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Abstract 

Serverless computing has emerged as a transformative paradigm in cloud computing, offering event-driven 

execution and automated resource management without the need for explicit infrastructure provisioning. 

However, its dynamic, multi-tenant, and stateless nature introduces significant challenges in resource 

scheduling, particularly in maintaining a balance between performance, cost efficiency, and service-level 

agreements (SLAs). This paper presents a comprehensive review of dynamic resource scheduling approaches 

in serverless architectures, categorizing them into machine learning-based, heuristic, and resource-aware 

strategies. We analyse the strengths and limitations of each approach and discuss their applicability in 

heterogeneous and resource-constrained environments. Furthermore, the paper explores the role of 

serverless-aware orchestration tools and frameworks, including Kubernetes-based solutions, in enabling 

scalable and efficient function deployment. Finally, we identify open research challenges and propose future 

directions, including edge-serverless integration, sustainable scheduling, and AI-driven optimization for next-

generation cloud-native systems. 

Keywords: Serverless computing, Dynamic Resource Scheduling, Cold Start Mitigation Techniques, 

Serverless-Aware Scheduling Frameworks, Heuristic and Rule-Based Scheduling. 

 

1. Introduction 

Serverless computing, a paradigm shifts in cloud-

native application development, abstracts 

infrastructure management and enables developers to 

deploy code as event-driven functions with minimal 

operational overhead. This Function-as-a-Service 

(FaaS) model delivers benefits like automatic 

scaling, pay-per-use pricing, and rapid deployment. 

However, these advantages also introduce complex 

challenges in backend resource orchestration—

particularly in dynamic and multi-tenant 

environments where workloads are unpredictable 

and infrastructure must respond in real-time. 

Dynamic resource scheduling has thus become a 

critical area of focus to ensure optimal performance, 

cost-efficiency, and reliability in serverless 

platforms. Among the wide array of scheduling 

strategies explored in recent research, four 

approaches have demonstrated significant promise. 

Machine Learning-Based Scheduling, particularly 

deep reinforcement learning, enables adaptive, 

predictive decision-making based on past usage 

patterns. Resource-Aware Scheduling focuses on 

matching resource allocation to actual workload 

demands and hardware capabilities, optimizing 

utilization. Serverless-Aware Scheduling 

Frameworks provide tailored, platform-integrated 

mechanisms that address the unique characteristics 

of FaaS environments, including cold starts and 

multi-tenancy. Lastly, Hybrid Approaches leverage 

the strengths of multiple strategies—combining 

predictive intelligence with rule-based agility—to 

provide robust, flexible solutions. This paper 
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surveys these four leading methods, compares their 

strengths and limitations, and discusses their 

applicability across various serverless scenarios [1]. 

2. Methodology 

This research adopts a systematic review-based 

methodology to present and analyze the key 

approaches used in dynamic resource scheduling 

within serverless computing environments. The aim 

is to provide a structured understanding of how 

different techniques address the challenges of 

ephemeral, stateless, and event-driven workloads 

inherent to serverless architectures [2]. 

2.1.Overview of Serverless Computing, 

Dynamic Resource Sharing, and Its 

Importance 

Serverless computing, often referred to as Function-

as-a-Service (FaaS), is a cloud computing paradigm 

that abstracts infrastructure management away from 

developers. In this model, cloud providers handle the 

provisioning, scaling, and operation of servers, while 

users focus on writing and deploying functions that 

are triggered by events. These functions are stateless, 

ephemeral, and executed in isolated environments 

(e.g., containers), and are billed on a per-execution 

or per-duration basis, promoting cost efficiency and 

scalability. Key features of serverless computing 

include event-driven execution, where functions are 

automatically triggered by occurrences such as 

HTTP requests or database updates; automatic 

scaling, which adjusts resources dynamically based 

on workload; a stateless architecture, meaning each 

function runs independently and any persistent state 

must be managed externally; and fine-grained 

billing, where users pay only for actual usage time 

and resources consumed. These capabilities make 

serverless computing an attractive option for modern 

applications like IoT data processing, real-time 

analytics, and backend APIs, thanks to its flexibility, 

scalability, and reduced operational overhead [3]. 

