

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0280 e ISSN: 2584-2854 Volume: 03 Issue: 05 May 2025 Page No: 1774 - 1783

The Role of Artificial Intelligence Tools in Teaching and Learning Process of Education

S. Rajkumar^{1*}, R. Kishore², N. Lavanya³, M. Prashanth Kumar⁴, B. Naveen⁵, S. Prathap Raju⁶, P. Swathi⁷ Head of Mechanical Engineering Department, Government Polytechnic, Nandipet, Telangana, India.

Email ID: $srajkumarmtech@gmail.com^1$, $racharlakishore@gmail.com^2$, $nuthula.lavanya@gmail.com^3$, $prashanth.mesa@gmail.com^4$, $naveen92489248@gmail.com^5$, $prathapmech1987@gmail.com^6$,

swathipolasa1982@gmail.com⁷ Orcid ID: 0009-0002-8945-3710¹

Abstract

Artificial Intelligence refers to the simulation of human intelligence in machines that are capable of performing tasks that typically require human cognitive functions. In the context of education, AI can encompass a variety of tools and technologies, such as Machine learning (ML), Natural language processing (NLP), Computer vision and Intelligent tutoring systems. These AI-driven technologies can be applied across different facets of the teaching-learning process. AI tools are transforming the teaching-learning process across various educational levels, from elementary schools to technical universities. By providing personalized learning experiences, automating administrative functions and assisting with content creation, AI is helping both educators and students optimize the learning experience. As these tools continue to evolve, they will further enhance the educational landscape, making learning more interactive, efficient and tailored to individual needs. This paper explores the role and impact of AI in education, examining various AI tools and their applications in teaching, learning, assessment and administrative functions. Furthermore, the paper examines the challenges and future directions for integrating AI in education, including ethical considerations, the need for upskilling educators and ensuring equitable access to these advanced tools.

Keywords: Artificial Intelligence, Teaching, Learning, Education, A.I Tools.

1. Introduction and Literature Review

The integration of Artificial Intelligence into the landscape educational has ushered transformative era, presenting both unprecedented opportunities and potential challenges for educators and learners alike. AI's capacity to automate tasks, personalize learning experiences and provide datadriven insights is reshaping traditional pedagogical approaches, demanding a critical examination of its role in shaping the future of education [1-3]. The infusion of AI into education is not merely a technological upgrade but a fundamental shift in how knowledge is imparted and acquired, necessitating a comprehensive understanding of its implications [4-7]. The development of intelligent learning systems that adapt to individual student requirements has been facilitated by AI, extending its impact beyond the automation of existing processes [8-11]. By harnessing the power of AI, educators can gain valuable insights into student learning patterns, tailor instruction to meet individual needs and foster a more engaging and effective learning environment (Mello et al., 2023).

1.1.AI-Powered Tools for Enhanced Learning

AI-driven tools are revolutionizing various aspects of the teaching and learning process offering functionalities that extend beyond conventional methods [Fig-1] [12-15]. AI is being used to develop personalized learning systems, intelligent tutoring

²Sr. Lecturer in Mechanical Engineering, Government Polytechnic, Nandipet, Telangana, India.

³Lecturer in E.C.E, Government Polytechnic, Nandipet, Telangana, India.

^{4,5,6}Lecturer in Mechanical Engineering, Government Polytechnic, Nandipet, Telangana, India.

