVM), Random

Forest, and Deep Neural Networks to classify

encryption algorithms.

 Training the models using datasets containing

encrypted and nonencrypted data samples.

 Evaluating performance metrics such as accuracy,

precision, recall, and F1-score.

4.4 Digital Forensics & Law Enforcement

 Assisting forensic investigators in identifying

encrypted files and detecting illicit data-hiding

techniques.

 Providing insights into encryption usage in

cybercrime investigations.

 Supporting compliance with legal and regulatory

frameworks regarding encryption.

4.5 Limitations

 The system focuses primarily on identifying

encryption algorithms and does not aim to decrypt

encrypted data.

 Detection may be affected by obfuscation

techniques used by attackers to disguise

encryption.

 Accuracy depends on the quality and diversity of

the training dataset for machine learning models.

Conclusion
The proposed system provides a powerful tool for

detecting and classifying encryption algorithms, with

applications in cybersecurity, digital forensics, and

malware analysis [5]. By leveraging cryptographic

analysis and machine learning, it enhances security

measures against maliciously encrypted threats and

unauthorized data encryption.

5. Proposed System

 The Encrypted Algorithm Detector using

Cryptography is designed to identify and classify

encryption algorithms embedded in digital data. The

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0223

e ISSN: 2584-2854

Volume: 03

Issue: 04 April 2025

Page No: 1368 - 1375

 IRJAEM 1371

system leverages cryptographic analysis techniques

and machine learning models to enhance detection

accuracy. It is intended to be used in cybersecurity,

digital forensics, and malware analysis to identify

encrypted threats, unauthorized encryption usage,

and cryptographic signatures [7].

5.1 System Architecture
The proposed system consists of the following major

components:

5.1.1 Data Preprocessing Module

 Collects and processes input data, including

encrypted files, network traffic, and malware

samples.

 Performs feature extraction by analyzing entropy,

randomness, and byte frequency distributions.

5.1.2 Cryptographic Analysis Module

 Uses statistical techniques to detect encrypted data

based on high entropy and randomness.

 Identifies cryptographic fingerprints associated

with different encryption algorithms.

5.1.3 Machine Learning-Based

5.1.3.1 Classifier

 Trains models such as Support Vector Machine

(SVM), Random Forest, and Deep Neural

Networks to classify encryption types.

 Uses labeled datasets containing encrypted and

non-encrypted data for model training and

validation.

5.1.3.2 Detection and Reporting Module:

 Compares extracted features with known

encryption patterns.

 Generates reports detailing detected encryption

algorithms and potential threats.

5.2 Working Mechanism

 Data Collection: The system collects input data

from files, network traffic, or system memory.

 Feature Extraction: Entropy, byte frequency, and

cryptographic signatures are analyzed.

 Algorithm Detection: The extracted features are

compared against known cryptographic patterns.

 Machine Learning Classification: The trained

model predicts the encryption algorithm used.

 Result Interpretation: The system provides a

detailed report on detected encryption algorithms

and potential risks.

5.3 Advantages of the Proposed System

 High Accuracy: Combines statistical and

machine learning approaches for precise

encryption detection.

 Automation: Reduces the need for manual

cryptographic analysis.

 Real-Time Detection: Can be integrated with

cybersecurity tools for real-time monitoring.

 Versatility: Detects various encryption

algorithms used in secure communication,

ransomware, and malware. Figure 1 shows

Flowchart for Encrypted Algorithm.

6. Flowchart

 Figure 1 Flowchart for Encrypted Algorithm

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0223

e ISSN: 2584-2854

Volume: 03

Issue: 04 April 2025

Page No: 1368 - 1375

 IRJAEM 1372

7. Modules

7.1 Cryptography Module

Purpose: Provides simple and secure methods to

handle encryption algorithms, and can help in

detecting or analyse encryption patterns.

7.1.1 Features

 Implement encryption schemes like AES, RSA,

DES, and more.

 Provides secure key management and decryption

mechanisms.

 Can detect known encryption algorithms by

analyse ciphertext structures.

7.1.2 Usage

 Encrypt and decrypt data with different algorithms

(AES, RSA, etc.).

 Check block sizes, padding methods, and

initialization vectors (IVs) to detect encryption.

