

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0238 e ISSN: 2584-2854 Volume: 03 Issue: 04 April 2025 Page No: 1467 - 1473

Smart Crop Recommendation and Optimal Route for Market Access

D. Maladhy¹, Divinya E N², Hema Malathi R³, Rhoda Philips⁴

¹Assistant professor (Stage-III), Dept. of IT, Rajiv Gandhi College of Engg. & Tech., Kirumampakkam, Puducherry, India.

^{2,3,4}UG Scholar, Dept. of IT, Rajiv Gandhi College of Engg. & Tech., Kirumampakkam, Puducherry, India. Email ID: dmaladhy_it@rgcet.edu.in¹, endivinya2@gmail.com², hemamalathi289@gmail.com³, rhodaphilips0611@gmail.com⁴.

Abstract

Crop Recommendation Systems powered by machine learning have transformed agriculture by offering farmers data-driven insights to make informed decisions about optimal crop selection. In the existing system, the Support Vector Machine (SVM) algorithm has been employed due to its high prediction accuracy for recommending suitable crops based on various factors such as soil quality, weather conditions, and historical crop data. However, by incorporating the Long Short-Term Memory (LSTM) algorithm, the system can further enhance the accuracy and efficiency of predictions. LSTM's ability to capture temporal dependencies in data allows for more reliable predictions over time, accounting for trends and patterns that improve crop recommendations. Additionally, the integration of Ant Colony Optimization (ACO) aids in identifying the most profitable regions for farming by analyzing the dataset to predict areas with the highest potential yield. This combination of advanced machine learning techniques significantly improves the overall effectiveness of crop recommendation systems, enabling farmers to maximize productivity and profitability.

Keywords: LSTM, random forest, Crop Recommendation, yield prediction, Ant Colony Optimization (ACO).

1. Introduction

1.1 Crop Yield Prediction

The global population's consistent growth presents a significant challenge for agriculture to meet the increasing demand for food. While the population has surged from 1 billion in 1800 to 7.9 billion in 2020, the growth in agricultural output has struggled to keep pace. This disparity underscores the importance of optimizing crop yield to address food security challenges and mitigate the impacts of climate change. Accurate yield predictions become crucial in guiding farmers on how much and what to grow. These predictions are not only valuable for individual farmers but also form the basis for governmental and non-governmental bodies to make decisions, particularly in strengthening national food security measures and shaping related policies. In the context of India, where 58% of the population depends on agriculture for livelihood, predicting crop yield takes on heightened significance. Each state has its staple crop, and traditionally, farmers relied on

rough estimations. However, these estimations often fell short due to various factors such as global warming, pollution, irrigation issues, and soil nutrient deficiencies. With the advent of modernization and the increasing involvement of IT companies in agriculture, there has been a shift towards more sophisticated methods of crop yield prediction. Despite these advancements, there remains a need for significant improvements in the accuracy of predictions to alleviate the challenges faced by farmers and provide them with reliable forecasts that consider a multitude of factors affecting crop growth and yield. Addressing the complexities of food security in the face of population growth and climate change requires a robust understanding of how much food can be produced each year. The evolution of crop yield prediction methods is a crucial aspect of modernizing agriculture, especially in countries like India, where a substantial portion of the population relies on farming. As technology continues to

e ISSN: 2584-2854 Volume: 03 Issue: 04 April 2025 Page No: 1467 - 1473

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0238

advance, there is a growing opportunity to refine these prediction models, incorporating a comprehensive understanding of environmental factors to provide farmers and policymakers with more accurate and actionable information.