⁷Sr.Lecturer in E.E.E., Government Polytechnic, Nirmal, Telangana, India

Volume: 03 Issue: 05 May 2025 Page No: 1774 - 1783

e ISSN: 2584-2854

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0280

systems and automated assessment tools, all of which have the potential to improve learning outcomes, engagement and overall academic achievement [16-19]. These tools facilitate adaptive learning experiences by adjusting the difficulty level of assignments and assessments according to the individual needs and abilities of each student, thereby ensuring a personalized learning experience (Pacheco-Mendoza et al., 2023) [20-24]. AIpowered tools can analyze vast quantities of student data to identify knowledge gaps and areas where students are struggling, enabling teachers to provide targeted support and interventions. AI algorithms are also being used to develop intelligent tutoring systems that provide students with personalized feedback and guidance, helping them to master challenging concepts and develop problem-solving skills (Saputra et al., 2023) [25-27]. AI can evaluate student performance and offer insights into their learning patterns by analyzing big data, potentially revealing data that would have been inaccessible with earlier evaluation techniques. AI systems can offer feedback on student performance, pinpointing areas for improvement and promoting inclusion for students with special needs or language barriers (Lampou, 2023). Furthermore, AI-driven tools can automate administrative tasks, such as grading assignments and providing feedback, freeing up educators' time to focus on more strategic and creative aspects of teaching [28-31]. The integration of AI-powered chatbots and virtual assistants is further facilitating personalized learning by providing students with instant access information, answering their queries and offering supplementary resources tailored to their learning trajectories (Jian, 2023). AI's capacity to analyze data allows teachers to make decisions based on facts improving data analysis. The AI integration in education makes it possible individualized learning experiences, encourage student involvement, help teachers and make education more accessible to all [32-35]. The All India Council for Technical Education (AICTE) is also encouraging Educational institutions to introduce and integrate AI Courses across desciplines, fostering innovation and research in AI,

prepare students for AI-driven industries and to promote ethical AI use for societal benefit [36-39]. The use of AI in education comes with a number of difficulties and factors to take into account, including ethical issues, data privacy etc., It's critical to carefully consider these factors to make sure that AI is used responsibly and equitably in educational settings [40].

Figure 1 AI in Teaching Learning Process (Meta A.I Generated Image)

1.2. Ethical Considerations and Challenges

While the potential benefits of AI in education are substantial, it is crucial to address the ethical considerations and challenges associated with its implementation [41-45]. One of the primary concerns is the potential for bias in AI algorithms, which can existing inequalities and lead perpetuate discriminatory outcomes for certain groups of students [46-49]. Biases can arise from biased training data, flawed algorithms or a lack of diversity in the development teams (Delello et al., 2025). It is crucial to carefully assess and mitigate these biases to ensure that AI-powered tools are fair and equitable for all students [50]. Another ethical consideration is the protection of student data and privacy. AI systems collect and analyze vast amounts of student data, raising concerns about how this data is being used, stored and protected. It is essential to implement robust data security measures and establish clear guidelines for data collection, storage and use to protect student privacy and prevent data breaches [51-53]. Moreover,

e ISSN: 2584-2854 Volume: 03 Issue: 05 May 2025 Page No: 1774 - 1783

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0280

the increasing reliance on AI in education raises concerns about the potential deskilling of educators and the erosion of human interaction in the learning process. The commodification of personal data and the possibility of surveillance are further issues that call for strong data protection frameworks to protect students' privacy and guard against potential misuse. Striking a balance between AI-driven automation and human interaction is crucial to ensure that educators retain their essential role as facilitators of learning and mentors for students. There are worries about the possibility of algorithmic biases and the ethical ramifications of AI in education, including the authenticity of generated content and the possibility of over-reliance on AI tools (Cordero et al., 2024; Neji et al., 2023) [54]. To guarantee that AI is used responsibly and ethically in education, educational institutions, politicians and AI developers must work together to create rules, guidelines and best practices. Moreover, ensuring accessibility is paramount; AIbased education systems must be designed to accommodate all students, including those with disabilities, enabling them to fully participate and benefit from the technology (Harry & Sayudin, 2023) [55]. It is also important to consider how AI will affect the function of teachers, ensuring that these technologies support educators rather than replace them, thus enabling them to concentrate on individualized instruction and student assistance. (Boulay, 2023) (Amdan et al., 2024) To guarantee that AI-driven educational tools are used morally, responsibly and successfully in educational settings, proactive steps must be taken to reduce risks and maximize benefits. Furthermore, educational leaders must recognize the risks involved with AI-assisted data-informed decision-making. Another consideration is the potential for AI to exacerbate the digital divide, as students from disadvantaged backgrounds may lack access to the technology and resources needed to fully participate in AI-powered learning environments [56]. Addressing this divide requires targeted investments in infrastructure, access and training to ensure that all students have the opportunity to benefit from AI in education. These investments should ensure the sanctity of student privacy and data security (Roshanaei et al., 2023). In

order to foster trust and confidence in the use of AI in education, transparency and explainability are essential [57].

2. AI Tools in Education

Several AI tools are available to educators that can assist teaching and learning. These tools can be used to create more engaging and efficient educational environments, but it is important to use them properly. Khan Academy: Khan Academy is a non-profit educational organization that provides online courses, lessons, and practice exercises covering a wide range of subjects, including math, science, history, and computer programming. Khan Academy employs AI to offer students individualized learning experiences by adjusting to their skill level and speed. AI algorithms assess student performance and offer feedback suggestions customized and for improvement.

