

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0248 e ISSN: 2584-2854 Volume: 03 Issue:04 April 2025 Page No: 1524 - 1529

A Study on Industry 4.0 Technologies in Revolutionizing Health Care Systems with Respect to Corporate Hospitals, Visakhapatnam

Dr. VSD Himabindu¹, Ms. Yamini Battula²

¹Assistant Professor, Department of Basic Sciences & HSS, Andhra University College of Engineering for Women, Visakhapatnam, Andhra Pradesh, India.

²UG – Department of Electrical and Electronics Engineering, Andhra University College of Engineering for Women, Visakhapatnam, Andhra Pradesh, India.

Email ID: himabindumba@gmail.com¹, yaminibattula26@gmail.com²

Abstract

Health Care 4.0 is inspired by Industry 4.0 and has resulted in a paradigmatic shift in the field of healthcare. These technologies have yet to foray into different domains of medical diagnosis, rendering improved medical care. This paper tries to examine the impact of 4.0 technologies in medical advancements. As Industry 4.0 technologies are pioneering in the medical field with AI, IoT, 3D printing, and additive manufacturing, these technologies are providing precision, accessibility, affordability, real-time data, and proactive disease prevention in order to facilitate personalized treatment and efficiency. Technology is intervening to close healthcare gaps, ensuring equitable and quality health care. Industry 4.0 technologies reshape medicine, fostering collaboration between human expertise and technology-driven approaches, providing accessible medical solutions and patient-centered care aligned with global health goals.

Keywords: 3D; AM Technologies; AI Powered Diagnostics; Industry 4.0.

1. Introduction

The applications and technology concepts like Health 4.0 have delivered significant benefits by increasing operational efficiency. Health care systems are now adopting cloud-based hospital management systems, providing fast and secure patient care. The integration digital technologies, including Intelligence (AI), machine learning, analytics, and the Internet of Medical Things (IoMT), is reshaping medical practices and research. These innovations enhance accuracy, efficiency, accessibility, ultimately improving patient care and public health outcomes. One of the most promising aspects of digitization in medicine is AI-driven diagnostics. AI-powered algorithms analyze vast amounts of medical data with precision, enabling early disease detection and personalized treatment plans. Machine learning models continuously improve diagnostic accuracy by learning from patient records, medical imaging, and genomics datathereby enhancing clinical decision-making and reducing diagnostic errors. Electronic Health Records (EHRs) play a vital role in medical digitalization by streamlining data management and improving care coordination. Digitized patient records enhance information accessibility, minimize paperwork, and reduce the risk of errors. EHRs also support predictive analytics, enabling health care providers to identify trends, anticipate outbreaks, and measures implement preventive effectively. Moreover, wearable medical devices and IoMT are transforming patient monitoring and preventive care. Smart devices such as fitness trackers and remote monitoring tools collect real-time health data, providing valuable insights into patient well-being. data-driven approach facilitates intervention, reduces hospital admissions, optimizes resource allocation. The prospects of digitalization in medical endeavours are vast, with the

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0248 e ISSN: 2584-2854 Volume: 03 Issue:04 April 2025

Page No: 1524 - 1529

potential to revolutionize health care delivery and research. By leveraging technology, the medical industry can enhance diagnostic precision, expand access to care, and drive innovations that improve outcomes. digital transformation As continues, collaboration between health care professionals, researchers, and technology experts will be crucial in addressing associated challenges.

Introducing 2. The Main **Objectives** of **Technology into Health Care Systems**

- To Study and analyze impact of 4.0 Technological advancements in health care systems. [1]
- To examine perceived patient satisfaction resulting from technological interventions
- To suggest proactive measures that can be furthered with Technological advancement

3. Methodology

The study is carried with the help of questionnaire taking a sample of 50 Corporate Hospitals. Primary data was collected from respondents which include patients professionals, Healthcare and stakeholders. Descriptive analysis and percentage method was adopted. (Table 1) [2]