2. Related Work

Sagar Raskar, Aditya Abhang Decision Tree Regression, Random Forest Crop yield prediction is a complex task influenced by various factors like state, district, area, rainfall, temperature, and soil characteristics. To achieve accurate predictions, it is essential to establish the functional relationships between crop yield and these factors. This paper focuses on employing machine learning techniques, specifically Decision Tree and Random Forest to predict crop yield and provide recommendations for optimal crop selection. By leveraging comprehensive datasets and powerful algorithms, these models can reveal intricate relationships, enabling farmers to make informed decisions on crop cultivation. The predictions generated consider key factors such as temperature, rainfall, and area, aiding farmers in choosing crops that maximize yield. Additionally, the inclusion of a crop recommendation system, considering elements like rainfall, annual temperature, soil content, and type, addresses the issue of soil depletion caused by continuous cultivation of a single crop on the same soil. This integrated approach not only assists farmers in optimizing yields but also promotes sustainable farming practices by preserving soil health. [1] Mahmoud Y. Shams, Samah A. Gamel, Fatma M. Crop Recommendation **Systems** indispensable tools for farmers, aiding them in making well-informed decisions to optimize yields. These systems rely on a wealth of data, including soil characteristics, historical crop performance, and weather patterns, provide personalized recommendations. Recognizing the increasing demand for transparency and interpretability in agricultural decision-making, this study introduces XAI-CROP, an innovative algorithm grounded in eXplainable Artificial Intelligence (XAI) principles. The primary goal of XAI-CROP is to empower farmers with clear and understandable insights into the recommendation process, addressing the opaque

nature associated with conventional machine learning models. By embracing XAI principles, this algorithm not only enhances the accuracy of recommendations but also ensures that farmers can easily comprehend and trust the insights provided, fostering more effective and informed decision-making agriculture.[2] Shilpa Mangesh Pande; Prem Kumar Ramesh; Anmol Anmol Agriculture and its allied sectors play a pivotal role in providing livelihoods to a vast population in rural India, making a substantial contribution to the country's Gross Domestic Product (GDP). Despite the immense size of the agricultural sector, the yield per hectare of crops in India falls below international standards, leading to various challenges, including a higher suicide rate among marginal farmers. In response to this critical issue, this paper introduces a practical and user-friendly yield prediction system designed specifically for farmers. The proposed system aims to empower farmers with accurate predictions, enabling them to make informed decisions about crop cultivation. By leveraging user-friendly features, this system seeks to bridge the gap between existing agricultural practices and modern technology, ultimately contributing to improved yields and the well-being of India's farming community.[3] Prashant Kumar; Keshav Bhagat; Kusum Lata A significant portion of India's population relies on agriculture as its primary occupation, underscoring the sector's importance in our economy. However, poor crop production quality is a prevalent issue, often arising from the selection of inappropriate crops for specific soil types or insufficient knowledge about the growth capabilities of different crops. To address this challenge, the proposed system utilizes machine learning for crop recommendations, leveraging previously recorded measurements of soil parameters [6]. This approach aims to mitigate the risk of soil degradation and contributes to the maintenance of crop health. By harnessing the power of machine learning, the system provides farmers with valuable insights to make informed decisions, ensuring the selection of crops that are well-suited to the specific conditions. ultimately enhancing agricultural productivity and the livelihoods of those dependent on this critical sector.[4] Shafiulla Shariff,

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0238 e ISSN: 2584-2854 Volume: 03 Issue: 04 April 2025 Page No: 1467 - 1473

Shwetha R B, Ramya O G Agriculture stands as a cornerstone of India's economy, playing a vital role in its survival and growth. As a significant producer of diverse agricultural products, the success of crop cultivation relies heavily on soil quality. However, the traditional approach of farmers relying on handson experience for crop selection based on soil characteristics is becoming less feasible. To address this gap, a recommendation system has been developed, incorporating machine learning algorithms to suggest suitable crops for specific soil conditions. This innovative system utilizes various machine learning algorithms, including KNN, Decision Tree, Random Forest, Naive Bayes, and Gradient Boosting. By leveraging these algorithms, the recommendation system empowers farmers with data-driven insights, ensuring optimal crop choices that align with the unique features of their soil. This technological advancement not only aids in maximizing agricultural productivity but also highlights the role of machine learning in modernizing traditional farming practices for a sustainable and prosperous agricultural sector in India.[5]