Google AI Tools: Google provides a number of AI tools that can be utilized in education, such as Google Classroom, Google Translate and Google Scholar. Educators can use Google Classroom, a web-based learning management system, to organize assignments, give feedback and communicate with students. Google Translate can be used to translate text and speech, which facilitates communication and cooperation among students from varied linguistic backgrounds.

Microsoft AI Tools: Microsoft also provides AI tools for educational purposes, such as Microsoft Teams, Microsoft Translator and Microsoft Math Solver. Microsoft Teams is a collaboration platform that enables educators to conduct virtual classes, share resources and interact with students. It enhances learning results and meets the demands of all students by enabling individualized learning experiences, automating administrative processes and offering insightful data-driven analytics.

Other AI Tools: Other AI tools that can be used in education include QuillBot, Grammarly, Otter.ai. etc., QuillBot is a paraphrasing tool that uses AI to rewrite sentences and paragraphs, helping students improve their writing skills. Grammarly is a writing assistant that uses AI to check grammar, spelling, punctuation and style, providing students with feedback to improve their writing. Otter.ai is a transcription tool that uses AI to transcribe audio and video recordings, making it

Volume: 03 Issue: 05 May 2025 Page No: 1774 - 1783

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0280

easier for students to take notes and review lectures. AI-driven tools can significantly aid educators in lesson planning by automating tasks and offering insightful data. AI platforms, for instance, can evaluate student data to pinpoint knowledge gaps and patterns in learning, enabling teachers to customize their lessons to better suit the requirements of their AI can also automate the creation of instructional resources like quizzes and worksheets, freeing up teachers' time for other crucial duties like student interaction and lesson delivery. AI-driven grading systems can save time and offer students quick feedback, which improves the learning process overall. AI powered chatbots can provide students with prompt assistance, respond to frequently asked questions and direct them to pertinent resources, all of which improve their learning experience and lighten teachers' workloads. Also, by automating administrative activities like scheduling communication, AI technologies can free up teachers to concentrate on teaching and student assistance. AI can evaluate the caliber of the questions or prompts that students offer, which will help them improve their inquiry skills.

3. The Future of AI in Education

AI's potential to improve teaching techniques and increase student engagement is one of its most encouraging aspects. It is important to approach the use of AI in education with caution and guarantee thoughtfulness. To that AI-driven educational tools are used morally, responsibly, and successfully in educational settings, proactive steps must be taken to reduce risks and maximize benefits. The function of teachers will change as AI becomes more integrated into education. They will act as facilitators and guides rather than just knowledge disseminators. Teachers will also need to develop new skills, including data literacy, critical thinking and AI ethics, to successfully use AI in the classroom [Fig-2]. AI has the potential to revolutionize education, but it is crucial to do so responsibly and morally (Chan 2023). Educators. & Tsi. policymakers and researchers must collaborate to create guidelines and best practices for the use of AI in education to guarantee that it supports fair and efficient learning outcomes for all students.

Collaboration between AI technologies and teachers is essential for the continued existence and advancement of education. Educators should use AI tools that are appropriate for their content and student population in order to improve their teaching effectiveness and the learning experience. Teachers can actively integrate AI technologies into their teaching, for example, by using smart educational tools, personalized learning software or virtual assistants, which can provide a more personalized and interactive learning experience. Teachers can also use AI-powered analytics tools to gain insights into student performance and learning patterns, allowing them to adjust their teaching methods and provide targeted support. Teachers can incorporate AI in education by encouraging student innovation and overall well being. By encouraging innovation, educators can prepare their students for a world where AI is pervasive, thus fostering creativity, problem-solving abilities and adaptability.

e ISSN: 2584-2854

Figure 2 Future of A.I in Teaching Learning **Process (Class Room Where Students Interact** with Holographic AI Tutors, Receiving Personalized Learning Experiences (Gemini **Generated Image**)

The following are some examples of A.I tools for education purpose. Readers are suggested to verify themselves and these may have free access or paid and may require signup etc.,

- 4. List of some AI Tools 4.1.ChatGPT (OpenAI)
 - **Description**: AI chatbot for content generation and tutoring.

