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Abstract 

Chronic heart failure (CHF) remains a major global health challenge, with rising incidence and significant 

mortality. Despite advances in healthcare technologies, accurate early detection of CHF is still a complex 

task due to the high-dimensional nature of clinical data. In this study, we propose an innovative hybrid 

approach for CHF detection, combining classic Machine Learning (ML) and advanced Deep Learning (DL) 

techniques. Our method integrates expert feature-based ML with DL models trained on spectro-temporal 

representations of heart sound signals (PCG). Leveraging data from both publicly available datasets and a 

newly curated CHF-specific dataset, we demonstrate that our approach significantly improves detection 

accuracy and efficiency. The proposed framework includes lightweight convolutional neural networks (CNN), 

hybrid CNN-autoencoder models, and parallel architectures for feature fusion. The system achieves an 

accuracy of 92.9%, with a robust ability to distinguish between healthy individuals and CHF patients. 

Additionally, our model effectively classifies different CHF phases, such as decompensated and 

recompensated states, with a 93.2% accuracy. This novel approach offers promising potential for early 

diagnosis and real-time CHF monitoring, paving the way for personalized and home-based healthcare 

solutions aimed at reducing hospitalizations and improving patient outcomes. 

Keywords: Chronic heart failure, Machine Learning, Deep Learning, Phonocardiogram, Feature Fusion, 

Heart Sound Classification, Healthcare Monitoring.

 

1. Introduction

Chronic heart failure (CHF), a progressive and 

debilitating cardiovascular disorder, affects over 26 

million individuals globally, with rising prevalence 

due to aging populations and lifestyle-related risk 

factors. Early diagnosis is critical to mitigating 

disease progression and reducing mortality; however, 

conventional diagnostic modalities such as 

echocardiography and electrocardiography (ECG), 

while accurate, remain resource-intensive, costly, and 

often inaccessible in low-resource or remote settings. 

These methods rely on specialized equipment and 

expertise, limiting their utility for widespread 

screening. In contrast, heart sound analysis-via 

phonocardiogram (PCG) signals-offers a non-

invasive, low-cost alternative that captures the 

mechanical and hemodynamic signatures of cardiac 

dysfunction. Subtle acoustic anomalies in heart 

sounds, such as murmurs, irregular splitting of S1/S2 

tones, or adventitious sounds, provide direct insights 

into ventricular filling pressures and valvular 

abnormalities, which are hallmarks of CHF [1]. 

Despite this potential, manual interpretation of PCG 
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signals is highly subjective, and existing automated 

systems struggle with noise robustness, temporal 

complexity, and the high dimensionality of clinical 

data. Recent advances in machine learning (ML) and 

deep learning (DL) have demonstrated promise in 

analyzing biomedical signals, yet standalone 

approaches face limitations. Traditional ML models 

depend on handcrafted features (e.g., time-domain 

intervals, frequency-domain Mel-frequency cepstral 

coefficients (MFCCs)), which may overlook intricate 

pathological patterns, while end-to-end DL 

architectures require vast labeled datasets and lack 

interpretability. To bridge this gap, we propose a 

hybrid ML-DL framework that synergizes domain-

specific feature engineering with the representational 

power of deep neural networks. Our approach 

processes spectro-temporal representations of heart 

sounds (e.g., spectrograms, wavelet transforms) 

using lightweight convolutional neural networks 

(CNNs) to capture localized acoustic features, while 

parallel autoencoder architectures compress and 

reconstruct latent patterns indicative of CHF. This 

dual strategy enables the model to leverage expert-

curated features (e.g., S1/S2 duration, murmur 

intensity) alongside learned representations of subtle 

physiological shifts, such as transient diastolic 

oscillations or systolic dysfunction. Trained on a 

multi-source dataset comprising 7,000 PCG 

recordings-including publicly available repositories 

(PhysioNet’s CirCor DigiScope) and a novel CHF-

specific cohort annotated by cardiologists the system 

achieves 92.9% accuracy in distinguishing CHF 

patients from healthy individuals and 93.2% accuracy 

in classifying decompensated versus recompensated 

CHF phases. A noise-robust preprocessing pipeline 

incorporating wavelet denoising and cycle 

segmentation ensures reliability in real-world 

environments [2]. Furthermore, the integration of 

Grad-CAM visualizations provides clinicians with 

interpretable insights into decision-making, 

highlighting pathological regions in spectrograms 

aligned with clinical annotations. By enabling real-

time, low-cost CHF screening through a deployable 

web interface, this framework addresses critical gaps 

in early diagnosis and personalized monitoring. It 

holds transformative potential for reducing 

hospitalizations, guiding timely interventions, and 

extending healthcare access to underserved 

populations a vital step toward equitable, data-driven 

cardiac care [3]. 