3. Methodology

In the proposed system, the prediction accuracy is significantly enhanced by utilizing advanced algorithms. The Support Vector Machine (SVM) algorithm is known for its high accuracy in recommending suitable crops based on various parameters such as soil type, weather, and historical data. However, integrating the Long Short-Term Memory (LSTM) algorithm takes this a step further by improving both accuracy and efficiency. LSTM's strength lies in its ability to capture long-term dependencies in sequential data, allowing the system to make more reliable predictions over time by considering trends and seasonal patterns. Additionally, the use of Ant Colony Optimization (ACO) in the system helps predict the most profitable areas for farming. ACO analyzes the dataset to determine the optimal locations with the highest potential yield, guiding farmers to the most productive regions. Together, LSTM and ACO significantly improve crop recommendation accuracy, helping farmers make data-driven

decisions for better yields and profitability.

4.1 Data Collection

The Indian Crop Production dataset spans from 1997 to 2015, encompassing data for all states in India and featuring information on approximately 124 crops. This dataset serves as a foundational resource for crop yield prediction. The Rainfall dataset, covering the period from 1901 to 2015, provides monthly rainfall data for all Indian states. To facilitate crop yield prediction, the average rainfall over the season is calculated and integrated with the crop production dataset. Additionally, the Crop Recommendation dataset includes crucial soil attributes such as Nitrogen, Phosphorous, and Potassium levels, soil pH, as well as temperature, humidity, and rainfall data. These attributes form a comprehensive set of factors utilized in crop recommendation systems to optimize crop selection and promote sustainable agricultural practices.

4.2 Data Pre-Processing and Feature Extraction

pre-processing involves cleaning transforming raw data into a more suitable format for analysis. This typically includes handling missing values, removing outliers, and standardizing or normalizing numerical features. Additionally, categorical variables may be encoded, and data might be split into training and testing sets. The goal is to ensure that the data is in a clean and organized state before feeding it into machine learning algorithms. Feature selection is the process of choosing the most relevant features from the dataset for model training. This helps in reducing dimensionality and improving model performance by focusing on the most informative attributes. Techniques for feature selection include statistical tests, correlation analysis, and recursive feature elimination. The aim is to retain features that contribute the most to the predictive power of the model while eliminating irrelevant or redundant variables. Both data pre-processing and feature selection are crucial steps in preparing data for effective machine learning model training and analysis [7][8].

4.3 Modal Creation

The LSTM (Long Short-Term Memory) model is constructed for crop recommendation, leveraging its ability to capture sequential patterns in historical

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0238 e ISSN: 2584-2854 Volume: 03 Issue: 04 April 2025 Page No: 1467 - 1473

data, such as soil characteristics, climate conditions, and crop performance. This model aids in providing personalized and accurate crop suggestions to farmers based on past trends. Simultaneously, the Random Forest algorithm is built for crop yield prediction. This ensemble learning technique combines multiple decision trees to analyze various factors like soil health, climate, and historical yield data. By harnessing the strengths of both models, the system delivers a holistic solution, offering farmers insights into optimal crop selection and accurate predictions of potential yields [9-12].

4.4 Recommend Using the ACO

Ant Colony Optimization (ACO) plays a pivotal role in identifying the most profitable areas for farming. ACO is inspired by the behavior of ants searching for the shortest path to food, making it an efficient

4.5 Architecture Diagram of the Proposed System

algorithm for solving optimization problems. When applied to agriculture, ACO analyzes a dataset containing various environmental, geographical, and soil-related factors to predict the optimal regions for crop cultivation [13][15]. By simulating how ants explore different paths, the algorithm evaluates multiple potential farming areas and selects the one with the highest profitability based on factors like soil fertility, climate conditions, and historical crop success. This method ensures that farmers are directed towards regions with the highest yield potential, enabling them to maximize productivity and returns. The ACO-based approach thus provides a highly efficient and data-driven recommendation system that enhances decision-making for optimal crop placement.