OPEN ACCESS IRJAEM

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0280 Volume: 03 Issue: 05 May 2025 Page No: 1774 - 1783

e ISSN: 2584-2854

- Features: Answering questions, writing assistance, idea generation.
- **Link**: https://chat.openai.com/

4.2.Google Bard

- **Description**: AI assistant by Google for summarization and exploration.
- **Features**: Answering questions, summarizing content.
- **Link**: https://bard.google.com/

4.3.QuillBot

- **Description**: AI paraphrasing and grammar checking tool.
- Features: Paraphrasing, summarizing, grammar correction.
- **Link**: https://quillbot.com/

4.4.Grammarly

- **Description**: AI grammar and writing assistant.
- Features: Grammar, punctuation, tone detection.
- **Link**: https://www.grammarly.com/

4.5.Edpuzzle

- **Description**: Turns videos into interactive lessons.
- **Features**: Add questions to videos, track progress.
- **Link**: https://edpuzzle.com/

4.6.Canva for Education

- **Description**: Design tool with AI features for creating presentations.
- Features: Templates, AI image tools, collaborative design.
- **Link**: https://www.canva.com/education/

4.7.Khanmigo (by Khan Academy)

- **Description**: AI tutor powered by GPT-4 for personalized learning.
- Features: Step-by-step guidance, generation.
- **Link**: https://www.khanacademy.org/khanlabs

4.8. Socratic by Google

- **Description**: AI-based homework help app.
- Features: Step explanations, subject-based learning.
- **Link**: https://socratic.org/

4.9.Curipod

- **Description**: Create interactive lessons with
- **Features**: Slide creation, engagement tools.
- **Link**: https://curipod.com/

Perplexity AI 4.10.

- Description: AI research assistant with web search.
- **Features**: Summarization, references.
- **Link**: https://www.perplexity.ai/

5. AI Tools Specific to Technical Education 5.1.LabXchange

- **Description**: A platform offering interactive virtual labs and simulations.
- Features: STEM-specific resources, virtual experiments, and modular lessons.
- **Link**: https://www.labxchange.org/

5.2.PHET Interactive Simulations

- **Description**: Interactive math and science simulations.
- Features: Physics, chemistry, biology, and engineering simulations.
- **Link**: https://phet.colorado.edu/

5.3.Virtual Labs bv Amrita Vishwa Vidyapeetham

- **Description**: Online virtual labs for various engineering disciplines.
- **Features**: For Lab virtual experiments.
- **Link**: https://vlab.amrita.edu/

5.4.TinkerCAD by Autodesk

- **Description**: 3D modeling and electronics simulations.
- Features: CAD design, circuit simulation, Arduino projects.
- **Link**: https://www.tinkercad.com/

5.5. Autodesk Fusion 360 for Education

- **Description**: CAD/CAM/CAE software with AI-assisted design.
- Features: Mechanical design, stress testing, simulation.
- For students/educators.
- **Link**:https://www.autodesk.com/education/ed u-software/overview

5.6.MATLAB Online

- **Description**: MATLAB with AI capabilities and educational toolkits.
- Features: Simulation, data analysis, machine

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0280 Volume: 03 Issue: 05 May 2025 Page No: 1774 - 1783

e ISSN: 2584-2854

learning.

• **Link**: https://matlab.mathworks.com/

6. AI Tools for Mechanical Engineering 6.1.Sim Scale

6.1.51m Scale

- **Description**: Cloud-based simulation platform for mechanical engineering.
- **Features**: CFD, FEA, and thermal simulations.
- Access: For educational purposes.
- **Link**: https://www.simscale.com/

6.2.Learn Mechanical

- **Description**: Educational portal with AIenhanced content for mechanical engineering.
- **Features**: Theoretical explanations, interactive diagrams, quizzes.
- **Link**: https://learnmechanical.com/

6.3.MechaniCalc

- **Description**: Engineering calculators for mechanical design.
- **Features**: Beam analysis, column buckling, stress calculations.
- **Link**: https://mechanicalc.com/

6.4. Autodesk Fusion 360 (Education Access)

- **Description**: Mechanical design, CAD/CAM/CAE tool.
- **Features**: Assembly modeling, simulations, stress analysis.
- Link:

https://www.autodesk.com/education/edusoftware/overview

6.5.MATLAB Simulink (Student Version)

- **Description**: Simulation and modeling tool.
- **Features**: Mechanical system modeling, control systems.
- **Link**: https://matlab.mathworks.com/

6.6.Virtual Labs – Mechanical Engineering by Amrita

- **Description**: Online lab experiments for mechanical subjects.
- **Features**: Fluid mechanics, thermodynamics, kinematics labs.
- **Link**: https://vlab.amrita.edu/

6.7.Engineering Toolbox AI Tools

- **Description**: Tools and calculators for mechanical concepts.
- Features: HVAC, thermodynamics, unit

conversions.

