

# International Research Journal on Advanced Engineering and Management

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0245 e ISSN: 2584-2854 Volume: 03 Issue:04 April 2025 Page No: 1507 - 1509

## Fire Detector and Buzzer

Rachit Chandna<sup>1</sup>, Kirtiraj Saini<sup>2</sup>, Hashmat Aziz Rather<sup>3</sup>

<sup>1,2,3</sup>UG, Dept. of NWC, SRM Institute of Science and Technology., KTR, Chennai, India

Email ID: rc8257@srmist.edu.in<sup>1</sup>, ks1363@srmist.edu.in<sup>2</sup>, hr8299@srmist.edu.in<sup>3</sup>

#### **Abstract**

Fire detection is crucial for preventing hazards in residential, industrial, and commercial spaces. A fire detector system plays a key role in identifying fire incidents at an early stage by detecting smoke, heat, or flame emissions. In modern fire detection systems, integrating IoT and smart technologies enhances responsiveness and accuracy. In the current study, a fire detector sensor is designed and analysed using simulation techniques. The model is introduced to perform a thermal and structural analysis to evaluate heat sensitivity, response time, and durability under extreme conditions. Different materials and sensor configurations are examined to optimize performance and reliability. Effective fire detection is essential for safety, and advancements in sensor technology contribute to minimizing damage and improving emergency response systems.

*Keywords:* Fire detector sensor, thermal analysis, IoT, fire safety, simulation.

### 1. Introduction

Fire outbreaks pose a significant threat to life, property, and the environment. Early detection and timely response are crucial in minimizing damage and ensuring safety. This paper presents the design and development of a low-cost, efficient fire detection system using an Arduino Nano microcontroller. The system incorporates a flame or smoke sensor to detect fire-related signals, a buzzer for audible alerts, and an LED for visual indication. Built on a breadboard for flexibility and easy prototyping, the system offers a practical solution for small-scale fire monitoring applications such as homes, offices, or storage areas. The project demonstrates how simple electronic components can be integrated to create an effective fire alarm system, contributing to the field of embedded systems and safety automation. Our prototype focuses on creating a portable and user-friendly device that supports fire detection [1].

## 1.1 Working Principle

The fire detection system operates by continuously monitoring the environment using a flame or smoke sensor. These sensors are designed to detect specific signatures of a fire, such as infrared light emitted by flames or the presence of combustible gases in the air. In this system, the sensor is connected to the Arduino Nano microcontroller, which serves as the processing unit. When the sensor detects a fire-related signal, it sends a digital signal (LOW or HIGH) to the Arduino through its output pin. The Arduino continuously reads the input from the sensor in a loop. If a fire is detected (based on the sensor's logic, usually a LOW signal for flame sensors), the Arduino activates an alert system consisting of a buzzer and an LED. The buzzer provides an audible alarm, while the LED serves as a visual indicator, making it easier to notice the alert in various environments. Once the fire is no longer detected, the Arduino deactivates the buzzer and LED automatically [2]. The system works in realtime and can be easily tested by introducing a flame source, such as a lighter, near the sensor. The modular nature of the design also allows for future expansion, such as adding wireless communication or integrating with IoT platforms for remote monitoring [3].

## 1.2 Software Implementation

The software for the fire detection system is developed using the Arduino Integrated Development Environment (IDE). The programming

1507



# International Research Journal on Advanced Engineering and Management

e ISSN: 2584-2854 Volume: 03 Issue:04 April 2025 Page No: 1507 - 1509

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0245

language used is based on C/C++, which is compatible with Arduino microcontrollers. The code is responsible for continuously monitoring the input from the flame or smoke sensor and controlling the output devices (buzzer and LED) accordingly [4].

## 1.3 Pin Configurations

At the beginning of the code, digital pins are assigned to the sensor, buzzer, and LED. For example, pin D2 is used for the sensor input, D3 for the buzzer, and D4 for the LED.

Int sensorPin = 2; int buzzerPin = 3; int ledPin = 4;

## 1.4 Setup Function and Loop Function

The setup() function initializes the pin modes the sensor pin is set as INPUT, while the buzzer and LED are set as OUTPUT. Serial communication is also initialized for monitoring purposes.

```
void setup () {
   pinMode(sensorPin, INPUT);
   pinMode(buzzerPin, OUTPUT);
   pinMode(ledPin, OUTPUT);
   Serial.begin(9600);
}
```

## 1.5 Serial Monitoring

The Serial.println() function is used to display realtime sensor readings and system status on the Serial Monitor. This helps in debugging and validating the sensor's functionality during testing.

## 1.6 Upload and Execution

Once the code is written and compiled without errors, it is uploaded to the Arduino Nano via USB. The system begins execution immediately after uploading and starts monitoring for fire signals.