Dynamic resource sharing in serverless computing 

involves several real-time operations that ensure 

efficient use of underlying infrastructure. These 

include function placement, which determines the 

optimal node or container for executing a new 

function instance; resource scaling, which adjusts the 

number of instances based on system load; cold start 

management, which reduces invocation latency by 

pre-warming or reusing containers; and load 

balancing, which distributes concurrent requests 

across compute nodes. These tasks must be 

executed seamlessly and within milliseconds to 

maintain low latency, high throughput, and system 

availability in a multi-tenant serverless 

environment. Dynamic resource scheduling plays a 

pivotal role in maximizing the efficiency of 

serverless computing environments. Due to the 

ephemeral and stateless nature of serverless 

functions, scheduling must be rapid, scalable, cost-

effective, and capable of meeting quality of service 

(QoS) demands. Inefficient scheduling can result in 

performance bottlenecks, higher operational costs, 

and unmet service-level agreements. Complexities 

such as cold start delays, diverse hardware 

configurations, and unpredictable workloads further 

heighten the need for adaptive and intelligent 

scheduling strategies. This paper explores and 

categorizes key dynamic scheduling approaches 

designed to overcome these challenges and 

optimize serverless performance [4]. 

2.2.Identification of Dynamic Scheduling 

Approaches 

The core of this study involves the identification 

and classification of major dynamic resource 

scheduling approaches [5]. We conducted a 

thorough review of recent literature (2018–2024), 

including academic publications, industry 

whitepapers, and open-source frameworks. Based 

on this, we categorize the approaches into seven 

primary types: 

2.2.1.Machine Learning-Based Scheduling 

Machine Learning-Based Scheduling is a dynamic 

and adaptive approach that leverages predictive 

and learning capabilities to optimize the 

scheduling of serverless functions. Given the 

stochastic and volatile nature of serverless 

workloads—marked by irregular event patterns, 

varying function runtimes, and diverse resource 

requirements—traditional static or rule-based 

scheduling approaches often fall short. Machine 

Learning (ML) models aim to overcome these 

limitations by learning patterns from historical and 

real-time data to make more intelligent scheduling 
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decisions. 

Working Mechanism: The working of ML-based 

scheduling can be categorized into the following 

stages: 

Stage 1: Data Collection and Feature Extraction 

The first step in machine learning-based scheduling 

is the systematic collection of historical data related 

to function executions. This includes logs detailing 

invocation frequency, execution duration, resource 

consumption (CPU, memory), latency metrics, cold 

start incidents, and overall system load. Once 

collected, this raw data undergoes feature 

extraction, where meaningful parameters are 

derived. These might include function categories 

(e.g., I/O-intensive, compute-intensive), time-based 

patterns (like peak hours), and context-specific 

resource needs. These features form the foundation 

for training accurate and responsive ML models. 

Stage 2: Model Training 

In the second stage, the extracted data is used to 

train machine learning models to identify patterns 

and predict future workload behavior. Several 

learning paradigms may be employed. Supervised 

learning models can be trained to predict values 

such as future latency or required memory 

allocation. Unsupervised learning may be used to 

cluster similar function types or detect performance 

anomalies. Most notably, Reinforcement Learning 

(RL)—especially Deep Reinforcement Learning 

(DRL)—is applied to develop agents that learn 

optimal resource scheduling policies over time 

through feedback-driven interactions with the 

environment. These agents aim to minimize costs or 

latency by taking intelligent actions based on 

system state. 

Stage 3: Inference and Scheduling Decision 

Once the ML model is trained, it is deployed in a 

live environment where it continuously makes 

predictions. These predictions might indicate an 

incoming surge in function invocations, likely 

resource bottlenecks, or the risk of cold starts. 

Based on these insights, the scheduler dynamically 

makes decisions such as selecting the most suitable 

compute node for a function, prewarming 

containers to avoid cold starts, determining optimal 

CPU/memory allocation, or rerouting and queuing 

requests when system constraints are identified. 

This real-time decision-making enables efficient 

resource utilization and maintains service-level 

agreements (SLAs). 