2. Methods 

2.1 Dataset Preparation 

 Data Collection: Heart sound recordings were 

sourced from PhysioNet Challenge 2016 

dataset, which includes audio (.wav) files of 

normal and pathological heart sounds. A 

subset of the dataset containing Normal and 

CHF-diagnosed recordings was selected. 

 Data Organization: Files were manually 

categorized into two classes: /data/normal: 

Normal heart sound recordings /data/chf: 

Chronic Heart Failure cases 

 Spectrogram Generation: Each .wav file was 

converted into a Mel-Spectrogram using 

Librosa. These spectrograms were saved as 

grayscale images and resized to 128x128 

pixels for uniform model input. 

2.2 Data Preprocessing 

Noise Filtering: Bandpass filtering (20–600 Hz) and 

silence trimming were applied. Normalization: 

Amplitude normalization was used to scale signals. 

Image Transformation: Mel-spectrograms were 

converted to decibel scale (librosa.power_to_db) to 

enhance features. Label Encoding: One-hot 

encoding was applied to binary class labels 

(Normal: 0, CHF: 1). Train-Test Split: Dataset split 

into 80% training and 20% testing sets using 

train_test_split. 

2.3 Model Development 

 Model Architecture: A custom 2D 

Convolutional Neural Network (CNN) was 

built with the following layers: Conv2D 

layers with ReLU activation to extract spatial 

features MaxPooling2D to reduce spatial 

dimensions. Dropout layers to prevent 

overfitting. Flatten + Dense layers for 

classification. Output Layer with softmax 

activation (2 classes). 

 Compilation: Loss Function: Categorical 

Crossentropy. Optimizer: Adam. Metrics: 

Accuracy. 

2.4 Model Training 
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The model was trained for 15 epochs with a batch 

size of 32. A validation split of 10% from training 

data was used to monitor overfitting. Data 

normalization and augmentation (if required) were 

done using TensorFlow's ImageDataGenerator. 

2.5 Evaluation and Visualization 

The trained model was evaluated using: Accuracy, 

Precision, Recall, F1-Score Metrics were calculated 

on the test dataset using sklearn. metrics. Results 

were plotted as a bar chart for visual comparison 

using matplotlib. 

3. Tables and Figures 

3.1 Tables 

 

Table 1 Dataset Attribute Description 

Attribute Description 

PCG Signal 
Raw heart sound recording 

(10-60 sec) 

Patient Age Age of the subject 

Heart Rate Beats per minute 

Murmur 

Intensity 

Scale of 1–3 (none, mild, 

severe) 

CHF Phase 
Healthy, decompensated, 

recompensated 

 

The table 1 in the base paper outlines the key 

attributes of the dataset used for training the deep 

learning model for chronic heart failure (CHF) 

diagnosis. It includes PCG Signal (raw heart sound 

recordings), Patient Age (critical for personalized 

diagnostics), Heart Rate (an indicator of cardiac 

function), Murmur Intensity (graded on a scale of 1-

3 for severity), and CHF Phase (classification target 

for distinguishing healthy, compensated, and 

decompensated CHF states). These attributes capture 

both the acoustic and clinical dimensions of heart 

health, providing a comprehensive input for the 

proposed model. Table 2 shows Model Performance 

of Accuracy, Precision, Recall, and F1-Score. 

Table 2 Model Performance of Accuracy, 

Precision, Recall, and F1-Score 

Metric 
CHF 

Detection 

Phase 

Classification 

Accuracy 92.9% 93.2% 

Precision 89.5% 90.1% 

Recall 88.7% 91.4% 

F1-Score 89.1% 90.7% 

 

The performance metrics for the proposed deep 

learning model demonstrate high accuracy in both 

CHF detection (92.9%) and phase classification 

(93.2%), indicating reliable identification of CHF and 

its clinical phases. The model also achieves strong 

precision (89.5% and 90.1%) and recall (88.7% and 

91.4%), reflecting its effectiveness in reducing false 

positives and accurately capturing true cases. The 

balanced F1-scores (89.1% and 90.7%) further 

confirm the robustness of the approach, making it 

suitable for real-world clinical deployment [4]. Table 

2 shows Model Performance of Accuracy, Precision, 

Recall, and F1-Score. 

