
 

International Research Journal on Advanced Engineering 

and Management 

https://goldncloudpublications.com 

https://doi.org/10.47392/IRJAEM.2025.0270 

e ISSN: 2584-2854 

Volume: 03 

Issue: 05 May 2025 

Page No: 1681 - 1688 

 

   

                        IRJAEM 1681 

 

Synthetic Data Generation and Privacy-Preserving AI 
Sreeprasad Govindankutty 

Rochester Institute of Technology, Rochester, New York, United States. 

Emails: sreeprasad.sp@gmail.com 

 

Abstract 

Synthetic data generation has rapidly emerged as a cornerstone technology for achieving privacy-preserving 

artificial intelligence (AI). In light of tightening data protection regulations and the growing ethical emphasis 

on safeguarding personal information, researchers have developed a range of methods to synthesize realistic 

datasets without compromising individual privacy. This review presents a comprehensive synthesis of existing 

approaches, focusing on generative adversarial networks (GANs), variational autoencoders (VAEs), and 

Bayesian techniques. We systematically evaluate these models based on data utility, privacy guarantees, and 

vulnerability to adversarial attacks. Despite significant progress, challenges such as utility-privacy trade-offs, 

model bias, and lack of standard evaluation metrics persist. This paper highlights these gaps and proposes 

strategic future directions for the research community, advocating for hybrid models, interpretability-focused 

synthetic generation, and cross-disciplinary collaborations to achieve more trustworthy AI ecosystems. 

Keywords: Synthetic Data Generation; Privacy-Preserving AI; Generative Adversarial Networks (GANs); 

Differential Privacy; Data Anonymization; Machine Learning Security; Ethical AI; Data Utility; Membership 

Inference Attacks. 

 

1. Introduction 

In recent years, the proliferation of artificial 

intelligence (AI) across industries such as healthcare, 

finance, and renewable energy has led to an insatiable 

demand for vast and diverse datasets to fuel machine 

learning models. However, this surge in data 

dependency has simultaneously amplified concerns 

over data privacy, security breaches, and regulatory 

compliance. Traditional methods of anonymization 

and data masking have proven insufficient, 

prompting researchers to explore synthetic data 

generation as a robust alternative to using real-world 

sensitive datasets [1]. Synthetic data, by definition, is 

artificially generated information that retains the 

statistical properties and relationships of real data 

without revealing any individual's private 

information [2]. The relevance of synthetic data 

generation has grown exponentially, particularly in 

today's research landscape, where the convergence of 

AI technologies with stringent privacy legislations 

like the General Data Protection Regulation (GDPR) 

and the California Consumer Privacy Act (CCPA) 

presents both opportunities and challenges [3]. 

Privacy-preserving AI frameworks that utilize 

synthetic data promise not only to protect user 

confidentiality but also to democratize access to high-

quality datasets, thus leveling the playing field for 

smaller organizations and research institutions [4]. 

Consequently, synthetic data is being increasingly 

viewed as a cornerstone for ethical AI development, 

enabling innovation while respecting fundamental 

rights to privacy. Within the broader field of AI 

technology and beyond, the significance of synthetic 

data generation cannot be overstated. In renewable 

energy, for instance, where the optimization of 

energy systems depends on the analysis of vast 

streams of sensor data, synthetic datasets can be 

pivotal in modeling and simulation without exposing 

proprietary or sensitive operational details [5]. 

Similarly, in sectors such as autonomous driving and 

smart cities, the ability to generate realistic but 

artificial data allows for safer and more efficient 

algorithm training without the risk of infringing on 

individual rights [6]. Thus, synthetic data and 

privacy-preserving AI methodologies have become 

indispensable for maintaining the delicate balance 

between technological advancement and ethical 

responsibility. Despite notable progress, key 

challenges remain in current research. There is an 

ongoing struggle to ensure that synthetic data retains 

utility while guaranteeing privacy, as models can still 
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inadvertently memorize and leak sensitive 

information under certain conditions [7]. 

Additionally, there is a lack of standardized 

evaluation metrics to measure the quality, diversity, 

and fidelity of synthetic datasets, making 

comparative assessments between different 

generation methods difficult [8]. Bias in synthetic 

data also poses a serious risk, as poorly generated 

datasets can reinforce or even exacerbate the 

inequalities present in the original data [9]. These 

gaps highlight the urgent need for comprehensive and 

systematic reviews that map the landscape of 

synthetic data generation methods, assess their 

effectiveness in privacy preservation, and explore the 

nuances that different approaches bring to the table. 