- **Link**: https://www.engineeringtoolbox.com/
- 7. AI Tools for Electronics & Communication Engineering Theory and Practicals

7.1. Tinkercad Circuits

- **Description**: Online circuit design and simulation tool ideal for beginners.
- **Features**: Drag-and-drop interface, Arduino simulation, real-time output.
- Link: https://www.tinkercad.com/

7.2.Proteus Design Suite (Student Version)

- **Description**: Circuit simulation software used for ECE practicals.
- **Features**: Microcontroller simulation, PCB design, schematic capture.
- **Link**: https://www.labcenter.com/

7.3.Circuit Verse

- **Description**: Digital circuit simulator and platform for creating and sharing designs.
- **Features**: Interactive simulations, combinational and sequential logic circuits.
- **Link**: https://circuitverse.org/

7.4.Easy EDA

- **Description**: Cloud-based EDA tool suite.
- **Features**: Schematic capture, SPICE simulation, PCB layout.
- **Link**: https://easyeda.com/

7.5.MATLAB Simulink (Student Version)

- **Description**: Simulation and modeling tool.
- **Features**: Signal processing, communication systems, system design.
- **Link**: https://matlab.mathworks.com/

7.6.LTspice

- **Description**: SPICE simulator for analog circuits.
- **Features**: Waveform viewing, analog simulation, extensive component library.
- **Link**: https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html

8. AI Alternatives to Microsoft Office 8.1.Alternatives to Microsoft Word

Google Docs

- **Description**: Cloud-based word processor with AI writing suggestions.
- **Features**: Smart Compose, voice typing, real-

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0280 e ISSN: 2584-2854 Volume: 03 Issue: 05 May 2025 Page No: 1774 - 1783

- time collaboration.
- **Link**: https://docs.google.com/

Zoho Writer

- Description: Online word processor with built-in AI assistant (Zia).
- Features: Contextual grammar checks, style enhancements.
- **Link**: https://www.zoho.com/writer/

Notion AI

- **Description**: Productivity tool with smart note-taking and content generation.
- **Features**: Summarization, paraphrasing, formatting suggestions.
- **Link**: https://www.notion.so/product/ai

8.2. Alternatives to Microsoft Excel

Google Sheets

- **Description**: AI-supported online spreadsheet tool.
- Features: Smart fill, formula suggestions, data insights.
- **Link**: https://sheets.google.com/

Zoho Sheet

- **Description**: Collaborative spreadsheet platform with AI (Zia).
- Features: Data analysis, smart charts, pivot
- **Link**: https://www.zoho.com/sheet/

Airtable

- **Description**: Hybrid spreadsheet-database tool with automation.
- Features: Visual dashboards, AI tagging, integration options.
- **Link**: https://airtable.com/

8.3. Alternatives to Microsoft PowerPoint

Google Slides

- **Description**: Online presentation software with AI-powered design suggestions.
- Features: Real-time collaboration, theme suggestions, embedded media.
- **Link**: https://slides.google.com/

Beautiful.ai

- **Description**: AI-powered presentation builder.
- **Features**: Smart templates, automated layout, design assistant.
- **Link**: https://www.beautiful.ai/

Canva

- **Description**: Graphic design platform with presentation and AI features.
- Features: AI Magic Write, auto-layouts, animation.
- **Link**: https://www.canva.com/

8.4. Alternatives to Microsoft Access

Baserow

- **Description**: No-code database tool ideal for education.
- Features: Visual database creation, real-time collaboration.
- **Link**: https://baserow.io/

NocoDB

- **Description**: Airtable alternative that connects to SOL databases.
- **Features**: Spreadsheet-like interface, relational database support.
- **Link**: https://www.nocodb.com/

Google AppSheet

- **Description**: Google's no-code platform to create apps from spreadsheets.
- Features: Automation, workflows, smart data
- **Link**: https://www.appsheet.com/

Conclusion

These AI tools are enhancing how teachers interact with students, automate assessments and streamline grading. By leveraging these platforms, educators can focus more on teaching while allowing AI to handle administrative tasks improving overall efficiency and student outcomes. From real-time feedback systems and interactive quizzes to automatic grading and performance tracking, AI is making it easier for educators to support and engage students effectively.