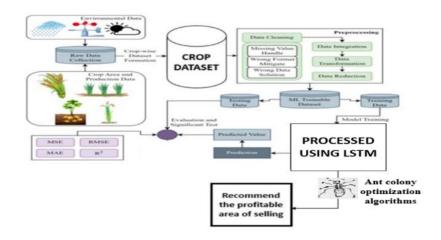


Figure 1 Crop Production Data

The diagram outlines a crop prediction and sales optimization system that utilizes Long Short-Term Memory (LSTM) and Ant Colony Optimization (ACO) algorithms. It begins by collecting environmental and crop production data, which is then preprocessed through steps such as cleaning and transformation to create a suitable dataset for machine learning. The LSTM model is trained to predict crop yields using historical data and environmental factors, evaluated using metrics like Mean Squared Error (MSE) and R-squared (R²).

After making predictions, ACO is employed to identify profitable selling areas for the crops, enhancing decision-making in the agricultural market. This integrated approach enables farmers to optimize yield predictions and maximize profits through strategic selling locations. Figure 1 shows Crop Production Data.

4. Result and Discussion

The results of the study indicate promising outcomes for the integrated Crop Recommendation System using LSTM for crop recommendations and the

OPEN CACCESS IRJAEM

LSTM

patterns,

International Research Journal on Advanced Engineering and Management

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0238

crop

e ISSN: 2584-2854 Volume: 03 Issue: 04 April 2025 Page No: 1467 - 1473

outcomes. Further discussion could delve into the practical implications, challenges, and potential improvements for real-world implementation.

4.2 Data Analysis and Features Selection

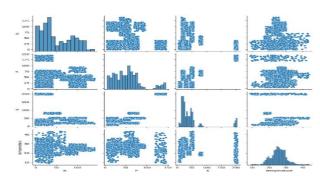
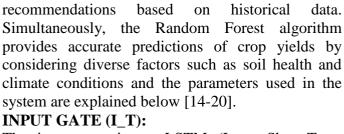



Figure 2 Data Analysis and Features Selection

A dataset processing graph illustrates the various steps involved in preparing and transforming raw data for analysis. This could include stages such as data cleaning, normalization, feature extraction, or any other preprocessing steps. Each node or step in the graph likely represents a specific operation or transformation applied to the dataset. Visualizing the dataset processing pipeline helps to understand the flow of operations and the sequence of steps undertaken to make the data suitable for analysis or model training. Figure 2 shows Data analysis and features selection.

Random Forest algorithm for yield predictions. The

the

captures

precision

of

effectively

model

enhancing

The input gate in an LSTM (Long Short-Term Memory) network regulates the flow of information into the cell state by determining which information from the current input and the previous hidden state is essential for updating the memory. It uses a sigmoid activation function to generate values between 0 and 1, indicating the relevance of the incoming information.

$$i_t = \sigma(W_{ii} \cdot x_t + b_{ii} + W_{hi} \cdot h_{t-1} + b_{hi})$$

FORGET GATE (F T):

The forget gate in an LSTM (Long Short-Term Memory) network is a mechanism that determines which information from the previous cell state should be discarded or kept for the current time step. It uses a sigmoid activation function to generate a forget vector, assigning weights to the information in the

$$f_t = \sigma(W_{if} \cdot x_t + b_{if} + W_{hf} \cdot h_{t-1} + b_{hf})$$

This gate allows the LSTM model to selectively remember or forget specific information, crucial for capturing long-term dependencies in sequential data and preventing the network from being overwhelmed by irrelevant past information.

$$egin{aligned} & \mathbf{Tilde}c_t = \mathrm{tanh}(W_{ic} \cdot x_t + b_{ic} + W_{hc} \cdot h_{t-1} + b_{hc}) \\ & c_t = f_t \cdot c_{t-1} + i_t \cdot \mathbf{Tilde}c_t \end{aligned}$$