## 2. Discussion

The fire detection system developed in this project demonstrates a simple yet effective approach to fire safety using affordable and readily available components. The integration of a flame or smoke sensor with the Arduino Nano enables real-time monitoring of the environment, making the system suitable for small-scale applications such as homes, storage rooms, and small offices. The system's response to the presence of fire is immediate, with both audible (buzzer) and visual (LED) alerts being activated within a fraction of a second upon

detection. This dual-alert mechanism increases the likelihood of early human response, especially in environments where one form of alert might be missed. One of the main strengths of the system is its cost. utilizing simplicity and low Bv microcontroller like the Arduino Nano, the system remains compact, energy-efficient, and easy to program. Additionally, the modular nature of the design makes it highly customizable allowing future enhancements such as wireless alerts via Bluetooth or Wi-Fi, integration with mobile apps, or inclusion of additional environmental sensors (e.g., temperature, humidity, gas). However, the system is not without limitations. The effectiveness of the sensor can be influenced by environmental factors such as lighting conditions, dust, and airflow. Also, since the detection is localized to the sensor's immediate surroundings, the coverage area is limited. False positives or missed detections may occur if the sensor is not properly positioned or calibrated. Despite these limitations, the project successfully fulfills its primary goal: providing a basic, real-time fire alert mechanism using embedded systems. It serves as a valuable prototype for students and hobbyists exploring fire safety technologies and embedded system design [5][6].

### Conclusion

This project successfully demonstrates the design and implementation of a basic fire detection system using an Arduino Nano, flame or smoke sensor, LED, and buzzer. The system effectively detects fire-related signals and responds in real-time with both audible and visual alerts, enhancing safety and situational awareness in indoor environments. The use of simple and cost-effective components makes this system highly accessible for educational, experimental, and small-scale safety applications [7]. While the prototype offers reliable performance in controlled environments, it also highlights potential areas for improvement, such as increasing the detection range, reducing false positives, and integrating remote notification features. Overall, the project serves as a practical example of how embedded systems can be applied to real-world safety challenges. With further development, the system has the potential to evolve into a more advanced, IoT-enabled fire safety

1508



## International Research Journal on Advanced Engineering and Management

e ISSN: 2584-2854 Volume: 03 Issue:04 April 2025 Page No: 1507 - 1509

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0245

solution [8].

## Acknowledgements

I would like to express my sincere gratitude to all those who contributed to the successful completion of this project. First and foremost, I extend my heartfelt thanks to my mentor/faculty guide Ms. Sujatha R for her valuable guidance, support, and encouragement throughout the duration of this project. Her insightful feedback and suggestions greatly helped in shaping the direction and outcome of the work [9]. I also thank my institution], for providing the necessary resources and environment to carry out this research. Special thanks to the lab staff and technical assistants who helped with hardware tools and equipment during the development phase. I am grateful to the open-source community and online platforms like Arduino Project Hub, Instructables, and Circuit Digest for providing accessible tutorials and references which played a significant role in the learning and implementation process.

### **References**

- [1]. Fire and Smoke Alarm | Arduino Project Hub This project demonstrates an updated fire alarm system incorporating a gas sensor and a mobile app for control. It offers insights into integrating multiple sensors and communication modules with Arduino.
- [2]. Arduino Modules Flame Sensor A quick start guide for using and exploring the Flame Sensor module with Arduino. It covers the basics of flame sensor operation and interfacing.
- [3]. Arduino And MQ2 Gas Sensor This tutorial explains how to interface the MQ-2 gas sensor with Arduino to detect various gases, including LPG, methane, and smoke. It includes circuit diagrams and sample code.
- [4]. Fire Detection Using Arduino and Flame Sensor Instructables A step-by-step guide on interfacing a flame sensor with Arduino to detect flames, including hardware connections and code explanations.
- [5]. Guide for MQ-2 Gas Sensor with Arduino -Random Nerd Tutorials This guide shows how to build a smoke detector that beeps

- when it detects flammable gases or smoke using the MQ-2 sensor with Arduino.
- [6]. Interfacing Flame Sensor with Arduino Circuit Digest An article discussing the working of flame sensors and how to interface them with Arduino, including circuit diagrams and code.
- [7]. Fire Detection System using Flame Sensor & Arduino This post discusses setting up a fire detection system that senses the presence of a flame and alerts with visual signals and a melody alarm.
- [8]. How to Use MQ2 Gas Sensor Arduino Tutorial Instructables A tutorial on using the MQ-2 gas sensor with Arduino, including how to detect various gases and interpret sensor readings.
- [9]. Flame Sensor | Arduino Tutorial This tutorial covers how to use an Arduino and a flame sensor to detect and measure flames and fire, including wiring diagrams and code examples.

OPEN CACCESS IRJAEM

1509