7.2 Pycryptodome Module

Purpose: A Python library for cryptography that

includes a variety of encryption algorithms like AES,

RSA, DES, and more.

7.2.1 Features

 Implements common cryptographic algorithms.

 Allows you to analyze cipher-text patterns.

 Supports encryption and decryption using

symmetric and asymmetric methods.

7.2.2 Usage

 Detect encryption type by testing ciphertexts

against common algorithm parameters (block

sizes, padding, etc.).

7.3 Hashlib Module

Purpose: A built-in Python library for hashing

algorithms (MD5, SHA-256, etc.), useful for

detecting hashed data.

7.3.1 Features

 Detects hashed data which may have been used for

integrity checking or digital signatures.

 Analyzes hash lengths and characteristics to

identify the hash type.

7.3.2 Usage

 Check for hashed data to detect encryption or

verify data integrity.

7.4 Binwalk Module

Purpose: A tool for analyzing binary files and

detecting embedded encryption or compression

algorithms.

7.4.1 Features

 Detects file structures, such as known

compression and encryption signatures.

 Scans binary files to find encryption signatures or

even hidden data [9].

7.4.2 Usage

 Analyze binary files for embedded encryption,

compressed data, or other cryptographic schemes.

7.5 Zlib (Compression Detection)

Purpose: While not strictly for encryption,

compression algorithms (like ZIP) are often used

before encryption, making compression detection

important.

7.5.1 Features

 Helps in detecting compression formats (e.g.,

GZIP, ZIP).

 Can be used to identify if compression was applied

before encryption.

7.5.2 Usage

 Detect common compression schemes used before

encryption.

7.6 Numpy & Scipy (Statistical Analysis)

Purpose: Libraries for numerical analysis that can

help in detecting the entropy and randomness of

encrypted data.

7.6.1 Features

 Helps in calculating entropy, which can be used to

detect randomness (a typical characteristic of

encrypted data).

 Can be used to analyze byte distributions and

detect deviations from normal patterns.

7.6.2 Usage

 Calculate entropy to detect encrypted or

compressed data.

7.7 Scikit-Learn (Machine Learning for

Encryption Detection)

Purpose: Machine learning can be used for detecting

encrypted algorithms based on feature extraction

from data, which may include entropy, byte

frequency, and statistical analysis.

7.7.1 Features

 Can train models to detect encrypted algorithms

based on features like byte distributions, entropy,

and more.

 Useful for creating an automated detector of

various cryptographic algorithms.

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0223

e ISSN: 2584-2854

Volume: 03

Issue: 04 April 2025

Page No: 1368 - 1375

 IRJAEM 1373

7.7.2 Usage

 Train a machine learning model to classify

encrypted data based on pre-extracted features.

7.8 Pycrypto (Deprecated)

Purpose: pycrypto is a library that provides various

cryptographic functionalities, but it is no longer

actively maintained. Use pycryptodome as a more

modern replacement.

7.8.1 Features

 Cryptographic algorithms like AES, RSA, DES,

and more.

 Can still be used to identify encryption schemes if

you're working with older systems.

7.8.2 Usage

 Detect and break basic encryption algorithms,

especially older ones like DES.

7.9 Methodology for the Detection System

 Step 1: Input Data Analysis – Check if the data

is in binary format, which is often indicative of

encryption.

 Step 2: Statistical Tests – Calculate the entropy

of the data. Encrypted data typically shows high

entropy, while plaintext data is often more

predictable.

 Step 3: Compression Check – Use zlib or

binwalk to check if the data is compressed, which

is commonly done before encryption.

 Step 4: Pattern Matching – Check for known

encryption algorithm signatures (AES, DES, RSA,

etc.).

 Step 5: Decryption Attempts – Use libraries like

pycryptodome or cryptography to attempt

decryption with common algorithms.

 Step 6: Machine Learning – Optionally, use

scikit-learn to train a model on various features

and classify the encryption algorithm.

8. Performance Analysis

The effectiveness and efficiency of such a detector

can be measured through various performance

metrics. Below, I will outline the key performance

metrics, factors to consider, and methods for

performance analysis in this context.

8.1 Key Performance Metrics

8.1.1 Accuracy

Definition: Measures the percentage of correctly

identified encryption algorithms compared to the

total number of encrypted data samples.