Acknowledgements

The authors wish to express acknowledgements to sources, those who contributed directly and indirectly in this paper and thanks to their generosity and this paper is intended only to create awareness among readers about topic. Readers are informed to verify themselves on any particular topic mentioned in this paper. Further the A.I tools mentioned free/open in this paper may be paid or viceversa. Some A.I tools and other links may not be working or may not have the mentioned content. If any references missing may be

Volume: 03 Issue: 05 May 2025 Page No: 1774 - 1783

e ISSN: 2584-2854

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0280

treated as included and authors request kind cooperation from all. Even though checked carefully, there may be some typographical mistakes. Further information can be explored from various resources.

References

- [1]. Abbas, N., Ali, I., Manzoor, R., Hussain, T., & Hussain, M. H. A. i. (2023). Role of Artificial Intelligence Tools in Enhancing Students' Educational Performance at Higher Levels. Journal of Artificial Intelligence Machine Learning and Neural Network, 35, 36.https://doi.org/10.55529/jaimlnn.35.36.49
- [2]. Adams, C., Pente, P., Lemermeyer, G., & Rockwell, G. (2023). Ethical principles for artificial intelligence in K-12 education. Computers and Education Artificial Intelligence, 4, 100131. https://doi.org/10.1016/j.caeai.2023.100131
- [3]. Akgün, S., & Greenhow, C. (2021). Artificial intelligence in education: Addressing ethical challenges in K-12 settings [Review of Artificial intelligence in education: Addressing ethical challenges in K-12 settings]. AI and Ethics, 2(3), 431. Springer Nature. https://doi.org/10.1007/s43681-021-00096-7
- [4]. Akinwalere, S. N., & Ivanov, V. (2022). Artificial Intelligence in Higher Education: Challenges and Opportunities. BORDER CROSSING, 12(1), 1. https://doi.org/10.33182/bc.v12i1.2015
- [5]. Alexandrowicz, V. (2024). Artificial Intelligence Integration in Teacher Education: Navigating Benefits, Challenges, and Transformative Pedagogy. Journal of Education and Learning, 13(6), 346. https://doi.org/10.5539/jel.v13n6p346
- [6]. Aljemely, Y. (2024, October). Challenges and best practices in training teachers to utilize artificial intelligence: a systematic review. In Frontiers in Education (Vol. 9, p. 1470853). Frontiers Media SA.
- [7]. Amdan, M. A. B., Janius, N., & Kasdiah, M. A. H. B. (2024). Concept paper: Efficiency of Artificial Intelligence (AI) tools For STEM Education In Malaysia. International Journal

- of Science and Research Archive, 12(2), 553. https://doi.org/10.30574/ijsra.2024.12.2.1273
- [8].Baig, M. I., & Yadegaridehkordi, E. (2025). Factors influencing academic staff satisfaction and continuous usage of generative artificial intelligence (GenAI) in higher education. International Journal of Educational Technology in Higher Education, 22(1). https://doi.org/10.1186/s41239-025-00506-4
- [9].Baraldi, E., & Kaminski, P. (2018). Reference model for the implementation of new assembly processes in the automotive sector. https://doi.org/10.1080/23311916.2018.14829 84
- [10]. Bit, D., Biswas, S., & Nag, M. (2024). The Impact of Artificial Intelligence in Educational System. International Journal of Scientific Research in Science and Technology, 11(4), 419. https://doi.org/10.32628/ijsrst2411424
- [11]. Bitzenbauer, P. (2023). ChatGPT in physics education: A pilot study on easy-to-implement activities. Contemporary Educational Technology, 15(3). https://doi.org/10.30935/cedtech/13176
- [12]. Boulay, B. du. (2023). Artificial Intelligence in Education and Ethics. In Handbook of Open, Distance and Digital Education (p. 93). https://doi.org/10.1007/978-981-19-2080-6 6
- [13]. Chan, C. K. Y., & Tsi, L. H. Y. (2023). The AI Revolution in Education: Will AI Replace or Assist Teachers in Higher Education? arXiv (Cornell University). https://doi.org/10.48550/arxiv.2305.01185
- [14]. Cordero, J., Torres-Zambrano, J., & Cordero-Castillo, A. (2024). Integration of Generative Artificial Intelligence in Higher Education: Best Practices. Education Sciences, 15(1), 32. https://doi.org/10.3390/educsci15010032
- [15]. Delello, J. A., Sung, W., Mokhtari, K., Hebert, J., Bronson, A., & Giuseppe, T. D. (2025). AI in the Classroom: Insights from Educators on Usage, Challenges, and Mental Health. Education Sciences, 15(2), 113. https://doi.org/10.3390/educsci15020113
- [16]. Dey, D. (2025). Enhancing Educational Tools Through Artificial Intelligence in Perspective