3.1. Health Care Providers Adopting Ai-**Technology**

The integration of Artificial Intelligence (AI) in healthcare marks a significant advancement aligned with the principles of Industry 4.0, which emphasizes automation, data exchange, and smart technologies. AI technologies such as machine learning, natural language processing, and robotics are revolutionizing healthcare delivery by enhancing diagnostic accuracy, personalizing treatment plans, optimizing operations, improving hospital and patient engagement. Healthcare providers are increasingly solutions adopting AI-driven streamline to workflows, reduce operational costs, and provide data-driven care. This transition supports real-time decision-making, predictive analytics, and remote patient monitoring, contributing to more efficient and patient-centric healthcare systems. challenges like data privacy, ethical concerns, and the need for skilled personnel, the adoption of AI in healthcare under Industry 4.0 is set to transform the future of medical practice and patient care. (Figure 1)

Table 1 Health Care Providers Adopting AI **Technologies**

S.no	Particulars	No. of Respondents	0/0
1.	Adopting rates of technology	12	24%
2.	Healthcare services which can adopt new technologies	10	20%
3.	Patient outcomes	9	18%
4.	Cost Effectiveness	11	22%
5.	User Experience	8	16%
	Total	50	100%

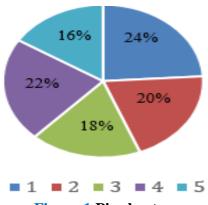


Figure 1 Pie chart

The pie chart presents the key factors influencing AI adoption among 50 healthcare providers. The largest portion, 24%, reflects the importance of the adopting rate of technology, followed by cost-effectiveness at 22%, and adaptability to new technologies at 20%. Patient outcomes and user experience make up 18% and 16%, respectively. This distribution highlights a balanced view, with a strong focus on system readiness and cost, alongside clinical and usercentered considerations. [3]

3.2. Health Care Providers Adopting IoT **Technologies**

Healthcare providers are adopting IoT technologies to improve patient care, streamline operations, and

Volume: 03 Issue:04 April 2025

Page No: 1524 - 1529

e ISSN: 2584-2854

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0248

lower costs. Devices like wearables, smart beds, and connected inhalers enable real-time monitoring of vitals and medication adherence, supporting remote care and chronic disease management while reducing hospital visits. IoT also automates tasks like inventory tracking, helping staff focus on patients. On a larger scale, data from these devices improves decision-making through trend analysis predictive insights. While challenges like cybersecurity and privacy exist, ongoing tech advancements and strong data protection measures are making healthcare more efficient, personalized, and proactive. Now, let us turn to Table 2, which provides a summary of how healthcare providers are adopting IoT technologies. The table outlines responses in key areas such as adoption rates, healthcare service adaptability, patient outcomes, cost effectiveness, and user experience. (Table 2) (Figure 2) [4-5]

Table 2 Health Care Providers Adopting IoT **Technologies**

S.no	Particulars	No. of Respondents	%
1.	Adopting rates of technology	14	28%
2.	Healthcare services which can adopt new technologies	11	22%
3.	Patient outcomes	10	20%
4.	Cost Effectiveness	8	16%
5.	User Experience	7	14%
	Total	50	100%

The pie chart illustrates the key factors influencing the adoption of IoT technologies among 50 healthcare providers. The largest segment, 28%, corresponds to the adopting rate of technology, highlighting the importance of infrastructure readiness. Adaptability to new technologies accounts for 22%, followed closely by patient outcomes at 20%, reflecting the clinical impact of IoT integration. Cost-effectiveness and user experience represent 16% and 14%, respectively, showing that financial considerations and ease of use also play a significant role. The chart emphasizes a balanced perspective, with technical readiness and patient-centered outcomes leading IoT adoption in healthcare. [6]

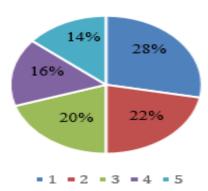
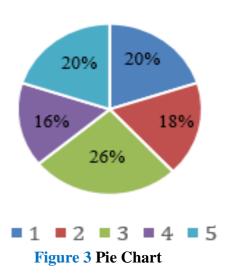