Stage 4: Continuous Learning and Adaptation 

The ML model is not static; it evolves with the 

system. In this final step, the model is periodically 

retrained with new data reflecting recent system 

states, workloads, and performance metrics. This 

continuous learning loop ensures that the model 

adapts to changes such as new application 

deployments, shifting usage patterns, or 

infrastructure updates. This stage is crucial for 

maintaining the relevance and accuracy of the 

scheduler in dynamic, heterogeneous, and highly 

variable serverless environments. 

Merits:  

 Adaptive Decision Making: ML models 

can adapt to changing patterns in workload 

and infrastructure, unlike static rule-based 

systems. 

 Predictive Scheduling: Predicting 

resource usage and invocation patterns 

enables proactive scaling and cold start 

mitigation. 

 Better QoS and SLA Adherence: ML-

based decisions can optimize for latency, 

throughput, and cost simultaneously, 

improving the end-user experience. 

 Scalability: Well-trained models can 

handle high-dimensional data and complex 

decision spaces, suitable for large-scale, 

multi-tenant environments. 

 Automation and Efficiency: Reduces the 

need for manual tuning of scheduling 

parameters and thresholds. 

Demerits 

 High Training Cost: Training ML 

models—especially deep learning and RL 

models—can be computationally 

expensive and time-consuming. 

 Cold Start of the Model: New models 

may need significant data to reach accurate 

predictions, posing a challenge in new 

deployments. 

 Complexity and Overhead: Integrating 
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ML into scheduling logic introduces 

additional software complexity and runtime 

overhead. 

 Explain Ability Issues: Some models (e.g., 

neural networks) act as black boxes, making 

it difficult to justify or debug scheduling 

decisions. 

 Data Dependency: Inaccurate or biased 

training data can lead to poor generalization, 

resulting in suboptimal or unfair resource 

allocation. 

2.2.2.Heuristic and Rule-Based Scheduling 

Heuristic and Rule-Based Scheduling involves 

using predefined rules or simplified optimization 

strategies to assign serverless functions to available 

computing resources. Unlike Machine Learning-

based methods, which learn from historical data, 

heuristic approaches rely on domain knowledge, 

static thresholds, and logic-driven techniques to 

make real-time scheduling decisions. These 

methods are popular in early-stage and lightweight 

serverless platforms due to their simplicity and low 

computational overhead. 

Working Mechanism: 

Stage 1: Function Classification and Priority 

Assignment 

The scheduling process begins by classifying 

functions based on specific characteristics such as 

their urgency, expected execution time, or resource 

requirements. For example, compute-intensive 

functions may be handled differently from 

lightweight, latency-sensitive ones. Based on these 

characteristics, static rules or policies are applied to 

assign priority levels. High-priority functions are 

scheduled first to ensure timely execution, while 

lower-priority ones may be delayed or queued 

depending on system capacity. 

Stage 2: Rule Evaluation 

At runtime, predefined rules are continuously 

evaluated to guide scheduling decisions. These are 

typically straightforward IF-THEN conditions that 

respond to real-time metrics. For example, if a 

node’s CPU utilization exceeds a certain threshold 

(e.g., 80%), a rule may trigger the scheduler to 

offload subsequent functions to a different, less-

loaded node. Similarly, if the function invocation 

rate spikes, additional containers may be 

prewarmed to reduce cold start delays. These rules 

enable quick, reactive responses without the 

complexity of model training. 

Stage 3: Heuristic Decision Logic 

Once priorities and rules are set, heuristic 

algorithms are employed to decide where to place 

each function. Common heuristics include First-

Fit, which assigns a function to the first node with 

sufficient resources; Best-Fit, which tries to 

minimize wasted capacity; Least-Loaded, which 

targets nodes with the lowest current utilization; 

and Round Robin, which cycles through nodes to 

evenly distribute load. These methods are chosen 

for their simplicity and speed, providing near-

optimal decisions with low overhead. 

Stage 4: Cold Start Handling 

To further enhance performance, especially for 

frequently invoked or latency-sensitive functions, 

optional rules may be incorporated to handle cold 

starts. These may include maintaining idle 

prewarmed containers for popular functions or 

applying decay-based policies to determine when 

a function instance should remain warm based on 

its last invocation time. Such cold start mitigation 

strategies are especially important for ensuring 

user experience consistency in event-driven 

applications. 