Importance: High accuracy is critical to ensure the

detector correctly identifies the encryption algorithm

in most cases, minimizing false positives and

negatives.

Evaluation Method:

 Use a labeled dataset of encrypted data (e.g.,

AES, RSA, DES) and test the detector on this

dataset [10].

 Calculate accuracy using the formula:

Accuracy=Correctly Identified SamplesTotal

Samples×100\text {Accuracy} = \frac {\text

{Correctly Identified Samples}} {\text {Total

Samples}} \times

100Accuracy=Total SamplesCorrectly Identifi

ed Samples×100

 Example: If the detector correctly identifies 90

out of 100 encrypted samples, its accuracy is

90%.

8.1.2 Detection Time (Latency)

Definition: Measures how quickly the detector can

identify the encryption algorithm or detect if the data

is encrypted.

Importance: Low latency is important in real-time

applications, such as network security monitoring,

where fast detection is crucial.

Evaluation Method:

 Measure the time taken from input to detection

for each sample or file.

 Calculate the average detection time over

multiple samples.

Example: If the detector takes 2 seconds to analyze a

1 MB encrypted file, it is important to see if this

performance holds for larger files or in a batch

processing scenario.

8.1.3 False Positive Rate

Definition: Measures the percentage of non-

encrypted data that is incorrectly identified as

encrypted.

Importance: Minimizing false positives is crucial to

avoid unnecessary processing or alerts.

Evaluation Method:

 Test the detector with non-encrypted data and

calculate the percentage of samples incorrectly

flagged as encrypted.

Formula:

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0223

e ISSN: 2584-2854

Volume: 03

Issue: 04 April 2025

Page No: 1368 - 1375

 IRJAEM 1374

False Positive Rate=False PositivesTotal Non-

encrypted Samples×100\text{False Positive Rate} =

\frac{\text{False Positives}}{\text{Total Non-

encrypted Samples}} \times

100False Positive Rate=Total Non-

encrypted SamplesFalse Positives×100

Example: If the detector flags 3 out of 100 non-

encrypted files as encrypted, the false positive rate

would be 3%.

8.1.4 False Negative Rate

Definition: Measures the percentage of encrypted

data that is incorrectly identified as non-encrypted.

Importance: A low false negative rate ensures that

the detector doesn't miss encrypted data, which is

important in security applications.

Evaluation Method:

 Test the detector with encrypted data and

calculate the percentage of samples that are not

flagged as encrypted.

 Formula: False Negative Rate

=False Negatives Total Encrypted Samples ×

100 \ text{False Negative Rate} =

\frac{\text{False Negatives}}{\text{Total

Encrypted Samples}} \times

100False Negative Rate=Total Encrypted Sam

plesFalse Negatives×100

Example: If 2 out of 100 encrypted files are

mistakenly identified as non-encrypted, the false

negative rate is 2%.

8.1.5 Precision and Recall

Precision: The percentage of correctly detected

encrypted data out of all the data flagged as

encrypted.

Precision=True PositivesTrue Positives+False Positi

ves\text{Precision} = \frac{\text{True

Positives}}{\text{True Positives} + \text{False

Positives}}Precision=True Positives+False Positives

True Positives

Recall: The percentage of correctly detected

encrypted data out of all the encrypted data samples.

Recall = True Positives True Positives +

False Negatives \text {Recall} = \frac {\text{True

Positives}}{\text{True Positives} + \text{False

Negatives}}Recall=True Positives+False Negatives

True Positives

Importance: Precision and recall give a more

balanced view of the model's effectiveness,

especially when working with imbalanced datasets.

8.2 Factors Affecting Performance

8.2.1 Size and Type of Data

Larger Files: The time taken to detect encryption

increases with the size of the files being analyzed.

Larger datasets may take longer to process, which

impacts latency.

File Formats: Encrypted data embedded within

common file formats (e.g., PDFs, images, or

archives) may require different processing steps

compared to simple binary files.

8.2.2 Encryption Algorithm Complexity

Symmetric vs Asymmetric Encryption:

Algorithms like AES (symmetric) generally have

faster decryption times compared to asymmetric

algorithms like RSA, which require more complex

computations (especially with large keys).