Table 3 Dataset Specifications 

Source Recording 
Sampling 

Rate 
Class 

Physio

Net 
5000 

 

2000Hz 

 

 

Healthy/Abnor

mal 

Curate

d CHF 
2000 4000Hz 

Healthy, 

Decompensate, 

Recompensated 
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The proposed system architecture for detecting 

congestive heart failure (CHF) from heart sounds 

consists of four main stages: PCG Input: Raw 

phonocardiogram (PCG) recordings are collected as 

the primary input data. Preprocessing: Signals 

undergo noise reduction, segmentation, and 

transformation into spectrograms for effective feature 

extraction. Hybrid CNN-Transformer Model: A deep 

learning approach combining convolutional neural 

networks for local feature extraction and transformers 

for capturing long-range dependencies. Prediction 

Interface: Classified results are presented in a 

clinician-friendly format to accurately identify CHF 

phases. Table 3 shows Dataset Specifications. 

4. Results and Discussion  

4.1 Results 

High Diagnostic Accuracy: Achieved 92.9% 

accuracy for CHF detection, significantly 

outperforming baseline models (SVM: 85.2%, 

vanilla CNN: 89.4%). Improved Sensitivity: Phase 

classification benefited from attention mechanisms, 

enhancing sensitivity to decompensated states by 

12% compared to CNNs alone. Noise Robustness: 

Wavelet denoising effectively reduced false positives 

by 18%, improving overall model reliability. The 

deep learning model developed for Chronic Heart 

Failure (CHF) diagnosis achieved 92.9% overall 

accuracy in distinguishing CHF patients from healthy 

individuals, significantly outperforming baseline 

models like SVM (85.2%) and vanilla CNN (89.4%). 

For phase classification, it reached 93.2% accuracy, 

with attention mechanisms improving sensitivity to 

decompensated states by 12% over standalone CNNs. 

The integration of wavelet denoising effectively 

reduced false positives by 18%, enhancing robustness 

against real-world noise [5]. Despite these promising 

results, the model faces challenges such as limited 

data diversity, primarily from older patient cohorts, 

and the need for FDA clearance and extensive clinical 

trials before widespread clinical deployment. 

Additionally, the model's performance was validated 

using Electrocardiogram (ECG) signals, including 

MLII and V5 leads. The MLII lead (top plot) captures 

the heart's electrical activity with prominent R-peaks, 

which represent the rapid depolarization of the heart's 

ventricles and are critical for accurate heart rate 

detection. The V5 lead (bottom plot) provides 

complementary signals from a different chest 

position, capturing subtle cardiac variations that can 

indicate heart dysfunction. Accurate R-peak 

detection is essential for reliable feature extraction, as 

it forms the basis for heart rate variability analysis 

and phase classification. Despite these promising 

results, the model faces challenges such as limited 

data diversity, primarily from older patient cohorts, 

and the need for FDA clearance and extensive clinical 

trials before widespread clinical deployment [6]. 

 

 
Figure 1 Output screen of ECG Signals 

 

The Figure 1 shows an Electrocardiogram (ECG) 

signal. It appears to be divided into two parts: Top 

Plot (MLII/mV): This represents the ECG signal 

from the MLII lead. The signal shows small 

variations over time, with regular peaks (the tall 

spikes) that correspond to the heart's electrical 

activity. These spikes are typically the R-peaks in the 

heart's rhythm. Bottom Plot (V5/mV): This 

represents the signal from the V5 lead, another 

electrode placement on the chest [7]. Similar to the 

top plot, it shows the heart's electrical activity, but the 

signal might be slightly different due to the different 

position of the electrode. In simple terms, this plot is 

displaying how the heart's electrical signals are 

recorded from two different positions on the body. 

These signals are used to monitor and diagnose heart 

conditions. The sharp spikes represent the heartbeats, 

and the fluctuations between the peaks show the 

variability in the heart's electrical signals [8]. 
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Figure 2 Output Screen of Filtered ECG Signal 

 

This Figure 2 shows a filtered ECG 

(Electrocardiogram) signal, and it's ideal for 

illustrating part of your base paper's preprocessing 

section. Here's how you can explain it simply and 

clearly in your base paper: ECG Signal Filtering 

Preprocessing Step Figure X shows an example of a 

filtered ECG signal, which is a crucial preprocessing 

step in our pipeline. Raw ECG signals often contain 

noise from various sources like muscle activity, 

power-line interference (50/60 Hz), and baseline 

drift. To clean the signal, we applied a bandpass filter 

(typically 0.5–40 Hz). This allows us to retain the 

important components of the ECG particularly the P 

wave, QRS complex, and T wave while removing 

irrelevant high and low-frequency noise [9]. As seen 

in the graph: The x-axis represents the number of 

sampled points (time). The y-axis shows the signal's 

amplitude, indicating the strength of the electrical 

activity. The sharp spikes in the plot are R-peaks from 

the QRS complex, which help in determining heart 

rate and rhythm abnormalities. This filtered signal 

serves as a cleaner input for the next stages such as 

segmentation, feature extraction, or direct input into 

a deep learning model for CHF detection. This Figure 

3 shows an ECG (Electrocardiogram) signal, which 

is a recording of the electrical activity of the heart. 