The synergy between these models contributes to informed decision-making for farmers, optimizing crop selection and anticipating potential yields. This integrated approach not only addresses the challenges in traditional farming practices but also holds promise for sustainable and efficient agricultural

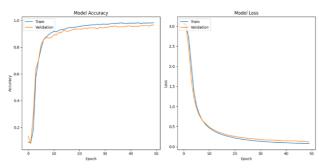


Figure 3 Graph Depicting Model Accuracy and **Loss Provides a Visual Representation**

The graph depicting model accuracy and loss provides a visual representation of how well a machine learning model is performing during training and validation [21][22]. The accuracy curve illustrates the proportion of correctly predicted instances, while the loss curve indicates how well the

e ISSN: 2584-2854 Volume: 03 Issue: 04 April 2025 Page No: 1467 - 1473

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0238

model is minimizing errors. In an ideal scenario, as training progresses, accuracy should increase, and loss should decrease. Fluctuations in accuracy and loss can reveal insights into model behavior, potential overfitting, or underfitting. A steady increase in accuracy with decreasing loss suggests effective learning, while erratic patterns may indicate issues in the training process. Monitoring these curves is crucial for fine-tuning the model, making informed decisions on adjustments, and ensuring optimal performance in predicting outcomes. Figure 3 shows Graph Depicting Model Accuracy and Loss Provides A Visual Representation.

Conclusion

In conclusion, Crop Recommendation Systems powered by advanced machine learning algorithms have revolutionized agriculture by offering precise, data-driven insights for optimal crop selection. While the existing system relies on the SVM algorithm for high prediction accuracy, the incorporation of the Long Short-Term Memory (LSTM) algorithm further enhances the system's reliability and efficiency by capturing temporal patterns in agricultural data. Additionally, the use of Ant Colony Optimization (ACO) strengthens the system by identifying the most profitable farming areas, maximizing potential Together. these vield. advanced algorithms significantly improve the accuracy and effectiveness of crop recommendations, empowering farmers to make better-informed decisions that boost productivity and profitability. This integrated approach represents a critical advancement in modern agricultural practices, particularly in optimizing resources and ensuring sustainable farming outcomes.

Reference

- [1]. Kumar, Y. Jeevan Nagendra, V. Spandana, V. S. Vaishnavi, K. Neha, and V. G. R. R. Devi. "Supervised Machine learning Approach for Crop Yield Prediction in Agriculture Sector." In 2020 5th International Conference on Communication and Electronics Systems (ICCES), pp. 736-741. IEEE, 2020.
- [2]. Nigam, Aruvansh, Saksham Garg, Archit Agrawal, and Parul Agrawal. "Crop yield prediction using machine learning

- algorithms." In 2019 Fifth International Conference on Image Information Processing (ICIIP), pp. 125-130. IEEE, 2019.
- [3]. Medar, Ramesh, Vijay S. Rajpurohit, and Shweta Shweta. "Crop yield prediction using machine learning techniques." In 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), pp. 1-5. IEEE, 2019.
- [4]. Jain, Sonal, and Dharavath Ramesh.

 "Machine Learning convergence for weather-based crop selection." In 2020 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), pp. 1-6. IEEE, 2020.
- [5]. Gandge, Yogesh. "A study on various data mining techniques for crop yield prediction." In 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), pp. 420-423. IEEE, 2017.
- [6]. Suresh, A., P. Ganesh Kumar, and M. Ramalatha. "Prediction of major crop yields of Tamilnadu using K-means and Modified KNN." In 2018 3rd International Conference on Communication and Electronics Systems (ICCES), pp. 88-93. IEEE, 2018.
- [7]. Kamatchi, S. Bangaru, and R. Parvathi. "Improvement of Crop Production Using Recommender System by Weather Forecasts." Procedia Computer Science 165 (2019): 724-732.
- [8]. Bondre, Devdatta A., and Santosh Mahagaonkar. "Prediction of Crop Yield and Fertilizer Recommendation Using Machine Learning Algorithms." International Journal of Engineering Applied Sciences and Technology 4, no. 5 (2019): 371-376.
- [9]. Suresh, G., A. Senthil Kumar, S. Lekashri, and R. Manikandan. "Efficient Crop Yield Recommendation System Using Machine Learning for Digital Farming." International Journal of Modern Agriculture 10, no. 1 (2021): 906-914.
- [10]. Reddy, D. Anantha, Bhagyashri Dadore, and Aarti Watekar. "Crop recommendation