Figure 2 Pie Chart

3.3. Healthcare **Providers** Adopting **3D Technologies**

Table 3 Healthcare Providers Adopting 3D Technologies

recunologies				
S.no	Particulars	No. of Respondents	%	
1.	Adopting rates of technology	10	20%	
2.	Healthcare services which can adopt new technologies	9	18%	
3.	Patient outcomes	13	26%	
4.	Cost Effectiveness	8	16%	
5.	User Experience	10	20%	
	Total	50	100 %	


Healthcare providers are adopting 3D technologies as part of the industry 4.0 revolution to improve precision, personalization, and efficiency in medical care. 3D printing is being used to create custom prosthetics, implants, surgical tools, and anatomical models, enabling tailored treatments and reducing

e ISSN: 2584-2854 Volume: 03 Issue:04 April 2025 Page No: 1524 - 1529

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0248

surgery times. Surgeons use 3D-printed models to plan complex procedures more accurately, lowering risks and improving patient outcomes. In fields like orthopedics and dentistry, personalized devices are now produced faster and with better fit. Emerging bioprinting technology also shows promise for developing tissues and organs in the future. With the integration of AI, IoT, and data analytics, these 3D technologies are becoming smarter and more connected, supporting real-time decisions streamlined workflows across healthcare systems. Now, let us take a look at Table 3, which illustrates the adoption of 3D technologies by healthcare providers. It summarizes responses across key areas such as adoption rates, readiness of services, patient outcomes, cost effectiveness, and user experience, giving insight into the overall impact and acceptance of these technologies in the healthcare sector. [7]

The pie chart represents the key factors influencing the adoption of 3D technologies among 50 healthcare providers. Patient outcomes lead with 26%, emphasizing the clinical benefits as the primary driver for 3D adoption. Adopting rate of technology and user experience each account for 20%, indicating the importance of implementation speed and usability. Adaptability to new technologies follows at 18%, highlighting institutional readiness. Costeffectiveness, at 16%, rounds out the distribution, showing that while financial considerations matter, they are secondary to clinical impact and usability.

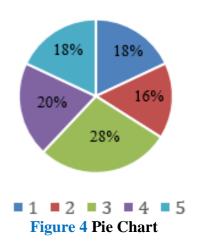
The chart reflects a patient-centered, innovation-ready approach to 3D integration in healthcare. (Figure 3) [8-10]

3.4. Healthcare Providers Adopting Additive Manufacturing (AM) Technologies

Healthcare providers are adopting additive manufacturing technologies in line with Industry 4.0 to enhance customization, efficiency, and patientspecific care. These technologies, including 3D printing, are used to produce personalized implants, prosthetics, surgical instruments, and anatomical models, allowing for improved surgical planning and reduced operation times. In areas such as orthopedics, dentistry, and reconstructive surgery, additive manufacturing enables faster production of highprecision, patient-tailored solutions. The integration of these technologies with AI, IoT, and advanced data systems ensures smarter design processes, real-time monitoring, and better resource management. As bioprinting continues to advance, it also opens up future possibilities for creating functional tissues and organs, revolutionizing regenerative medicine. (Figure 4) [11-12]

Table 4 Healthcare Providers Adopting Additive Manufacturing (AM) Technologies

S.no	Particulars	No. of Respondents	%
1.	Adopting rates of technology	9	18%
2.	Healthcare services which can adopt new technologies	8	16%
3.	Patient outcomes	14	28%
4.	Cost Effectiveness	10	20%
5.	User Experience	9	18%
	Total	50	100%


The pie chart illustrates the distribution of key factors influencing the adoption of Additive Manufacturing (AM) technologies among 50 healthcare providers. Patient outcomes emerge as the most significant

e ISSN: 2584-2854 Volume: 03 Issue:04 April 2025 Page No: 1524 - 1529

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0248

driver, accounting for 28%, reflecting AM's growing impact on personalized treatments, precision, and clinical success. Cost effectiveness follows with 20%, highlighting the potential of AM to reduce long-term expenses through customized and efficient medical solutions. User experience and adopting rate of technology are equally represented at 18% each, suggesting that while providers value innovation, they also consider usability and integration into existing systems. Adaptability to new technologies ranks at 16%, indicating a moderate concern for institutional readiness to incorporate AM-based workflows. The chart underscores a strong clinical and operational interest in AM, aligning with current healthcare transformation trends. [13-14]