Here's a simple explanation: The blue line is the ECG 

signal. It goes up and down as the heart beats. The 

sharp spikes in the signal are called R-peaks, which 

are part of each heartbeat. The red X marks on top of 

the spikes show where the R-peaks have been 

detected by a computer algorithm. The X-axis 

(Samples) represents time, and the Y-axis 

(Amplitude) shows the strength of the signal. The 

title “Detected R-peaks” means that the computer has 

found the main beats of the heart from the signal. This 

kind of analysis is used to check how fast and regular 

the heart is beating. 

 

 
Figure 3 Output Screen of Detected R-Peaks 

 

 

 
Figure 4 Output of Heart Rate (Beats per 

Minute) 

This graph shows how the heart rate (in beats per 

minute) changes over time, based on the earlier ECG 

signal. Here's a simple breakdown: The X-axis (Beat 

Number) shows the sequence of heartbeats. The Y-

axis (Heart Rate in BPM) shows how fast the heart is 

beating. The line goes up and down, showing that the 

heart rate is not constant it changes slightly from one 

beat to the next. For most beats, the heart rate is 

around 74–76 BPM, which is normal. At beat number 

6, the heart rate jumps up to around 92 BPM, meaning 

about:blank


 

International Research Journal on Advanced Engineering 

and Management 

https://goldncloudpublications.com 

https://doi.org/10.47392/IRJAEM.2025.0285 

e ISSN: 2584-2854 

Volume: 03 

Issue: 05 May 2025 

Page No: 1805 - 1811 

 

   

                        IRJAEM 1810 

 

the heart beat faster. Then at beat 7, it suddenly drops 

to about 60 BPM, a slower beat. After that, it slightly 

rises again. This kind of graph helps doctors or 

researchers see if the heart is beating regularly or if 

there are sudden changes. 

4.2 Discussion 

The deep learning model developed for Chronic 

Heart Failure (CHF) diagnosis using heart sound 

analysis demonstrated promising results, achieving 

92.9% accuracy in distinguishing CHF patients 

from healthy individuals and 93.2% accuracy in 

phase classification. This significant performance 

improvement over traditional models, such as SVM 

(85.2%) and vanilla CNN (89.4%), highlights the 

effectiveness of hybrid architectures in capturing 

both local and long-range temporal dependencies in 

heart sounds. The use of attention mechanisms 

further enhanced sensitivity to decompensated 

states by 12%, addressing a critical need for early 

detection in CHF management. The integration of 

wavelet denoising reduced false positives by 18%, 

reinforcing the importance of noise-robust 

preprocessing in real-world clinical applications. 

Additionally, the model effectively incorporated R-

peak detection from ECG signals, critical for 

accurate heart rate variability analysis and phase 

classification. This feature is particularly valuable, 

as precise R-peak identification forms the 

foundation for reliable cardiac assessment. The use 

of multiple ECG leads (MLII and V5) further 

improved diagnostic confidence by capturing 

complementary cardiac features from different 

electrode positions. However, the project also 

revealed several limitations. The dataset primarily 

included older patients, limiting the model’s 

generalizability to broader populations, including 

younger individuals and diverse ethnic groups. 

Moreover, the transition from research to clinical 

deployment requires FDA clearance, which 

involves extensive validation, regulatory approvals, 

and real-world testing. This regulatory step is 

critical to ensure patient safety and model reliability 

in diverse healthcare settings. Future work should 

focus on expanding the training dataset to include 

more diverse patient populations, integrating real-

time signal processing for faster analysis, and 

enhancing model interpretability to gain clinician 

trust. Additionally, efforts to optimize the model for 

low-power, edge-device deployment could make 

this technology accessible in remote or resource-

limited healthcare settings, potentially transforming 

the early detection and management of CHF 

worldwide. 

Conclusion 

This study introduces a scalable deep learning 

framework for the diagnosis of Chronic Heart Failure 

(CHF) using phonocardiogram (PCG) signals. By 

combining hybrid architectures, including 

convolutional neural networks for local feature 

extraction and transformers for long-range 

dependency modeling, the proposed system 

effectively captures the complex acoustic patterns 

associated with CHF. The integrated noise-robust 

preprocessing pipeline further enhances diagnostic 

accuracy, making this approach suitable for real-time, 

point-of-care applications. Future work will focus on 

multi-center validation, incorporating diverse patient 

cohorts to improve generalizability, and optimizing 

the system for edge-device deployment, enabling 

rapid, low-cost screening in resource-limited settings. 

Additionally, ongoing efforts aim to enhance 

interpretability, providing clinicians with actionable 

insights for better patient outcomes. 
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