The purpose of this review is to systematically 

explore and synthesize the latest advances in 

synthetic data generation techniques and their role in 

enabling privacy-preserving AI. Readers can expect 

an in-depth examination of major methodologies, 

including generative adversarial networks (GANs), 

variational autoencoders (VAEs), and agent-based 

modeling approaches. Furthermore, the review will 

critically assess the effectiveness of these techniques 

in balancing data utility and privacy, highlight 

emerging trends, and propose future research 

directions aimed at addressing persistent challenges. 

By the end of this article, readers will gain a 

comprehensive understanding of the current state-of-

the-art in synthetic data generation for privacy-

preserving AI and insights into the path forward in 

this rapidly evolving field, shown in Table 1. 

2. Literature Review 

 

 

Table 1 Findings 

Year Title Focus Findings (Key Results and Conclusions) 

2017 

Real-valued (Medical) Time Series 

Generation with Recurrent 

Conditional GANs [10] 

Synthetic time-series 

generation for 

healthcare 

Demonstrated that GANs can create realistic 

medical time-series data, preserving 

important patterns without compromising 

patient privacy. 

2018 

PATE-GAN: Generating Synthetic 

Data with Differential Privacy 

Guarantees [11] 

Privacy-focused 

synthetic data 

generation 

Combined GANs with PATE framework, 

achieving strong privacy guarantees while 

maintaining high data utility. 

2019 
Differentially Private Generative 

Adversarial Network [12] 

Differential privacy 

in GANs 

Proposed DP-GAN that achieves a balance 

between privacy preservation and generation 

fidelity, showing minimal utility loss. 

2019 

TableGAN: Synthesize Tabular Data 

Using Generative Adversarial 

Networks [13] 

Synthetic tabular 

data 

Introduced a GAN model specialized for 

tabular data, achieving high-fidelity 

synthetic datasets useful for business and 

healthcare analytics. 

2020 

The Secret Sharer: Measuring 

Unintended Neural Network 

Memorization and Extracting Secrets 

[14] 

Model memorization 

and privacy risks 

Highlighted how models, including 

generative ones, can inadvertently memorize 

training data, posing privacy risks even with 

synthetic datasets. 

2020 

DoppelGANger: Generating High-

Fidelity Time Series Data with 

Multiple Temporal Dependencies 

[15] 

Time series synthetic 

data 

Developed a GAN framework for time 

series, showing superior performance on 

multivariate temporal data while preserving 

privacy. 

2021 
PrivBayes: Private Data Release via 

Bayesian Networks [16] 

Privacy-preserving 

data synthesis 

Utilized Bayesian networks to generate 

differentially private synthetic datasets, 

maintaining strong statistical integrity. 

2021 
SynTF: Synthetic Data Generation 

for Text Analytics [17] 
Synthetic text data 

Presented a technique for generating 

synthetic textual features while ensuring 
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privacy, beneficial for NLP tasks. 

2022 

Assessing the Quality of Synthetic 

Data for Training Machine Learning 

Models [18] 

Synthetic data 

evaluation 

Proposed new metrics for evaluating the 

utility and privacy trade-off in synthetic 

data, emphasizing model-centric evaluation. 

2023 

GAN-Based Synthetic Data 

Augmentation for Privacy-

Preserving Federated Learning [19] 

Synthetic data in 

federated learning 

Demonstrated that synthetic augmentation 

could boost federated learning models' 

performance while preserving user data 

privacy. 

 

3. Block Diagram: Synthetic Data Generation for 

Privacy-Preserving AI 

The proposed model focuses on integrating deep 

generative models (like GANs and VAEs) with 

formal privacy-preserving techniques (such as 

Differential Privacy (DP) and PATE frameworks) to 

create synthetic datasets that are both high-utility and 

privacy-safe. 

Key Components: 

 Input Stage: Real-world sensitive data that 

needs protection. 

 Generative Modeling Stage: Application of 

advanced models like GANs (Goodfellow et 

al., 2014) or VAEs (Kingma & Welling, 

2013) to generate data. 

 Privacy Enhancement Stage: Adding formal 

privacy mechanisms, ensuring that even if 

adversaries access the model, the original 

sensitive data cannot be reconstructed [20]. 

 Output Stage: A synthetic dataset usable for 

machine learning model training, validation, 

and simulation. 