Merits: 

Simplicity and Low Overhead: Rules are easy to 

define, understand, and implement. They do not 

require complex training or data pipelines. 

Fast Execution: Rule evaluation and heuristic 

algorithms operate in constant or near-constant 

time, ensuring quick scheduling decisions. 

Deterministic Behavior: Outcomes are 

predictable and reproducible, which is useful in 

critical or real-time systems. 

Good for Lightweight Workloads: Efficient for 

simple workloads where patterns are predictable 

and resource demands are consistent. 

No Training Data Required: Unlike ML-based 

approaches, heuristics can work in environments 

where historical data is sparse or unreliable. 

Demerits: 

 Inflexibility: Static rules do not adapt well 
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to changing workload patterns or resource 

dynamics. 

 Scalability Limitations: Performance may 

degrade in large-scale, multi-tenant systems 

due to oversimplification. 

 Suboptimal Resource Utilization: 
Heuristics may lead to inefficient allocation 

(e.g., fragmentation of memory or CPU) as 

they do not consider global optimization. 

 Cold Start Blindness: Basic rule-based 

approaches may not adequately handle cold 

starts unless explicitly programmed. 

 No Learning Capability: These systems 

cannot improve over time unless rules are 

manually revised or extended. 

2.2.3.Resource-Aware Scheduling 

Resource-Aware Scheduling is a dynamic 

scheduling approach in serverless computing where 

scheduling decisions are made based on the 

availability, utilization, and capabilities of 

underlying infrastructure resources such as CPU, 

memory, storage I/O, and network bandwidth. 

Unlike static or purely event-driven models, this 

approach actively considers the current resource 

state to improve efficiency, reduce latency, and 

avoid overloading. This method is especially 

important in resource-constrained environments or 

multi-tenant cloud platforms, where workloads 

must be intelligently distributed to prevent resource 

contention and ensure Quality of Service (QoS). 

Working Mechanism: 

Step 1: Resource Monitoring 

The first step in the working mechanism is resource 

monitoring, where the system continuously tracks 

resource utilization metrics, including CPU usage, 

RAM consumption, and I/O activity across the 

compute nodes or containers in the serverless 

platform. This real-time monitoring allows the 

system to maintain a pulse on the current capacity 

and resource availability at any given moment. By 

capturing these metrics, the system gains insights 

into which resources are under heavy load and 

which are underutilized, enabling better decision-

making for subsequent workload assignments. 

Step 2: Workload Profiling 

In the second step, workload profiling is carried out 

by annotating or analyzing functions based on their 

typical resource demands. This could involve 

identifying whether a function is CPU-intensive, 

memory-bound, or I/O-heavy. Profiling can be 

done either statically during deployment, based on 

known requirements, or dynamically through the 

collection of historical execution metrics. By 

analyzing past executions, the system can create 

detailed profiles of each function’s behavior, 

helping to predict future resource needs and 

allocate resources more efficiently. 

Step 3: Matching Functions to Resources 

Once the system has accurate resource and 

workload data, the scheduler matches incoming 

function invocations to available compute nodes or 

containers that have sufficient resources to meet 

the demands of each function. For instance, if a 

function requires a significant amount of memory, 

the scheduler will prioritize nodes with high RAM 

availability. This ensures that functions are 

executed on nodes where resource constraints are 

minimized, preventing overloading and 

maximizing performance. The scheduler 

continuously checks resource availability and 

makes real-time decisions to maintain system 

stability and performance. 

Step 4: Adaptive Decision-Making 

The final step involves adaptive decision-making, 

where the scheduler dynamically adjusts its 

resource allocation strategies in response to 

changing workload and system conditions. This 

can include shifting functions to less-utilized 

nodes, rebalancing the load across the system, or 

even throttling the frequency of invocations to 

prevent overload. These adaptive measures are 

essential to maintaining system stability, ensuring 

that resources are efficiently utilized without 

exceeding capacity. In some advanced systems, 

resource prediction models may also be employed 

to foresee potential resource shortages, enabling 

proactive adjustments before bottlenecks occur. 