OPEN CACCESS IRJAEM

e ISSN: 2584-2854 Volume: 03 Issue: 05 May 2025 Page No: 1774 - 1783

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0280

- of Need of AI. https://doi.org/10.2139/ssrn.5031275
- [17]. Foltýnek, T., Bjelobaba, S., Glendinning, I., Khan, Z. R., Santos, R., Pavletić, P., & Kravjar, J. (2023). ENAI Recommendations on the ethical use of Artificial Intelligence in Education. International Journal for Educational Integrity, 19(1). https://doi.org/10.1007/s40979-023-00133-4
- [18]. Gudonienė, D., Stanevičienė, E., Buksnaitis, V., & Daley, N. (2023). The Scenarios of Artificial Intelligence and Wireframes Implementation in Engineering Education. Sustainability, 15(8), 6850. https://doi.org/10.3390/su15086850
- [19]. Harry, A., & Sayudin, S. (2023). Role of AI in Education. Interdiciplinary Journal and Hummanity (INJURITY), 2(3), 260. https://doi.org/10.58631/injurity.v2i3.52
- [20]. Jian, M. J. K. O. (2023). Personalized learning through AI. Advances in Engineering Innovation, 5(1), 16. https://doi.org/10.54254/2977-3903/ 5/ 2023 039
- [21]. Kaledio, P., Robert, A., & Frank, L. A. (2024). The Impact of Artificial Intelligence on Students' Learning Experience. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4716747
- [22]. Kamalov, F., Calonge, D. S., & Gurrib, I. (2023). New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution. Sustainability, 15(16), 12451. https://doi.org/10.3390/su151612451
- [23]. Kamalov, F., & Gurrib, I. (2023). New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution. arXiv (Cornell University). https:// doi.org/10.48550/arxiv.2305.18303
- [24]. Kim, N. J., & Kim, M. K. (2022). Teacher's Perceptions of Using an Artificial Intelligence-Based Educational Tool for Scientific Writing. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.755914

- [25]. Klímová, B., Pikhart, M., & Kacetl, J. (2023). Ethical issues of the use of AI-driven mobile apps for education [Review of Ethical issues of the use of AI-driven mobile apps for education]. Frontiers in Public Health, 10. Frontiers Media. https://doi.org/10.3389/fpubh.2022.1118116
- [26]. Lampou, R. (2023). The Integration of Artificial Intelligence in Education: Opportunities and Challenges. Review of Artificial Intelligence in Education, 4. https://doi.org/10.37497/rev.artif.intell.educ.v 4i00.15
- [27]. Li, H., Xiao, R., Nieu, H., Tseng, Y.-J., & Liao, G. (2024). "From Unseen Needs to Classroom Solutions": Exploring AI Literacy Challenges & Opportunities with Project-based Learning Toolkit in K-12 Education. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2412.17243
- [28]. Lin, C.-C., Huang, A. Y. Q., & Lu, O. H. T. (2023). Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review [Review of Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review]. Smart Learning Environments, 10(1). Springer Nature. https://doi.org/10.1186/s40561-023-00260-y
- [29]. Luckin, R., & Holmes, W. (2016). Intelligence Unleashed: An argument for AI in Education. http://oro.open.ac.uk/50104/
- [30]. Ma, K., Zhang, Y., & Hui, B.-H. (2024). How Does AI Affect College? The Impact of AI Usage in College Teaching on Students' Innovative Behavior and Well-Being. Behavioral Sciences, 14(12), 1223. https://doi.org/10.3390/bs14121223
- [31]. Mello, R. F., Freitas, E., Pereira, F. D., Cabral, L., Tedesco, P., & Ramalho, G. (2023). Education in the age of Generative AI: Context and Recent Developments. arXiv (Cornell University). https://doi.org/ 10.48550/arxiv.2309.12332
- [32]. Nafea, I. (2018). Machine Learning in