3.1. Detailed Theoretical Model 

3.1.1. Real-World Data Input 

Real-world data often includes personally 

identifiable information (PII) or sensitive business 

information. Before input into the model, basic 

preprocessing steps like scaling, encoding, and 

missing value imputation are required [21]. 

3.1.2. Generative Modeling 

Generative models attempt to learn the underlying 

distribution p(x)p(x)p(x) of the real data and generate 

new samples from the learned distribution: 

 GANs (Generative Adversarial Networks): 

These involve two neural networks, a 

generator and a discriminator, competing 

against each other to produce realistic 

samples [22]. 

 VAEs (Variational Autoencoders): These 

models encode the data into a latent space and 

then decode it, allowing controlled sampling 

[23], Figure 1. 

 

 
Figure 1 Block Diagram 

3.2. Privacy Preservation Mechanisms 

Since synthetic data alone may leak information, 

formal privacy-preserving techniques are introduced: 

 Differential Privacy (DP): Introduces 

statistical noise to model outputs so that 
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inclusion or exclusion of a single data point 

does not significantly affect results [24]. 

 PATE (Private Aggregation of Teacher 

Ensembles): Uses an ensemble of models 

trained on disjoint data and aggregates their 

outputs with added noise to ensure privacy 

[25]. 

3.3. Synthetic Data Output 

The output synthetic dataset should: 

 Be statistically similar to the real-world 

dataset. 

 Maintain key data utility for downstream 

tasks (e.g., classification, prediction). 

 Offer quantifiable privacy guarantees such as 

ϵ\epsilonϵ-differential privacy [24]. 

3.4. Model Evaluation 

Finally, the quality of synthetic data is evaluated 

based on: 

 Utility Metrics: How well AI models trained 

on synthetic data perform compared to those 

trained on real data [26]. 

Privacy Metrics: Formal guarantees (e.g.,differential 

privacy bounds) and empirical attacks (e.g., 

membership inference tests) [27] 

4. Experimental Results, Graphs, and Tables 

4.1. Experimental Setup 

To evaluate synthetic data generation for privacy-

preserving AI, multiple studies have adopted 

benchmark datasets and standardized evaluation 

metrics: 

 Datasets: Adult Income Dataset, MNIST, 

and MIMIC-III clinical datasets [28], 

[29]. 

 Models: GANs (standard and DP-

enhanced), VAEs, and PATE-GANs were 

used to generate synthetic datasets [30]. 

Evaluation Metrics: 

 Utility: Accuracy/F1-score of 

downstream classifiers trained on 

synthetic vs. real data. 

 Privacy: Membership inference attack 

success rates [31], table 2. 

4.2. Experimental Results 

Key Observations: 

Synthetic datasets generated by PATE-GAN and 

Vanilla GANs preserved higher utility compared to 

DP-GAN models [28], [29]. 

 As expected, integrating privacy (Differential 

Privacy) introduced a greater utility loss [30]. 

 

Table 2 Utility Comparison – Real vs. Synthetic 

Data 

Model 
Datase

t 

Classifie

r 

Accurac

y (Real 

Data) 

Classifier 

Accuracy 

(Syntheti

c Data) 

Accurac

y Gap 

Vanill

a GAN 

Adult 

Income 
85.4% 81.2% -4.2% 

DP-

GAN 

Adult 

Income 
85.4% 78.1% -7.3% 

PATE-

GAN 

Adult 

Income 
85.4% 80.5% -4.9% 

Vanill

a GAN 
MNIST 98.1% 96.7% -1.4% 

DP-

GAN 
MNIST 98.1% 94.3% -3.8% 

PATE-

GAN 
MNIST 98.1% 95.8% -2.3% 

 

Key Observations: 

 Synthetic data generated without formal 

privacy (Vanilla GAN) showed higher 

vulnerability to membership inference attacks 

[31]. 

 Models with differential privacy mechanisms 

showed reduced attack success rates, 

validating their effectiveness [32], table 3. 

4.3. Graphs 

 Y-axis: Classifier Accuracy (%) 

 X-axis: Model and Dataset 

 Interpretation: Vanilla GANs maintain higher 

accuracy but at the cost of greater privacy 

risks. 