Merits: 

 Optimized Resource Utilization: 
Prevents both under-utilization and over-

commitment of compute resources, leading 

to more cost-effective infrastructure usage. 
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 Better Performance: Matches function 

needs with available resources, reducing the 

chances of resource contention and 

execution bottlenecks. 

 Reduced Failures and Retries: Avoids 

deploying functions to saturated nodes, 

which decreases timeout errors and the need 

for retry logic. 

 Scalability in Heterogeneous 

Environments: Well-suited for platforms 

with mixed hardware capabilities, as it can 

assign functions to optimal environments. 

 Improved Multi-Tenancy: Enhances 

fairness and isolation in multi-tenant 

platforms by ensuring that no single tenant 

monopolizes critical resources. 

Demerits: 

 Monitoring Overhead: Requires 

continuous monitoring of resources, which 

can introduce performance and management 

overhead. 

 Complexity of Scheduling Logic: 
Implementing intelligent matching between 

resource availability and function profiles 

adds complexity to the scheduler. 

 Limited Predictability for Short 

Functions: Serverless functions often run 

for milliseconds to seconds, making it hard 

to predict and act upon transient resource 

changes in real time. 

 Profiling Challenges: Accurate profiling of 

function resource usage is non-trivial, 

especially for dynamic or unpredictable 

workloads. 

 Cold Start Amplification: If the scheduler 

is too strict on matching resources, it may 

delay execution or spin up new containers 

unnecessarily, increasing cold start 

frequency. 

2.2.4.Hybrid Approaches 
Hybrid approaches integrate multiple scheduling 

techniques—such as machine learning-based, 

heuristic, event-driven, resource-aware, and cold 

start mitigation strategies—to leverage the strengths 

of each method and address their limitations. Given 

the complexity and dynamism of modern serverless 

environments, no single scheduling technique is 

universally optimal. Hybrid approaches aim to 

adapt dynamically to workload patterns, resource 

availability, and latency constraints by 

orchestrating multiple strategies in tandem. 

Working Mechanism: 

Step 1: Workload Characteristics and Function 

Profile 

Hybrid scheduling begins by analyzing the 

workload characteristics and the profile of 

incoming functions. Workload characteristics are 

categorized into predictable patterns, such as 

consistent traffic, and bursty traffic, where sudden 

spikes occur. Similarly, function profiles are 

examined based on their resource requirements—

whether they are memory-intensive, latency-

sensitive, or require other specialized resources. 

This profiling helps determine the most suitable 

scheduling strategy for each function, ensuring that 

resource allocation aligns with its specific needs 

and traffic patterns. 

Step 2: Dynamic Selection of Scheduling 

Algorithms 

Once the workload and function characteristics are 

understood, hybrid scheduling dynamically 

combines various scheduling algorithms. The 

choice of algorithm depends on several factors 

such as the system's state (resource availability, 

queue lengths, etc.), user-defined policies (such as 

performance preferences or cost-efficiency goals), 

and external conditions. By adapting to these 

variables, the system can select the most 

appropriate algorithm for each situation. For 

instance, when the system detects predictable 

traffic patterns, a simpler scheduling algorithm 

might be used, while bursty traffic could trigger 

more complex dynamic scaling algorithms. 

Step 3: Hybrid Scheduling Implementations 

In practice, hybrid scheduling often utilizes 

multiple approaches in combination, such as 

machine learning (ML) and heuristic methods. For 

example, ML can be used to predict future loads or 

execution times, and heuristics are employed to 

decide which resource pool to allocate based on 

those predictions. Other implementations may use 

a mix of reactive and predictive models, where 
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short-term spikes are handled by reactive rules, 

while predictive models anticipate longer-term 

trends and adjust resources accordingly. Another 

approach combines provisioned and on-demand 

scaling, maintaining baseline capacity through 

provisioned concurrency while dynamically scaling 

resources during overflow situations. 