Conclusion

This study aims to emphasize the importance of technology intervention in widening the scope of Medical advancements rendering in improved Healthcare and utmost patient received satisfactions. It is agreed upon the fact that improved Medical facilities are more deprived for the poor, middle and marginalized sections of the society. Techno-enabled medical management systems which have custom-driven are needed to fill the gaps that do exist in Healthcare delivery. It also aims to explain the Technology intervention in bridging the gaps like communication, perception and total perceive quality gaps through Healthcare 4.0 Intervention.

References

[1]. Patel K. (2017). 6 Benefits of IoT for hospitals and healthcare. Leadership in

- Health Services, 11(2), 1–5.
- [2]. Boland T., Xu T., Damon B., & Cui X. (2006). Application of inkjet printing to tissue engineering. Biotechnology Journal, 1, 910–917.
- [3]. Campbell P.G., & Weiss L.E. (2007). Tissue engineering with the aid of inkjet printers. Expert Opinion on Biological Therapy, 7(8), 1123–1127.
- [4]. Canstein C., Cachot P., Faust A., Stalder A., Bock J., Frydrychowicz A., Kuffer J., Hennig J., & Markl M. (2008). 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: Comparison with in vivo data and computational fluid dynamics in identical vessel geometries. Magnetic Resonance in Medicine, 59, 535–546.
- [5]. Dai K., Yan M., Zhu Z., & Sun Y. (2007). Computer-aided custom-made hemipelvic prosthesis used in extensive pelvic lesions. Journal of Arthroplasty, 22, 981–986.
- [6]. D'Urso P.S., Barker T.M., Earwaker W.J., Bruce L.J., Atkinson R.L., Lanigan M.W., & Effeney D.J. (1999). Stereolithographic biomodelling in cranio-maxillofacial surgery: A prospective trial. Journal of Cranio-Maxillofacial Surgery, 27(1), 30–37.
- [7]. D'Urso P.S., Effeney D.J., Earwaker W.J., Barker T.M., Redmond M.J., Thompson R.G., & Tomlinson F.H. (2000). Custom cranioplasty using stereolithography and acrylic. British Journal of Plastic Surgery, 53(3), 200–204.
- [8]. De Beer N. (2006). Advances in three-dimensional printing—state of the art and future perspectives.
- [9]. Ebert L.C., Thali M.J., & Ross S. (2011). Getting in touch—3D printing in forensic imaging. Forensic Science International, 211(1), e1–e6.
- [10]. Ely S. (2009). Personalized medicine: Individualized care of cancer patients. Translational Research, 154(6), 303–308.
- [11]. Beek E., & Wild J. (2009). Rapid prototyping raw models on the basis of high-resolution computed tomography lung data for

OPEN CACCESS IRJAEM

e ISSN: 2584-2854 Volume: 03 Issue:04 April 2025 Page No: 1524 - 1529

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0248

respiratory flow dynamics.

- [12]. Guarino J., Tennyson S., McCain G., Bond L., Shea K., & King H. (2007). Rapid prototyping technology for surgeries of the pediatric spine and pelvis: Benefits analysis. Journal of Pediatric Orthopaedics, 27(8), 955–960.
- [13]. He J., Li D., Lu B., Wang Z., & Tao Z. (2006). Custom fabrication of composite tibial hemiknee joint combining CAD/CAE/CAM techniques. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 220, 823–830.
- [14]. He J., Li D., Lu B., Wang Z., & Zhang T. (2006a). Custom fabrication of a composite hemi-knee joint based on rapid prototyping. Rapid Prototyping Journal, 12(4), 198–205.