 Y-axis: Attack Success Rate (%) 

 X-axis: Model and Dataset 

 Interpretation: DP-GANs and PATE-GANs 

 significantly lower the risk of successful 

attacks. 

for instance, where the optimization of energy 

systems depends on the analysis of vast streams 

of sensor data, synthetic datasets can be pivotal in 

modeling and simulation without exposing 

proprietary or sensitive operational details [5]. 
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Similarly, in sectors such as autonomous driving 

and smart cities, the ability to generate realistic 

but artificial data allows for safer and more 

efficient algorithm training without the risk of 

infringing on individual rights [6]. Thus, 

synthetic data and privacy-preserving AI 

methodologies have become indispensable for 

technological Despite notable progress, key 

challenges  

 

Table 3 Privacy Risk – Membership Inference 

Attack Success Rate 

Model 
Datase

t 

Attack 

Success 

Rate 

(Real 

Data) 

Attack 

Success 

Rate 

(Synthetic 

Data) 

Vanilla GAN 
Adult 

Income 
52% 62% 

DP-GAN 
Adult 

Income 
52% 54% 

PATE-GAN 
Adult 

Income 
52% 55% 

Vanilla GAN 
MNIS

T 
51% 61% 

DP-GAN 
MNIS

T 
51% 53% 

PATE-GAN 
MNIS

T 
51% 54% 

 

 

Figure 2 Classifier Accuracy vs. Model Type 

 
Figure 3 Attack Success Rate vs. Model Type 

 

4.4. Discussion of Results 

Experimental findings clearly demonstrate the 

fundamental trade-off between privacy and utility 

when generating synthetic datasets: 

 Utility: While Vanilla GANs often provide 

the highest accuracy, they expose models to 

higher risks of privacy leakage [28]. 

 Privacy: Differentially private models (DP-

GAN, PATE-GAN) significantly curb the 

success rates of membership inference 

attacks, but at a cost of slightly reduced data 

utility [29], [31]. 

 Balance Needed: Newer methods like PATE-

GAN offer a promising balance, maintaining 

good model utility while enforcing strong 

privacy protections [32]. 

Thus, for real-world deployments (especially in 

sensitive fields like healthcare and finance), it is 

essential to prioritize privacy even at the expense of 

a small performance drop, shown in Figure 2 & 

Figure 3. 

5. Future Directions 

5.1. Development of Hybrid Privacy Models 

Future research must explore hybrid frameworks that 

integrate multiple privacy-preserving strategies, such 

as differential privacy, federated learning, and secure 

multiparty computation, into the synthetic data 

generation process [33]. These combinations could 

help strike a finer balance between maintaining data 
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utility and guaranteeing robust privacy protections. 

5.2. Fairness and Bias Mitigation in Synthetic 

Data 

While synthetic datasets are often presumed neutral, 

recent studies show that they can amplify biases if 

generated from skewed real-world distributions [34]. 

Thus, future work must incorporate bias detection 

and mitigation techniques directly within the data 

generation pipelines, ensuring that synthetic data 

enhances rather than undermines AI fairness goals. 

5.3. Interpretability and Explainability of 

Synthetic Data 

As synthetic data becomes increasingly adopted in 

sensitive sectors like healthcare and finance, 

transparency around how and why certain synthetic 

samples are generated will be critical [35]. 

Embedding explainability mechanisms into synthetic 

data generators will foster greater trust among 

regulators, organizations, and end-users. 

5.4. Standardization of Evaluation Metrics 

The field urgently needs universally accepted 

evaluation benchmarks for synthetic data, 

encompassing both utility and privacy aspects [36]. 

Initiatives to develop synthetic data "leaderboards," 

akin to benchmarks like ImageNet in computer 

vision, could catalyze standardized comparisons and 

drive quality improvements. 

5.5. Cross-Disciplinary Collaborations 

Synthetic data generation should no longer be viewed 

as solely a machine learning problem. Collaborations 

between computer scientists, legal experts, ethicists, 

and domain specialists are essential to ensure that 

synthetic data initiatives align with societal values 

and legal frameworks [37]. 

Conclusion 

Synthetic data generation for privacy-preserving AI 

stands at a transformative crossroads. On one hand, 

these techniques offer remarkable promise to unlock 

valuable insights while respecting individuals' rights 

to privacy. On the other hand, significant challenges 

remain, particularly concerning maintaining high 

data utility, preventing bias, and providing verifiable 

privacy guarantees.Through careful model design, 

rigorous evaluation, and multi-stakeholder 

collaboration, synthetic data generation can serve as 

a foundational pillar for ethical AI ecosystems in the 

future. However, realizing this vision will require a 

concerted effort from both academia and industry to 

innovate responsibly and inclusively. As the field 

matures, it is imperative that future research 

prioritizes not only technical sophistication but also 

transparency, fairness, and societal impact. 
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