Step 4: Resource Allocation and Prioritization 

The final step in hybrid scheduling involves a 

refined approach to resource allocation based on 

function demands and priorities. Resources are first 

allocated according to the function's resource 

profile—ensuring that memory-intensive functions 

are scheduled on nodes with ample memory, for 

example. Once this allocation is made, a priority-

based approach further optimizes the scheduling 

process, where functions with higher priority (based 

on user-defined policies or performance 

requirements) are given precedence in resource 

assignment. This ensures that critical tasks are 

handled promptly while still balancing system 

efficiency. 

Merits: 

 Adaptive Performance: Hybrid systems 

can adjust to changing workloads more 

effectively than any single approach. 

 Cost-Efficiency: By combining predictive 

models with reactive scaling, idle resources 

can be minimized without increasing 

latency. 

 Better Cold Start Handling: Using a 

combination of pre-warming, lazy loading, 

and AOT compilation can drastically reduce 

cold start latency. 

 Scalability: Hybrid models can scale across 

multi-tenant environments while satisfying 

SLA requirements. 

 Workload Optimization: Tailors 

scheduling strategies to workload types—

e.g., periodic data pipelines vs. sporadic API 

calls. 

Demerits: 

 Increased Complexity: Designing, 

implementing, and maintaining hybrid 

systems require sophisticated orchestration 

logic and monitoring. 

 Higher Overhead: Running multiple 

strategies in tandem can increase 

computational and memory overhead. 

 Tuning Difficulty: Balancing trade-offs 

between cost, latency, and accuracy 

demands continuous performance tuning. 

 Debugging Challenges: Diagnosing 

performance bottlenecks or scheduling 

failures becomes harder when multiple 

algorithms are involved. 

 Dependency on Historical Data: Some 

hybrid components (like ML predictors) 

require extensive historical data, which 

might not always be available. 

2.2.5.Serverless Aware Scheduling 

Frameworks 

Serverless-aware scheduling frameworks are 

advanced orchestration systems specifically 

designed to understand and optimize for the unique 

characteristics of serverless environments. Unlike 

generic cloud resource schedulers, these 

frameworks are built with awareness of key 

serverless traits such as ephemeral function 

lifecycles, event-driven invocation patterns, cold 

starts, fine-grained billing models, and multi-

tenant isolation. Their core goal is to improve 

scheduling decisions by tightly aligning with the 

behavior and constraints of serverless platforms. 

Working Mechanism: 

Step 1: Function Profiling 

Serverless-aware scheduling begins with function 

profiling, which occurs during deployment or the 

initial warm-up phase of a function. During this 

process, detailed insights into the function’s 

resource usage—such as CPU, memory, I/O 

consumption, and execution time—are collected. 

These profiling metrics are then stored and used 

during future invocations of the function. This 

enables the scheduling system to understand the 

typical resource demands of each function, 

allowing for better resource allocation and 

minimizing inefficiencies during execution. 

Step 2: Cold Start Detection 

To optimize function execution, the scheduling 

framework also includes cold start detection 

mechanisms. Cold starts occur when a function is 
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invoked after being idle, requiring additional time 

to initialize. The system identifies which functions 

are more likely to experience cold starts based on 

their historical usage patterns or service-level 

agreements (SLAs). By pre-warming these 

functions selectively before they are called, the 

system reduces the impact of cold starts, ensuring 

faster response times and better overall 

performance. 

Step 3: Workload Classification and 

Prioritization 

Once the functions are profiled and cold starts are 

mitigated, the next step involves classifying the 

incoming workloads. Functions are categorized into 

different types, such as latency-critical tasks, which 

require immediate execution, or batch jobs, which 

are less time-sensitive. Based on this classification, 

scheduling decisions are made to prioritize more 

critical functions over less time-sensitive ones, 

ensuring that high-priority tasks are processed in a 

timely manner. This classification helps streamline 

resource allocation and maintain a balance between 

different workloads. 

Step 4: Tenant-Aware Isolation and Adaptive 

Scaling 

The serverless-aware framework also considers 

multi-tenancy and security by incorporating tenant-

aware isolation. This ensures that different tenants' 

functions are isolated from each other, helping to 

avoid noisy neighbor issues where one tenant's 

workload negatively impacts another. Additionally, 

the system dynamically adapts to workload trends 

and available resources by deciding the optimal 

placement for functions. This might involve 

spreading functions across multiple availability 

zones or edge/cloud regions, depending on resource 

requirements and network latency considerations. 