OPEN CACCESS IRJAEM

e ISSN: 2584-2854 Volume: 03 Issue: 05 May 2025 Page No: 1774 - 1783

https://goldncloudpublications.com https://doi.org/10.47392/IRJAEM.2025.0280

- Educational Technology. In InTech eBooks. https://doi.org/10.5772/intechopen.72906
- [33]. Neji, W., Boughattas, N., & Ziadi, F. (2023). Exploring New AI-Based Technologies to Enhance Students' Motivation. Issues in Informing Science and Information Technology, 20, 95. https://doi.org/10.28945/5149
- [34]. Pacheco-Mendoza, S., Guevara, C., Albán, A. L. M., & Fernández-Escobar, J. E. (2023). Artificial Intelligence in Higher Education: A Predictive Model for Academic Performance. Education Sciences, 13(10), 990. https://doi.org/10.3390/educsci13100990
- [35]. Roméro, M., Heiser, L., Lepage, A., Gagnebien, A., Bonjour, A., Lagarrigue, A., Palaude, A., Boulord, C., Gagneur, C.-A., Mercier, C., Caucheteux, C., Guidoni-Stoltz, D., Tressols, F., Henry, J., Alexandre, F., Céci, J.-F., Camponovo, J., Fouché, L., Métral, J.-F., ... Borgne, Y. L. (2023). Teaching and learning in the age of artificial intelligence. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2303.06956
- [36]. Roshanaei, M., Olivares, H., & Lopez, R. R. (2023). Harnessing AI to Foster Equity in Education: Opportunities, Challenges, and Emerging Strategies. Journal of Intelligent Learning Systems and Applications, 15(4), 123. https://doi.org/10.4236/jilsa.2023. 154009
- [37]. Saputra, I., Astuti, M., Sayuti, M., & Kusumastuti, D. (2023). Integration of Artificial Intelligence in Education: Opportunities, Challenges, Threats and Obstacles. A Literature Review. Indonesian Journal of Computer Science, 12(4). https://doi.org/10.33022/ijcs.v12i4.3266
- [38]. Shahzad, M. F., Xu, S., Lim, W. M., Yang, X., & Khan, Q. (2024). Artificial intelligence and social media on academic performance and mental well-being: Student perceptions of positive impact in the age of smart learning. Heliyon, 10(8). https://doi.org/10.1016/j.heliyon.2024.e29523

- [39]. Wang, Y. (2020). When artificial intelligence meets educational leaders' data-informed decision-making: A cautionary tale. Studies In Educational Evaluation, 69, 100872. https://doi.org/10.1016/j.stueduc.2020.100872
- [40]. Wei, H. (2020). Using AutoCAD Software to Assist in Analyzing the Application of Modern Machinery Manufacturing Technology and Processing Technology. https://doi.org/10.1088/1742-6596/1648/2/022071
- [41]. Zviel-Girshin, R. (2024). The Good and Bad of AI Tools in Novice Programming Education. Education Sciences, 14(10), 1089. https://doi.org/10.3390/educsci14101089
- [42]. OpenAI ChatGPT: https://chat.openai.com/
- [43]. Google Bard: https://bard.google.com/
- [44]. QuillBot: https://quillbot.com/
- [45]. Grammarly: https://www.grammarly.com/
- [46]. Edpuzzle: https://edpuzzle.com/
- [47]. Canva for Education: https://www.canva.com/education/
- [48]. Khanmigo: https://www.khanacademy.org/khan-labs
- [49]. Socratic: https://socratic.org/
- [50]. Curipod: https://curipod.com/
- [51]. Perplexity AI: https://www.perplexity.ai/
- [52]. LabXchange: https://www.labxchange.org/
- [53]. PHET Simulations: https://phet.colorado.edu/
- [54]. Virtual Labs (Amrita): https://vlab.amrita.edu/
- [55]. TinkerCAD: https://www.tinkercad.com/
- [56]. Autodesk for Education: https://www.autodesk.com/education/edu-software/overview
- [57]. MATLAB Online: https://matlab.mathworks.com/