Padding and Block Cipher Modes: The padding

mechanism and block cipher mode (e.g., CBC, ECB)

used can affect the patterns detected during the

analysis, adding complexity to the detection process.

8.2.3 Statistical and Cryptographic Features

Entropy Analysis: Encrypted data typically shows

high entropy, but some encryption algorithms (like

weak ciphers) may not produce uniformly high

entropy. False positives may arise when analyzing

entropy as a feature.

Compression Detection: Compression algorithms

like ZIP or GZIP may obscure the encrypted data's

structure, leading to challenges in detecting

encryption if compression is detected first.

8.2.4 Detection Methodology

Signature-Based Detection: This approach relies on

known patterns of encryption (e.g., AES block size,

RSA key size). It may be fast but can be limited by

the detector's ability to handle novel or unknown

encryption algorithms.

Statistical and Entropy-Based Detection:

Analyzing randomness and entropy levels can be

effective but may not always be conclusive,

especially in cases where the encryption is weak or

uses a non-standard method.

Machine Learning Approaches: If using machine

learning to detect encryption, the complexity of the

model (e.g., neural networks, decision trees) will

about:blank

International Research Journal on Advanced Engineering

and Management

https://goldncloudpublications.com

https://doi.org/10.47392/IRJAEM.2025.0223

e ISSN: 2584-2854

Volume: 03

Issue: 04 April 2025

Page No: 1368 - 1375

 IRJAEM 1375

affect both training time and prediction time.

Reference

[1]. Menezes, A., van Oorschot, P., & Vanstone,

S. (1996). Handbook of Applied

Cryptography. CRC Press. A foundational

text on applied cryptography, providing

detailed descriptions of various encryption

algorithms and their characteristics.
[2]. Python Software Foundation. (2021).

Cryptography – Cryptographic Recipes.

Retrieved from

https://cryptography.io/en/latest/. The

official documentation for the

cryptography library in Python, which

provides a comprehensive guide on

cryptographic algorithms and usage.
[3]. Halevi, S., & Ristenpart, T. (2016). Detecting

AES-like Encryption from Ciphertext.

Journal of Cryptology, 29(2), 241–275. A

research paper exploring methods for

detecting AES encryption patterns based

on ciphertext analysis.
[4]. Lowe, S. (2019). pycryptodome

Documentation. Retrieved from

https://www.pycryptodome.org. Official

documentation for the pycryptodome

library, which provides implementations

for several cryptographic algorithms,

useful for encryption detection.
[5]. Ferguson, N., Schneier, B., & Kohno, T.

(2010). Cryptography Engineering: Design

Principles and Practical Applications. Wiley.

A textbook that discusses the design and

implementation of cryptographic systems,

which can help in understanding how

encryption algorithms behave and can be

detected.
[6]. Kaufman, C., Perlman, R., & Speciner, M.

(2014). Network Security: Private

Communication in a Public World. Prentice

Hall. This book provides an overview of

encryption protocols used in network

security and touches on detection

techniques.
[7]. Schneier, B. (2000). Secrets and Lies: Digital

Security in a Networked World. Wiley. A

general book on security and

cryptography, providing background

information that can help understand the

context of encryption algorithm detection.

[8]. Song, D., & Wagner, D. (1999). Analysis of

Block Cipher Modes of Operation. In

Proceedings of the 3rd ACM Conference on

Computer and Communications Security.

ACM. This paper explores different modes

of operation for block ciphers (like AES),

which can help in understanding how to

detect different encryption schemes.
[9]. Zhang, Y., & Xie, W. (2015). Automated

Detection of Encrypted Traffic using

Machine Learning Algorithms. International

Journal of Network Security, 17(4), 397-405.

This paper investigates machine learning

techniques to detect encrypted traffic,

which can be analogous to detecting

encrypted algorithms in data.
[10]. Nielsen, A. (2013). Binwalk: A Tool for

Analyzing Binary Files. Retrieved from https:

// github.com / ReFirmLabs / binwalk.

Binwalk is a popular tool for analyzing

binary files. It can detect compression and

encryption signatures and can be used in

the detection of encryption algorithms.

about:blank
https://www.pycryptodome.org/
https://github.com/ReFirmLabs/binwalk
https://github.com/ReFirmLabs/binwalk