OPEN CACCESS IRJAEM

e ISSN: 2584-2854 Volume: 03 Issue: 04 April 2025 Page No: 1467 - 1473

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0238

- system to maximize crop yield in ramtek region using machine learning." International Journal of Scientific Research in Science and Technology 6, no. 1 (2019): 485-489.
- [11]. Pudumalar, S., E. Ramanujam, R. Harine Rajashree, C. Kavya, T. Kiruthika, and J. Nisha. "Crop recommendation system for precision agriculture." In 2016 Eighth International Conference on Advanced Computing (ICoAC), pp. 32-36. IEEE, 2017.
- [12]. Garanayak, Mamata, Goutam Sahu, Sachi Nandan Mohanty, and Alok Kumar Jagadev. "Agricultural Recommendation System for Crops Using Different Machine Learning Regression Methods." International Journal of Agricultural and Environmental Information Systems (IJAEIS) 12, no. 1 (2021): 1-20.
- [13]. Jejurkar Siddhi, S., S. Bhosale Meghna, and D. N. Wavhal. "Crop Predication and Diseases Detection Using Machine Learning." (2021).
- [14]. Rajak, Rohit Kumar, Ankit Pawar, Mitalee Pendke, Pooja Shinde, Suresh Rathod, and Avinash Devare. "Crop recommendation system to maximize crop yield using machine learning technique." International Research Journal of Engineering and Technology 4, no. 12 (2017): 950-953.
- [15]. Doshi, Zeel, Subhash Nadkarni, Rashi Agrawal, and Neepa Shah. "AgroConsultant: Intelligent Crop Recommendation System Using Machine Learning Algorithms." In 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1-6. IEEE, 2018.
- [16]. Mahule, Ankit Arun, and A. J. Agrawal. "Hybrid Method for Improving Accuracy of Crop-Type Detection using Machine Learning." International Journal 9, no. 2 (2020).
- [17]. Akshatha, K. R., and K. S. Shreedhara. "Implementation of machine learning algorithms for crop recommendation using precision agriculture." International Journal

- of Research in Engineering, Science and Management (IJRESM) 1, no. 6 (2018): 58-60
- [18]. Dighe, Deepti, Harshada Joshi, Aishwarya Katkar, Sneha Patil, and Shrikant Kokate. "Survey of Crop Recommendation Systems." (2018).
- [19]. Jaiswal, Sapna, Tejaswi Kharade, Nikita Kotambe, and Shilpa Shinde. "Collaborative Recommendation System For Agriculture Sector." In ITM Web of Conferences, vol. 32. EDP Sciences, 2020.
- [20]. Ghadge, Rushika, Juilee Kulkarni, Pooja More, Sachee Nene, and R. L. Priya. "Prediction of crop yield using machine learning." Int. Res. J. Eng. Technol. (IRJET) 5 (2018).
- [21]. Kulkarni, Nidhi H., G. N. Srinivasan, B. M. Sagar, and N. K. Cauvery. "Improving Crop Productivity Through A Crop Recommendation System Using Ensembling Technique." In 2018 3rd International Conference on Computational Systems and Information Technology for Sustainable Solutions (CSITSS), pp. 114-119. IEEE, 2018.
- [22]. Kumar, Avinash, Sobhangi Sarkar, and Chittaranjan Pradhan. "Recommendation system for crop identification and pest control technique in agriculture." In 2019 International Conference on Communication and Signal Processing (ICCSP), pp. 0185-0189. IEEE, 2019.