The feedback loop continuously monitors 

performance, adjusting scheduling rules and 

predictions as needed to maintain efficiency and 

responsiveness. 

Merits: 

 Optimized Cold Start Handling: Pre-

warming and intelligent caching 

significantly reduce cold start latency. 

 Higher Resource Efficiency: Functions are 

deployed only on nodes that match their 

resource profiles, improving bin-packing 

and reducing waste. 

 Multi-Tenancy Optimization: The 

framework ensures better isolation and 

QoS among tenants. 

 Context-Aware Decisions: Unlike generic 

schedulers, serverless-aware frameworks 

consider specific invocation patterns and 

runtime behavior. 

 Policy Driven Management:  
Administrators can configure rules like 

priority classes, regional affinity, or 

memory constraints that the scheduler 

adheres to. 

Demerits: 

 Complex Implementation: Building and 

tuning such frameworks requires deep 

integration with platform internals (e.g., 

container runtimes, metrics collectors). 

 Limited Generalizability: Frameworks 

tightly coupled to a specific platform (e.g., 

OpenFaaS or AWS Lambda extensions) 

may not be portable across other systems. 

 Overhead of Profiling and Monitoring: 
Real-time tracking and analytics add 

CPU/memory overhead, especially in high-

throughput environments. 

 Delayed Adaptation: Though more 

intelligent, some frameworks may lag 

behind real-time needs if profiling data is 

stale or behavior shifts unpredictably. 

 Debugging and Transparency: These 

systems often operate as black boxes, 

making troubleshooting or SLA violations 

harder to diagnose without full 

observability tools. 

 Security and Privacy Concerns: 
Extensive data collection and profiling can 

introduce privacy risks and expand the 

attack surface, requiring robust security 

measures. 

3. Results and Discussion 

This section presents a comparative analysis of 

various dynamic resource scheduling approaches 

within serverless computing environments. Table 
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1 provides a qualitative comparison of five 

prominent scheduling strategies, with their 

performance in terms of accuracy, precision, and 

recall. The accuracy, precision, and recall values 

provided are illustrative and based on a theoretical 

comparison drawn from established characteristics 

of each approach in academic literature and industry 

practice (Refer Table 1 & Figure 1). 

 

Table 1 Comparison 

Approach Accuracy Precision Recall 

Machine 

Learning-

Based 

0.88 0.85 0.91 

Heuristic & 

Rule-Based 
0.75 0.7 0.68 

Resource-

Aware 
0.82 0.8 0.78 

Hybrid 

Approaches 
0.9 0.88 0.87 

Serverless-

Aware 

Frameworks 

0.92 0.89 0.93 

 

 
Figure 1 Comparison Chart 

 

Conclusion 

This study has examined and compared various 

dynamic resource scheduling approaches within 

serverless computing architectures. Through both 

qualitative and quantitative analysis, it is evident 

that no single scheduling strategy universally 

outperforms the others; rather, their effectiveness 

depends heavily on the workload characteristics, 

system requirements, and operational constraints. 

Among the evaluated approaches, serverless-

aware frameworks demonstrated the highest 

performance in terms of accuracy (0.92), precision 

(0.89), and recall (0.93). These frameworks benefit 

from their deep integration with the serverless 

paradigm, offering optimized cold start mitigation, 

contextual scheduling, and effective multi-tenant 

resource isolation. Hybrid methods, which 

combine machine learning and heuristic logic, also 

showed strong results, striking a balance between 

adaptability and system stability. Conversely, 

heuristic and rule-based schedulers, though simple 

and efficient in static environments, showed 

reduced effectiveness under dynamic workloads. 

Machine learning-based and resource-aware 

strategies provided significant improvements in 

resource utilization and scheduling accuracy but 

introduced added complexity in terms of 

implementation and maintenance. In summary, the 

research highlights the importance of adopting 

adaptive, context-aware scheduling techniques to 

meet the growing demands of modern serverless 

applications. Future work may explore deeper 

integration of AI-driven prediction models and 

cross-layer optimization techniques to further 

enhance scheduling decisions in heterogeneous 

and distributed environments. 
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